
Chapter 3

Some Finite and Discrete
Groups

We have have encountered several finite groups in the previous chapter: the
cyclic group Zn, the symmetric group Sn, and its subgroup the alternating
group An. The properties of these groups will be elaborated in this chapter.
We will also discuss three other groups obtained by incorporating ‘reflections’
into Zn, the dihedral group Dn, the generalized quaterion group Qn, and the
dicyclic group DZn. These three groups differ from one another in the way
‘reflections’ are introduced.

A large class of finite groups is obtained from matrices over a finite

field. In mathematics, a field is collection of objects that can mutually
multiply, divide, add, and subtract. Real numbers R and complex num-
bers C are two familiar fields, each having an infinite number of elements.
Thus matrix groups over these fields similarly have an infinite order. Integers
Z do not form a field because we cannot divide them, but integers modulo a
prime number pdo form finite fields which we shall denote by Fp. As
a result, matrix groups over these finite fields also have a finite orders.

Let me illustrate how to carry out the four arithmetic operations in the
field F7: 2 × 5 = 10 ≡ 3 (mod 7), 6 + 8 = 14 ≡ 0, 8 − 11 = −3 ≡ 4, and
6/5 ≡ 4 (because 4× 5 = 20 ≡ 6 (mod 7)).

There are also finite fields Fpn with pn elements, but the four arithmetic
operations (+,−,×, /) are much more complicated.

Finite subgroups of O(3) are symmetry groups of molecules and crys-
tals. They are known as point groups. Some of them may also be symme-
try groups for the three generations of elementary fermions. (Crystal)
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32 CHAPTER 3. SOME FINITE AND DISCRETE GROUPS

lattices give rise to a discrete translational symmetry group of infinite order.
Point groups incorporating this translational symmetry is known as space

groups, but we will not discuss these in detail.
Since integers (Z) do not form a field, n×n matrices with integer entries

generally do not form a group. There is however an exception when n = 2.
The set of 2 × 2 matrices with unit determinant and integer entries form a
group known as SL(2,Z). This modular group is isomorphic to the group
of linear fractional transformations in a complex plane [z → (az + b)/(cz +
d), a, b, c, d ∈ Z, ad − bc = 1]. It is useful in string theory, and in the
study of modular functions (Jacobi θ-functions) in mathematics. This
group is clearly not finite, but it is discrete.

Another infinite discrete group useful in integrable models in statistical
physics [the Yang-Baxter equation, for example] is the braid group.

These then are some examples of finite and infinite discrete groups. For
finite groups, there is a general Sylow theorem, which yields information
on the structure of a finite group G merely from its order |G|. If |G| = p
is a prime number, then the only possible group is Zp. If |G| =

∏
pmi
i is

decomposed into products of prime numbers pi, then the theorem states that
G must contain subgroups Zpmi

i
for all i (known as Sylow p-subgroup), and

many of the known properties of these p-subgroups can be used to elucidate
the structure of G. For example, it can shown that the smallest nonabelian
simple group is the A5 group of order |G| = 60.

3.1 cyclic group

Zn (Cn)
It is the rotational symmetry group of an n-sided regular polygon.

This group was previously discussed in §1.2.1(1), and here are some more of
its properties:

1. It is a finite subgroup of SO(2) generated by e2πi/n.

2. Being an abelian group, every element is a class, hence |C| = n.

3. If n = p is a prime number, then there are no non-trivial subgroups,
and it is the only group of order n. This also means that Zp is simple
if p is prime.
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Figure 3.1: n-sided regular polygons

If n is not prime andm divides n, thenH = Zm is a (normal) subgroup
of G = Zn, with the quotient group G/H = Zn/m.

4. If n = pq is a product of two primes which are mutually coprime,
then Zn ∼= Zp × Zq.

Proof : Since p and q are coprime, one can find integers a, b via the
‘extended Euclid algorithm’ so that aq + bp = 1(mod n), with a, b
unique modulo p, q respectively. The correspondence Zn ↔ Zp × Zq is

e2πik/n ↔ e2πika/p × e2πikb/q = e2πik(aq+bp)/pq

.

For example, in Z15
∼= Z3 × Z5, since 1 = −1 ∗ 5 + 2 ∗ 3, we have

e2πik/15 = e−2πik/3 × e2πi(2k)/5.

5. This is no longer true if p and q are not coprime. For example, it
is not possible to have G = Zp2 to be the same as the direct product
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Zp×Zp. In the case when p, q are coprime, although (x, e) has order p
and (e, y) has order q, some element (x, y) ∈ (Zp, Zq) may have order
pq, the order of the generator of Zpq. In the case when p = q, every
element (x, y) has order p, so it is impossible to get to the generator of
Zp2 which has order p2.

6. � � Aut(Zp) = Zp−1 if p is prime.

Proof : Let ε = e2πi/p, and ϕ ∈ Aut(Zp) := G. Then ϕ(ε) must be
a generator of Zp, so it must be εm, for some 0 < m < p. We shall
denote this ϕ by ϕm. Now ϕ1 is the identity of G, and |G| = p − 1
because that is the number of ϕm. Moreover, G is abelian because
ϕkϕ`(ε) = ϕ`ϕk(ε) = εk+`. Thus G is either Zp−1, or Za1 × · · · × Zar

if p − 1 = a1 × · · · × ar. It can be proven that it is the former but I
will skip the proof. For a proof, see Proposition 2, p.15 of ‘Groups and
Representations’ by J.L. Alperin and R.B. Bell.
.

7. � Example. At the end of last chapter, we showed that S3 = Z3 oϕ

Z2. Let us show that this semi-direct product is unique.

Since ϕ ∈ Aut(Z3) = Z2, either ϕ(ε) = ε, or ϕ(ε) = ε2, where ε = e2πi/3.
Since ϕh is a homomorphism in H, we must have ϕ2

(12)(ε) = ϕe(ε) = ε,

hence either ϕ(12)(ε) = ε, leading to the direct product Z3 × Z2, or
ϕ(12)(ε) = ε2, leading to the semi-direct product S3 = Z3oϕZ2 discussed
at the end of the last chapter.

3.2 � Sylow p-subgroups

� � �
Every group G has many abelian subgroups: if m is the order of any

g ∈ G, then |G| is divisible by m, and Zm is an abelian subgroup of G. One
might also want to know whether the converse is also true. That is, given m
which divides |G|, does G have an abelian subgroup Zm? The answer is, not
necessarily. However, if |G| = pm1

1 pm2
2 · · · pmk

k , where pi are prime numbers
that are mutually prime, then G does have abelian subgroups Zpmi

i
for every

i. These are called the Sylow p-subgroups. They have very interesting
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properties that can tell us a great deal about G, just from its order |G|.
Specifically, the Sylow theorem tells us that (see Ref [10], pp. 64 for a proof):

3.2.1 Sylow’s theorem

1. G has at least one Sylow p-subgroup for every prime factor p of |G|;
every Zp subgroup is contained in a Sylow p-subgroup

2. The number np of Sylow p-subgroups (called the Sylow number) is 1
mod p, and it divides |G|/pm

3. All the Sylow p-subgroups are conjugate, meaning that a similarity
transformation from some g ∈ G takes one to another. In particular, if
np = 1, then the Sylow p-subgroup is a normal subgroup.

4. If N is a normal subgroup of G, and P a Sylow p-subgroup of G. Then
P/N is a Sylow p-subgroup of G/N , and P ∩N is a Sylow p-subgroup
of N .

3.2.2 Sample applications

As a sample application of the Sylow theorem, let us use it to obtain infor-
mation about whether the groups below could be simple or not.

1. If |G| = 15 = 3.5, then G is not simple for the following reason. n3

must divide 5 and be 1 mod 3, so it has to be 1. Thus the Sylow
3-group is a normal subgroup so G is not simple.

2. If |G| = 30 = 2·3·5, then it is also not simple for the following reason.
In that case n3 divides 10 and must be 1 (mod 3), so it must be 1 or
10. If n3 = 1 then the Sylow 3-subgroup is normal and G is not simple,
so let us suppose n3 = 10, in which case there would be 2 × 10 =20
distinct elements of order 3. Now n5 must divide 6 and be 1 (mod 5),
so it could be 1 or 6. Again if G were simple we must rule out 1, so
n5 = 6 and there are 4 × 6 =24 elements of order 5. Altogether they
give 44 elements which cannot be accommodated if |G| = 30. Hence G
must not be simple because we have ruled out all the possibilities for
its being simple.
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3. G with |G| = 42 = 2·3·7 cannot be simple. n7 must divide 6 and be
1 (mod 7), so it is 1, so the Sylow 7-subgroup is normal and G is not
simple.

4. Suppose G with |G| = 60 = 22 ·3 ·5 is simple. This group has n5 = 6
so there are 24 elements of order 5. Moreover, n3 = 10 so there are
20 elements of order 3. Since the group G contains |G| − 1 = 59 non-
identity elements, this fixes the number of elements of order 2 and 4 to
be 59 − 24 − 20 = 15. The Sylow 2-subgroups of G has order 4, and
there are two possible groups of that order (see a systematic discussion
of low-order groups later): Z2 × Z2, and Z4. Since all the Sylow p-
groups must be isomorphic to each other, these Sylow 2-groups must
all be of the same kind. Now Z2 × Z2 has 3 elements of order 2, and
none of order 4, and Z4 has 2 elements of order 4 and 1 of order 2.
Either has 3 elements of order 2 or order 4, hence n2 = 5 to make a
total of 15 such elements.

The alternating group A5 has 60 elements and contains all the even
permutations (odd cycles) of 5 objects. The 5-cycle elements have
order 5, and there are 4! = 24 of them, precisely what n5 = 6 gives.
The three cycles contain C5

32! = 20 elements of order 3, precisely what
n3 = 10 requires. The remaining elements are 22-cycles, and there are
5 × 3 = 15 of them, each having order 2, so its Sylow 2-group must
be Z2 × Z2. Indeed, the elements K4 = (e, (12)(34), (13)(24), (14)(23))
forms a normal subgroup of A4, sometimes known as Klein’s 4-group

(K4), and A5 contains 5 such K4 groups, corresponding to each of the
5 choices of 4 numbers out of 1,2,3,4,5. There are 3 order 2 elements
in K4, as required. Actually K4

∼= Z2 × Z2 with the correspondence
K4 ↔ (Z2, Z2) to be e ↔ (1, 1), (12)(34) ↔ (1,−1), (13)(24) ↔
(−1, 1), and (−1,−1) = (1,−1)(−1, 1) ↔ (12)(34)(13)(24) = (14)(23).
We conclude that A5 passes all the Sylow p-group tests to be simple.

To show that it is really simple, suppose N is a proper normal subgroup
of A5, whose order must then be |N | must be 30, 20, 15, 12, 5, 4, 3, 2,
1. Since it is normal, if it contains one Sylow p-subgroup of A5, then
it contains all of them. Using a prime to denote the Sylow numbers
of N and no prime to denote the Sylow number of A5, this implies
that n′p = np if n′p 6= 0. Now if 5||N |, then n′5 = n5 = 6 and it must
contain 24 elements of order 5, hence |N | = 30. Since 3|30, it must have
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n′3 = n3 = 10 and contains also 20 elements of order 3, so the order of N
cannot be 30 and |N | cannot be divisible by 5. That leaves |N | ≤ 12. If
3||N |, then n′3 = n3 = 10 so there are 20 elements of order 3, leading to
a contradiction, so that leaves |N | = 4, 2, 1 as remaining possibilities. If
|N | = 4 = 22, then n′2 = n2 = 5, also a contradiction. Finally, |N | 6= 2
because there are many elements in A5 that are conjugate to a 2-cycle
in N , so that leaves |N | = 1, proving that A5 is simple.

It can be shown that any simple group of order 60 is isomorphic to A5,
and that A5 is the lowest-order group that is simple.

3.3 dihedral group

Dn

If we incorporate the reflections, the group Zn enlarges into the dihedral
group Dn of order 2n. See Fig. 3.2. If n is odd, the reflections are taken
about the lines passing through a vertex but perpendicular to the opposite
edge. If n is even, then half of these reflection lines are those joining opposite
vertices, and half are those joining the midpoints of opposing edges. Since
reflections do not commute with rotations, Dn is nonabelian. It is subgroup
of O(2), though not SO(2) because reflections are involved.

Figure 3.2: Reflection axes of regular polygons

Here are some properties of the dihedral group.
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1. Let θk be the kth vertex of an n-sided polygon, k = 1, 2, · · · , n, and r
be the elementary rotation rotating θk to θk+1. See Fig. 3.2. Then
Zn = {r|rn = 1}. Let σ := σ1 be an elementary reflection changing
θk to π − θk, namely, a reflection about the vertical axis. Then it is
easy to see that σ = rσr, and hence rpσrp = σ.

2. As a result, σp := σrp−1 are reflections satisfying σ2
p = 1, and σσp =

rp−1 are rotations. This also tells us that a presentation of Dn is
{σ1, σ2|σ2

1 = σ2
2 = (σ1σ2)

n = 1}.

3. Zn forms a normal subgroup of Dn. The quotient group Dn/Zn ∼= Z2

is generated by the reflection σ.

4. � In fact, Dn = Zn oϕ Z2.

Let us discuss the automorphism ϕh(n), with h ∈ Z2 and n ∈ Zn. All
that we have to do is to specify it on the generator h = −1 of Z2,
and the generator ε = e2πi/n of Zn. We know that h−1(ε) = εm for
some m which has no common divisor with n . We also know that
ϕh1(n2) = h1n2h

−1
1 , hence ϕ−1(ε) = εm = σεσ−1 = ε−1, hence m = −1.

5. As a consequence of the properties in item (1), σrpσ = r−p, hence
{rp, r−p} forms a class. There are n/2 such classes if n is even, (n−1)/2
such classes if n is odd.

6. Moreover, r−1σpr = r−1σrp = σrp+1 = σp+2. If n is odd, then all σp
together form a class, but if n is even, then they separate into two
classes.

7. Hence |C| = n/2 + 3 if n is even, |C| = (n− 1)/2 + 2 if n is odd.

8. � Suppose n is a prime, then it has n Sylow 2-subgroups each gener-
ated by a σi, and one Sylow n-subgroup Zn of the rotations.

3.4 symmetric group

Sn

The permutations of n objects form a symmetric group, of order n!, de-
noted as Sn. Other than S2 which is isomorphic to Z2, they are nonabelian.
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This is the most important finite group because every finite group can be con-
sidered as a subgroup of some Sn (see the ‘regular representation’ of a group
in the next chapter).

Any subgroup of a symmetric group is called a permutation group. Most
finite groups are isomorphic to a permutation group. A permutation group
of n objects is transitive if every object can be reached from any other
object by some group element; otherwise intransitive.

Here are some facts about the symmetric group.

1. If s, t are permutations, sts−1 has the same cycle structure as t, hence all
elements having the same cycle structure form a class. For example,
S2 has two classes, {e}, and {(12)}. S3 has three classes, the identity
class, the 2-cycle class, and the 3-cycle class. S4 has five classes: the
identity class, 2-cycles, 3-cycles, 4-cycles, and 22-cycles.

2. D3
∼= S3. To see that, first note that both have order 6. Next, take the

regular triangle which is invariant under D3 and label the vertices by
1,2,3. Then the three Z3 rotations correspond to the even permutations
e = (1), (123), and (132). The three reflections correspond to the odd
permutations (12), (13), and (23).

3. � There are three Sylow 2-subgroups generated by (12), (13), (23)
respectively, and one Sylow 3-subgroup generated by (123).

4. S4 leaves the cube invariant. To see that, label the vertices on the top
surface 1,2,3,4, and the corresponding vertices at the bottom surface
also 1,2,3,4. Suppose the 6 surfaces of the cube locate at x = ±1, y =
±1, z = ±1, respectively. Then rotations about the z-axis correspond
to (1234), (1432), (1324), rotations about the x-axis correspond to
(12)(34), and rotations about the y-axis corresponds to (14)(23). Now
(1234) is an odd permutation and (12)(34) is an even permutation.
Multiplying the three odd permutations and the two even permutations
together in all possible ways, meaning rotating about these three axes
repeatedly one after another, one can generate the whole S4 group.

Since the octahedron is dual to the cube, S4 is also the rotational
symmetry group of the octahedron, which is why it is also known as
the octahedral group O.
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3.5 alternating group

An

Even permutations of n objects form a subgroup of the symmetric group
of order n!/2, known as the alternating group An.

1. An is a normal subgroup of Sn.

2. An for n > 4 is simple.

3. The Klein group K4=[e, (12)(34), (13)(24), (14)(23)] ∼= Z2 × Z2

is a normal subgroup of A4.

4. A3
∼= Z3.

5. A4 is the rotational symmetry group of the regular tetrahedron
(pyramid). See Fig. 1.2. Label the four vertices by 1,2,3,4. Then (123)
and (132) correspond to rotations about an axis perpendicular to the
1,2,3 plane going through vertex 4. The other 3-cycle permutations
can all be interpreted in a similar way. Finally, the remaining even
permutations, (12)(34) corresponds to a 180◦ rotations about an axis
joining the midpoints of lines (12) and (34), and similarly (13)(24). The
odd permutations such as (12) can never leave the solid tetrahedron
invariant.

For that reason, A4 is also known as the tetrahedral group T.

6. A5 is the rotational symmetry group of the icosahedron and the dodec-
ahedron. For that reason it is also known as the icosahedral group

I.

7. The number of classes |C| of Sn and An are tabulated in the following
table. Note that a class in Sn can split up into several classes of An,
or else |C|An would generally be smaller than what is listed below.

n 1 2 3 4 5 6 7 8 9 10
Sn 1 2 3 5 7 11 15 22 30 42
An 1 1 3 4 5 7 9 14 18 24
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Table 3.2 The number of classes in Sn and An

3.6 Quaternion groups

Q, Qn

1. A quaternion is a generalization of a complex number, with one real
component and three imaginary components i, j, k. They obey the
multiplication rule i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj =
i, ki = −ik = j. They can be represented by the Pauli matrices
i = iσ1, j = −iσ2, k = iσ3, if 1 is represented by the 2-dim identity
matrix e.

2. The Pauli matrices generate a group P of order 16, consisting of
(1,−1,+i,−i)∗(e, σ1, σ2, σ3), with a center Z(P ) consisting of ±e,±ie.
The quotient group P/Z(P ) ∼= K4.

3. It also contains a larger subgroup Q of order 8, called the quaternion

group, consisting of ±(e, i, j, k), where so that ij = k, jk = i, ki =
j, i2 = j2 = k2 = −e.

4. The generalized quaternion group Qn is generated by

a =

(
eπi/n

e−πi/n

)
, j =

(
−1

1

)
= −iσ2

Its order is 4n, and Q2
∼= Q.

3.7 Dicyclic groups

DZn (DCn)

1. It is generated by a = eπi/n and j. Note that aj = ja−1.
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2. Its order is 4n.

3. Suppose we use the representation i → iσ3, j → iσ1, k = −iσ2, then
the generators in terms of 2× 2 matrices are

a =

(
eπi/n

e−πi/n

)
, j = i

(
1

1

)
= iσ1

4. DC1
∼= Z4, DC2

∼= Q

5. If n = 2m is even, then am = iσ3, so the group contains iσ3iσ1 = −iσ2,
and hence it contains Qn. Conversely, the group Qn contains −iσ2iσ3 =
iσ1, so Qn contains DCn. Consequently, DC2m

∼= Q2m.

6. Comparison: The orders of D2n, Qn, DZn are all equal to 4n. All
three of them are generated by a common rotation

r =

(
eπi/n

e−πi/n

)
,

but individual ‘reflections’ σ. For D2n, σ = σ1, for Qn, σ = −iσ2, and
for DZn, σ = iσ1. Note that in the last two cases, σ is really not a
reflection because σ2 = −1 rather than +1.

3.8 Classical groups over a finite field

1. The set of m × m non-singular matrices over a finite field F forms a
group called the general linear group over the finite field F,
and is denoted as GL(m,F) or GL(m, q), if |F| = q = pn. This group
and some of its subgroups are usually called the classical subgroups

over a finite field. Since the matrix elements are all numbers in
F, the number of possible matrices is finite, so every such group is
always a finite group.

2. The subgroup of GL(m,F) consisting of matrices of determinant 1
is called the special linear group, and is denoted by SL(m,F) or
SL(m, q). It has a center Z consisting of all multiple of the identity
matrix with determinant 1, namely, matrices of the form α1m with
αm = 1. The group SL(m, q)/Z is called the projected special
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linear group and is denoted by PSL(m, q), or simply L(m, q). It is
a classic theorem, proven by L.E. Dickson in his 1896 Ph.D. theis at
the University of Chicago, that all PSL(m, q) groups are simple unless
m = 2 and q = 2 or 3.

3. Many of the finite groups we discussed before are isomorphic to some
subgroups of GL(m, q). Here is a sample list:

S3
∼= L(2, 2)

A4
∼= L(2, 3)

S4
∼= PGL(2, )

A5
∼= L(2, 4) ∼= L(2, 5)

A6
∼= L(2, 9)

A8
∼= L(4, 2)

GL(3, 2) ∼= L(2, 7) (3.1)

A very detailed list of the properties of finite groups can be found in the
book ‘Atlas of Finite Groups’ by Conway, Curtis, Norton, Parker, Wil-
son, and also on the website http://brauer.maths.qmul.ac.uk/Atlas/v3/

4. The order of GL(m, q) is

|GL(m, q)| = qm(m−1)/2(qm − 1)(qm−1 − 1) · · · (q − 1). (3.2)

Proof : Let the ith coulumn of a matrix in GL(m, q) be denoted ui.
We will count the number of possible matrices in GL(m, q) by counting
the total number of each column vector ui. Start from u1. Every of
the m components of u1 could be one of the q numbers in F, hence
there are altogether qm possible vectors. Since the matrices have to be
non-singular, we must exclude the vector ~0 so there are qm− 1 possible
vectors left for u1. Now look at u2. It must not be a multiple of u1

for the matrix to be non-singular, so there are qm− q possibilities. For
u3, it cannot be any linear combinations of u1 and u2, so its possible
number is qm − q2. Proceeding thus, we get the order of the group to
be

m−1∏
k=0

(qm − qk) = qm(m−1)/2(qm − 1)(qm−1 − 1) · · · (q − 1).

.
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5. The order of SL(m, q) is

|SL(m, q)| = |GL(m, q)|
q − 1

= qm(m−1)/2(qm − 1)(qm−1 − 1) · · · (q2 − 1).(3.3)

6. The order of PSL(m, q) = L(m, q) is |SL(m, q)|/r, where r is the
number of solutions of αm = 1 in F. For example, if m = 2, then the
solution of α2 = 1 is α = ±1. If 2 divides q, then +1 ≡ −1, so r = 1.
Otherwise r = 1.

7. We can check these order formulas against the examples in (3.1):

|S3| = 3! = 6, |L(2, 2)| = 2(22 − 1)/1 = 6;

|A4| = 4!/2 = 12, |L(2, 3)| = 3(32 − 1)/2 = 12;

|A5| = 5!/2 = 60, |L(2, 4)| = 4(42 − 1)/1 = 60,

|L(2, 5)| = 5(52 − 1)/2 = 60;

|A6| = 6!/2 = 360, |L(2, 9)| = 9(92 − 1)/2 = 360;

|GL(3, 2)| = 23(23 − 1)(22 − 1)(2− 1) = 168,

|L(2, 7)| = 7(72 − 1)/2 = 168. (3.4)

3.9 Modular Group

GL(2,Z), SL(2,Z),PSL(2,Z)
The set of integers Z is not a field, not even a group, because we can

multiply and cannot divide. Yet, GL(2,Z) ≡ GL2(Z) ≡ S∗L2(Z) is a group
if we confine ourselves to 2×2 matrices of integer coefficients and determinant
±1. The latter condition is necessary because the determinant of the inverse
is the inverse of the determinant, so unless the determinant is ±1, its inverse
is not an integer.

This is also sufficient becauseA =

(
a b
c d

)
impliesA−1 =

(
d −b
−c a

)
/ det(A).

SL(2,Z) ≡ SL2(Z) is the subgroup of S∗L2(Z) with determinant +1, and
PSL(2,Z) ≡ PSL2(Z) is the subgroup of SL2(Z) with A and −A identified.
It is also called the modular group. It generates the fractional linear

transformation on the complex plane:

z → z′ =
az + b

cz + d
. (3.5)
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It has two generators, S : z 7→ −1/z, and T : z 7→ z + 1. Note that
ST : z 7→ (z − 1)/z, (ST )2 : z 7→ 1/(1 − z), (ST )3 : z 7→ z. In fact, the
modular group has the presentation

Γ := PSL(2,Z) = {S, T |S2, (ST )3}. (3.6)

This group and its subgroups are important in many branches of mathe-
matics, including number theory, the theory of modular functions, Monster
group, etc. It is also useful in the string theory.

Γ(N) defined by restricting the matrix elements to a ≡ d ≡ 1(mod N)
and b ≡ c ≡ 0(mod N) is a normal subgroup of Γ. Γ(N) is also a subgroup
of Γ0(N), defined as a subgroup of Γ with c ≡ 0(mod N). These are some of
the important subgroups of the modular group.

3.10 A list of groups of order ≤ 16

order abelian group non− abelian group
2 Z2

∼= S2
∼= D1 −

3 Z3
∼= A3 −

4 Z4; Z2 × Z2
∼= K4 −

5 Z5 −
6 Z6

∼= Z3 × Z2 S3

7 Z7 −
8 Z8; Z4 × Z2; Z

3
2 D4; Q

9 Z9; Z
3
3 −

10 Z10
∼= Z5 × Z2 D5

11 Z11 −
12 Z12

∼= Z4 × Z3; Z6 × Z2
∼= Z3 × Z2

2 D6; A4

13 Z13 −
14 Z14

∼= Z7 × Z2 D7

15 Z15
∼= Z5 × Z3 −

16 Z16; Z8 × Z2; Z
2
4 ; Z4 × Z2

2 ; Z4
2 D8; D4 × Z2; Q2 × Z2; Q4

∼= DC4

P ; Z4 o Z4; Z
2
2 o Z4; two others

Table 3.3 A list of group of small order
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3.11 � A short list of group presentations

� � �
Every group has a (abstract) presentation (see §1.3), but presentations

are not necessarily unique. Here is a short list of examples.

group section relation
1. Zn 3.1 {r|rn}
2. Dn 3.3 {r, σ|rn, σ2, (rσ)2}
3. DCn 3.7 {r, τ |r2n = 1, rn = τ 2, τrτ−1 = r−1}
4. Q 3.6 {i, j|i4, i2j2, ijij−1}
5. Sn 3.4 {σ1, σ2, · · · , σn−1|σ2

i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi (j 6= i± 1)}
6. Bn {σ1, σ2, · · · , σn−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi (j 6= i± 1)}
7. S3 3.4 {F,G|F 3, G2, (FG)2}
8. A4 = T 3.5 {F,G|F 3, G2, (FG)3}
9. S4 = O 3.4 {F,G|F 3, G2, (FG)4}
10. A5 = I 3.5 {F,G|F 3, G2, (FG)5}
11. PSL2(Z) 3.9 {F,G|F 3, G2}

Table 3.4 A short list of group presentations

Concrete representations

1. The elementary rotation r = e2πi/n satisfies rn = 1.

2. If r =

(
e2πi/n 0

0 e−2πi/n

)
is the elementary rotation and σ =

(
0 1
1 0

)
is the elementary reflection, then calculation shows that rσ =

(
0 e2πi/n

e−2πi/n 0

)
,

hence (rσ)2 = 1.

3. DCn in §3.7 is generated by a = eπi/n and the second imaginary unit
j anticommuting with i. We need to show that they satisfy the the
generator and relation above.

Let a =
√
r = eπi/n. Thne r2n = 1. Let τ = j, then it is easy to show

that the relations in the table are satsified.



3.11. � A SHORT LIST OF GROUP PRESENTATIONS 47

4. The group Q in §3.6 is defined by three mutually anticommuting imag-
inary units i, j, k so that ij = k, etc. We shall show that the i, j defined
in the table above are the same as two of those imaginary units.

From i2j2 = 1 we know that i2 = j−2. Together with i4 = 1, one
deduces i2 = j2, j4 = 1, i2j = j3 = j2i, j2i = i3 = ij2. We can therefore
identify i2 = j2 with −1.

Let k := ij. Then k2 = ijijj−2 = j−2 = j2 = i2 = −1, hence
k2i = i3 = ik2, k2j = j3 = jk2, k4 = 1.

Moreover, ijij−1 = 1 ⇒ ji = i−1j = i3j = −ij. Similarly, kj = ij2 =
−jij = −jk, etc.

5. The concrete representations of the generators σi in the table are σi =
(i, i+ 1). Then σ2

i = 1 and σi and σj commutes if j 6= i± 1. Moreover,
σiσi+1σi = (i, i + 1)(i + 1, i + 2)(i, i + 1) = (i, i + 2) and σi+1σiσi+1 =
(i+ 1, i+ 2)(i, i+ 1)(i+ 1, i+ 2) = (i, i+ 2), hence these two are equal.
This finishes the verification of the relations in the table.

Note that abstractly (σiσi+1)
3 = (σiσi+1σi)(σi+1σiσi+1) = (σiσi+1σi)(σiσi+1σi) =

1. This shows that the relation σiσi+1σi = σi+1σiσi+1 is needed to show
that σiσi+1 = (i, i+ 1, i+ 2) is of order 3.

In the same way, it can be used to show that σiσi+1σi+2 is a four cycle,
etc.

6. Bn is called the braid group. Its generators and relations are almost
identical with Sn, except for the absence of the relation σ2

i = 1. Sn is
the group permuting n objects, and Bn is the group braiding n threads.
When you exchange two objects twice, you get back to the unexchanged
configuration, which is why σ2

i = 1 in Sn. On the other hand, when
you braid two threads twice, you do not get back to the unbraided
configuration–just look at girls with braided pony-tails.

Note from Fig. 3.3 that σi braids two threads one way, and σ−1
i braids

it another way.

Multiplication from left to right corresponds to joining the threads
together from top to bottom. For example, σ1σ2σ1 is given by the

The following figure shows why the relation σaσa+1σa = σa+1σ1σa+1

is true. For example, thread a is above the other two threads in both
figures, and thread (a+2) is below the other two threads in both figures.
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Figure 3.3: An elementary braid and its inverse braid. Note that σa are
called ga in this and the subsequent figures.

Figure 3.4: The braid multiplication of σ1σ2σ1

This relation is also known as the Yang-Baxter relation because it is a
special case of the YB relation used in integrable statistical models.

7. Let F = (123) = (12)(23), G = (12). Then FG = (13) has order 2.
Since GF = (23), all the 2-cycles, and hence all of S3, can be generated
from F and G.

8. Let F = (123) = (12)(23), G = (13)(24). Then FG = (243) = (24)(43)
is of order 3. Since the signatures of F and G are both even, together
they must generate a subgroup of A4. By direct calculation it is easy
to see that the whole A4 is generated.

9. Let F = (123) = (12)(23), G = (34). Then FG = (1234) is of order
4. The signature of G is odd and that of F is even, so F,G together
generate a subgroup of S4. Direct calculation shows that it is the entire
S4.
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Figure 3.5: The relation σaσa+1σa = σa+1σaσa+1

10. Let F = (123) = (12)(23), G = (34)(45). Then FG = (12345) is of
order 5. Since both generators have even signature, they generate a
subgroup of A5. Direct calculation shows that it is the entire A5.

11. See §3.9, with the substitution G = S and F = ST .

3.12 Horizontal Symmetry of Leptons

β-decay gives rise to one of the three charged leptons (e, µ, τ) and a cor-
responding neutrino (νe, νµ, ντ ). In general, none of these particles have a
definite mass, but one can always choose a basis to diagonalize the 3 × 3
(left-handed effective) mass matrix M e of the charged leptons. In that case
the charged leptons have a definite mass but the neutrinos still do not. If
the neutrino mass eigenstates are denoted as ν1, ν2, ν3, and if νe

νµ
ντ

 = U

 ν1

ν2

ν3

 , (3.7)

then the unitary matrix U is called the (PMNS) neutrino mixing matrix.
From neutrino oscillation experiments, U is equal to

U =
1√
6

 2
√

2 0
−1

√
2

√
3

−1
√

2 −
√

3

 (3.8)

to within 1 standard deviation. Such a mixing is usually known as tri-bimaximal
mixing.
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It can be verified that each of

G1 =
1

3

 1 −2 −2
−2 −2 1
−2 1 −2


G2 = −1

3

 1 −2 −2
−2 1 −2
−2 −2 1


G3 = −

 1 0 0
0 0 1
0 1 0

 (3.9)

has one +1 eigenvalue and two −1 eigenvalues, and that he eigenvector of
Gi with +1 eigenvalue is the ith column of the mixing matrix U . Since these
columns are also the eigenvectors of the neutrino mass matrix M ν , every Gi

commutes with M ν and they constitute a symmetry of the neutrino mass
matrix.

Since the charged-lepton mass matrix M e is diagonal, any diagonal 3× 3
matrix commutes with it and constitutes a symmetry. In particular,

F =

 1
ω

ω2

 , ω := e2πi/3 (3.10)

is such a symmetry. The group Gi generated by F andGi is then a horizontal
symmetry group of the leptons at high energy. Later on, this group breaks
spontaneously into separate symmetries F and Gi for the charged leptons
and the neutrinos, respectively.

If can be verified that F 3 = 1, G2
i = 1. Moreover, (FG1)

4 = 1, (FG2)
3 =

1, (FG3)
2 = 1, hence from the last section, we conclude that G1 = S4, G2 =

A4, and G3 = S3.

3.13 Crystal Point Groups and Space Groups

Crystals are interesting (and sometimes very expensive) objects, especially
those of gem quality. If you drop and break it, it will break into pieces with
facets always the same as the original ones. Continued thus, one can imagine
eventually breaking a crystal down to its fundamental unit with a particular
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shape. What we would like to do in this section is to discuss the possible
shapes and symmetries of the crystals. This is a big subject, so we will only
summarize the salient points from the symmetry point of view.

Some of these crystals are shown in the following pictures to remind
you how beautiful they can be. It should be cautioned that the shape of
the macroscopic crystal shown depends on how the gem is cut and is not
necessarily the shape of the fundamental unit cell.

Figure 3.6: Various gemstones

3.13.1 Point groups

The symmetry of a unit cell should be found among the finite groups, but
not all finite groups are suitable because the individual units must be able to
fit and stack together to form a crystal. Only certain angles between crystal
faces are allowed, and that translates into a restriction on the allowed
rotation angles about a single axis to be 2π/n with n = 1, 2, 3, 4, 6. The
allowed rotational symmetry groups with this restriction are

C1, C2, C3, C4, C6, D2, D3, D4, D6, T, O,

where C1 is just the trivial group containing the identity, meaning that there
is no symmetry at all. Note that the reflections in Dn are actually 180◦-
rotations about an axis in the xy-plane, if Cn represents rotations about the
z-axis.
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We shall use the notation rn to denote a rotation of 2π/n about the z-axis:

rn =

 cos(2π/n) sin(2π/n) 0
− sin(2π/n) cos(2π/n) 0

0 0 1

 .

Thus C2, C3, C4, C6 are generated respectively by r2, r3, r4, r6.

We will also useX, Y, Z to denote reflections about the yz-, zx-, xy-planes
respectively, namely,

X =

−1
1

1

 , Y =

 1
−1

1

 , Z =

 1
1

−1

 ,

so that XY Z = −1 is the inversion and

Xn := rnXr
−1
n =

− cos(4π/n) sin(4π/n) 0
sin(4π/n) cos(4π/n) 0

0 0 1


performs a reflection about the rnz-plane, where rn is the x-axis rotated by
2π/n in the xy-plane. In particular, X4 = Y .

Correspondingly, −X,−Y,−Z are π rotations about the x, y, z axes re-
spectively.

With reflections and inversions, it turns out there are 32 symmetry
groups allowed. They are called point groups because they refer to the
symmetry about a central point in a unit crystal cell. These groups are listed
in Table 3.4 in the Schoenflies (S) notation, with the generators between
parentheses. The comparison with the Herman-Mauguin (H-M) scheme of
nameing these groups can be found in Table 3.5.

The first two columns list those with rotation symmetry only, belong-
ing to SO(3), the next four columns list groups including reflections or
inversions, belonging to O(3). Columns 3 and 4 are groups containing
the inversion −1, and columns 5 and 6 are groups that do not contain an
inversion.

Some of these groups are congruent to one another as an abstract
group, but as a finite subgroup of O(3), no two of them are equivalent, in
the sense that they cannot be related by an O(3) similarity transformation.
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SO(3) w/ inversion w/o inversion
G |G| G |G| G |G|

C1 (1) 1 Ci (±1) 2
C2 (r2) 2 C2h (r2,−1) 4 Cs (Z) 2
C3 (r3) 3 S6 (r3,−1) 6
C4 (r4) 4 C4h (r4,−1) 8 S4 (−r4) 4
C6 (r6) 6 C6h (r6,−1) 12 C3h (r3, Z) 6

D2 (r2,−X) 4 D2h (r2,−X,−1) 8 C2v (r2, X) 4
D3 (r3,−X) 6 D3d (r3,−X,−1) 12 C3v (r3, X) 6
D4 (r4,−X) 8 D4h (r4,−X,−1) 16 C4v (r4, X), D2d (r2,−X,−r4) 8
D6 (r6,−X) 12 D6h (r6,−X,−1) 24 C6v (r6, X), D3h (r3,−X,−r6) 12

T 12 Th (T,−1) 24
O 24 Oh (O,−1) 48 Td (T,−O/T ) 24

Table 3.4 The list of 32 point groups, with generators in paren-
theses. Columns 1 and 2 are pure rotation groups, columns 3
and 4 have inversions incorporated, and columns 5 and 6 have
reflections but no inversions incorporated

In the S-scheme, a subscript h indicates the presence of reflection about
the horizontal (xy-) plane, generated by Z, and a subscript v indicates
the presence of a reflection about a vertical plane, such as the yz-plane the
reflection about which is generated by X. The subscript d indicates the
presence of a reflection about some diagonal plane, neither horizontal nor
vertical. Since r2 = −Z is contained in Cnh and Dnh for even n and in T and
O, these groups contain both Z and −Z, hence the inversion −1. For these
groups, we can use −1 instead of Z as one of the generators, as is done in
the third column of Table 3.4.

Table 3.6 gives a list of sample molecules with these point-group sym-
metries, with pictures for some of them shown below the table. For more
examples, see http://en.wikipedia.org/wiki/Molecular symmetry.
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SO(3) w/ inversion w/o inversion
S H−M S H−M S H−M
C1 1 Ci 1̄
C2 2 C2h 2/m Cs m
C3 3 S6 3̄
C4 4 C4h 4/m S4 4̄
C6 6 C6h 6/m C3h 3/m
D2 222 D2h mmm C2v mm2
D3 32 D3d 3̄m C3v 3m
D4 422 D4h 4/mmm C4v, D2d 4mm, 4̄2m
D6 62 D6h 6/mmm C6v, D3h 6mm, 6̄2m
T 23 Th m3
O 432 Oh m3m Td 4̄3m

Table 3.5 A dictionary for the Schoenflies (S) and Hermann-
Mauguin (H-M) notations of the 32 point groups

S Molecule generators
C1 CHFClBr 1
Cs H2C2ClBr Z
Ci HClBrC − CHClBr −1
Cn H2O2 rn
Cnv H2O rn, X
Cnh B(OH)3 rn, Z
S4 1, 3, 5, 7− tetrafluro− −r4

acyclooctatetrane
Dnh BF3 rn,−X,−1
Td CCl4 T,−O/T
Oh SF6 O,−1

Table 3.6 Sample molecules with different symmetries. See also Fig. 3.4.

3.13.2 Space groups and the Bravais lattices

The unit cells in a crystal arrange themselves into a lattice. The unit cells
are parallelopipeds bounded by three independent vectors ~e1, ~e2, ~e3, and we
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Figure 3.7: Sample molecules with different symmetries. For an animated
version showing the various

shall assume ~e1, ~e2 lie in the xy-plane. The lattice points are located at in-
tegral multiple combinations of these vectors, ~r = n1~e1 + n2~e2 + n3~e3, with
integers ni. The lattices commensurate to the point group structures are
known as Bravais lattices. The extended point-group symmetry includ-
ing translations along the lattice is known as a space group.

Bravais lattices differ from one another only in the angles and the
lengths of the edges in their unit parallelepipeds.

A unit parallelepiped is defined by a unit parallelogram in the xy-plane,
plus a third vector ~e3 off the plane. However, it is possible to choose another
basis to alter the unit parallelogram, so if no restriction is placed on the shape
of the parallelogram, it is not necessarily uniquely defined. For example, in
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the illustration below, a parallelogram is outlined, but there is another way
to define a basic parallelogram

Figure 3.8: A crystal lattice

The 32 point groups can be classified into 7 lattice systems, each
of which may correspond to one or more Bravais lattices, making a total
of 14 possible Bravais lattices, as shown in the tables below. Let us
now analyze what the corresponding Bravais lattices look like for each point
group [see Appendix A of Ref. [16]].

Since a lattice is invariant under inversion −1, it would be simpler to start
out with the point groups in the middle two columns of Table 3.5. There
are 11 point groups there which are inversion symmetric, but it turns out
that the pairs (C4h, D4h), (D3d, S

6), (C6h, D6h), (Th, Oh) give rise to the same
lattice, which is why we are left with only 7 crystal systems. Each system
however may contain more than one Bravais lattices.

� � �

1. Ci. The only non-trivial symmetry is the inversion−1, but every lattice
is inversion invariant anyway, hence there is no restriction in this case
on the angles nor the lengths of the lattice vectors. We therefore end
up with the triclinic system, which has three arbitrary angles (hence
the name).

C1 has no symmetry and obviously belongs to this class as well.

2. C2h. The generators are r := r2 and −1. Let u′ be a lattice vector not
along the z-axis. Then u = u′ − ru′ is another lattice vector so that
ru = −u, so it lies in the xy-plane. Choose in this way two independent
lattice vectors u, v in the plane, and by making linear combinations if
necessary, we can assume their lengths to be the smallest and the next
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smallest. Let w be a third lattice vector not in the plane, and choose its
length to be as small as possible. By the same argument, w−rw := 2w̄
is a lattice vector in the plane. If w̄ is also a lattice vector, then by
adding suitable combinations of u and v if necessary, we can assume w
to be along the z-axis. In this case we obtain the simple monoclinic

system where the parallelogram in the layer above is directly on top
of the parallelogram in the xy-plane. If w̄ is not a lattice vector, then
by changing the bases from u, v to u, u + v or v, u + v if necessary,
we may consider a w so that w̄ = (u + v)/2, in which case we end
up with the centered monoclinic system where the parallelogram
in the layer above to have its left-lower corner shifted to the center of
the base parallelogram.

I think the pictures in Fig. 3.10 may be a bit misleading.

From Table 3.4, C2 also contains a r2, so it belongs to this class. Cs
contains a Z, so it is of the simple monoclinic type.

3. C4h. The generators contains r4. Since r2
4 = r2, the arguments before

show the existence of u, v, w, with u, v in the base xy-plane. Applying
r4, we see that u, v must have equal length and be orthogonal to each
other, so the base parallelogram is a square. As before, w̄ = 0 or
w̄ = (u + v)/2. The resulting tetragonal system now has a square
in the xy-plane, and the square in the upper layer may be right above
the one below (simple), or slide to the center of the square below
(body-centered. Note that a π rotation about the x- or the y-axis is
automatically invariant.

From the generators in Table 3.4, we see that C4, S4, D4, C4v, D2d also
belong to the system.

4. D2h. In addition to r2, there is now an invariance upon reflection
through some line in the plane. In that case the basic cell in the plane
has to be either a rectangle, or a diamond (rhombus).

If it is rectangular, then w̄ = 0, u/2, v/2, or w̄ = (u + v)/2, so the
situation is very similar to the tetragonal case, except that the basis
square can now be a more general rectangle.

If it is a rhombus, it is one symmetrically placed about the x-axis
because −X is a generator of D2h. With this additional symmetry,
we must confine w̄ to 0 or (u + v)/2, so the situation is a bit like
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the monoclinic case except that the base parallelogram must now be a
diamond.

This system is known as orthorhombic because the basis parallelogram
is either a rectangle or a rhombus. There are four kinds, and hence four
different Bravais lattices. Primitive (P , w̄ = 0 for rectangle), base-
centered (C, w̄ = 0 for diamond), body-centered (I, w̄ = (u+ v)/2 for
rectangle or diamond), and phase-centered (F , w̄ = u/2 or v/2). They
are shown in the following figure.

D2, C2v also belong to the system.

Figure 3.9: The four versions of an orthorhombic system

Remarks on the figures:

(a) i. Four half-diamonds are shown in the base plane of C; that is
how this type is usually drawn

ii. Two layers each are drawn in each of I and F . It is also the
case in Fog. 3.11, for the body-centered tetragonal case.

5. D6h and D3d. They both contain r3, hence the base parallelogram is
made up of two 60◦ equilateral triangles with sides u and v = r6u. We
may assume ‖w̄‖ ≤ ‖u‖. Since r3w−w = r3w̄−w̄ := v is a lattice vector
in the base plane with length ‖ξ‖ = ‖r3w̄ − w̄‖ =

√
3‖w̄‖ ≤

√
3‖u‖,

either w̄ = 0 or ξ = rm6 u (for some m) is equal to a spoke of the hexagon
generated by r6 on u. Let that be −u, which yields w̄ = (2u+ v)/3. In
the first case the lattice is invariant under D6h and the system is called
hexagonal, and in the second case the system is invariant under D3d

and is called trigonal.

The other groups belonging to these systems are listed in Fig. 3.11.

6. Th. Since T = A4 ⊃ K ′
4
∼= D2, this must be a special case of the

orthorhomic system. Let u be the shortest of the three lattice vectors.
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The presence of several abstract r3 in T tells us that we must be able
to choose one so that r3u 6= −u. Then v = r3u and w = r2

3u must
be lattice vectors of the same length as u. In the case of primitive
orthorhombic, the rectangle must be a square and the unit cell must
be a cube. Let us rename the orthonormal set of lattice vectors of equal
length in this case e1, e2, e3. The base-centered orthorhombic does not
give anything different.

In the case of body-centered orthorhombic, Fig. 3.10 suggests that the
body-centered point be u = (−e1 + e2 + e3)/2. Then v = r3u =
(−e2 + e3 + e1)/2 and w = r2

3u = (−e3 + e1 + e2)/2 are also lattice
vectors of the same length. The binary combination of these vectors
produce e1, e2, e3 which are longer lattice vectors, thus confirming that
case (c) of Fig. 3.10, based on a cube, is indeed a valid configuration
for this system. This system is known as body-centered cubic, or
bcc for short.

In the case of the face-centered orthorhombic exhibited in (d) of Fig. 3.10,
once again the outside shape is a cube. The demonstration is the same
as the case above, except this time by taking u = (e1 + e2)/2, v = (e2 +
e3)/2, and w = (e3 + e1)/2. This system is known as face-centered

cubic, or fcc for short.

The resulting 7 systems and 14 Bravais lattices, as well as the point groups
they correspond to, are summarized in the following figure.
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Figure 3.10: Point groups and lattice systems

3.14 Piezoelectricity, optical activity, and dipole

moments of crystals

3.14.1 Dipole moments

A crystal may be polar only when all its symmetry operations leave the dipole
moment invariant. Am inversion symmetry −1 reverses the dipole moment,
so no crystal with this symmetry may be polar. This eliminates all
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the them in the middle column of Table 3.4. Any crystal with two rotation
axis cannot be polar either, so that eliminates the Dn, T, O series. That
leaves Cn, Cnv, and Cs as possible polar crystals.

3.14.2 Piezoelectricity

A crystal is piezoelectric if an electric voltage can result from a mechanical
stress. Polar crystals are of this class, but dipole moments maybe produced
from certain non-polar crystals under stress as well. The electric field Ei
of a piezoelectric crystal is related to the stress tensor Tjk by the relation
Ei = dijkTjk. Under inversion −1, the piezoelectric tensor dijk changes a
sign, so if the crystal has inversion as a symmetry, dijk = 0 and it cannot be
piezoelectric. The other 21 may be piezoelectric.

3.14.3 Optical activity

Crystals that can rotate the polarization direction of a linearly polarized light
is called chiral. Their molecules must be left-right asymmetric, and chiral-
ity behaves somewhat like a dipole moment under inversion and reflection.
Hence we can find chiral crystals among polar crystals.

3.15 Brillouin zone

1. A unit cell surrounding a crystal lattice point is known as a Wigner-Seitz
cell. The following picture illustrates its construction in the 2-dimensional
case: draw dotted lines to all neighboring lattice points, draw solid lines
bisecting and perpendicular to the middle of all the dotted lines, then
the unit cell (orange) is the Wigner-Seitz cell. In 3-dimensions, the
solid lines become solid planes.

Figure 3.11: Wigner-Seitz cells for a 2D and two 3D crystals
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2. If ~e1, ~e2, ~e3 are the lattice vectors defining a unit parallelepiped of a
crystal, then their orthonormal complements ~f1, ~f2, ~f3 defined through
~fi ·~ej = δij, or explicity by

~fi = ~ej × ~ek/~ei ·(~ej × ~ek), (3.11)

where i, j, k is a cyclic permutation of 1,2,3, define a lattice called the
reciprocal lattice. The Wigner-Seitz cell of a reciprocal lattice is
known as the (first) Brillouin zone.

The reciprocal lattice of a body-centered cubic lattice (Fig. 3.6) is a
face-centered cubic lattice, and vice versa. To see that, let u, v, w be
three mutually orthogonal unit vectors along the three sides of the unit
cube. These are lattice vectors but not the shortest. The shortest are
those from the center to the middle of the cube, e.g., e1 = (u + v +
w)/2, e2 = (u− v+w)/2, e3 = (u− v−w)/2. Using (3.11), we find the
basis for the reciprocal lattice to be f1 = u+ v, f2 = w− v, f3 = u−w.
These are vectors from the origin to the center of a face of a cube in
a faced-centered cubic lattice, whose three sides along the cube are
f1 + f2 = 2u, f1 − f2 = 2v, and f2 − f3 = 2w. Notice that these three
sides are all longer than fi.

Figure 3.12: Brillouin zones of two crystals

3. The reciprocal lattice and the Brillouin zone derive their importance
from the Bloch theorem, according to which the wave function ψ(~r)
of a particle in a crystal has a basis which can be expressed in the
form ψ(~r) = exp(i~k·~r)φ~k(~r), with ~k a parameter, and φ~k(~r) is periodic:
φ~k(~r + ~ei) = φ~k(~r) for all i.

Proof : We need to use a fact to be explained in the next chapter:
an abelian group has only 1-dimensional ‘irreducible representation’.



3.15. BRILLOUIN ZONE 65

What that means in the present context is the following. Let Ti be a
Hilbert-space operator which translates the argument of every function
by an amount ~ei: Tiψ(~r) = ψ(~r + ~ei). Then we can choose a suitable
basis so that every ψ in that basis satisfies the relation Tiψ(~r) = tiψ(~r),
where ti is a number independent of ~r that satisfies the group composi-
tion law: ti+j = titj. The logarithm of ti is therefore additive in i, and

hence a linear function of ~ei. This implies that ti = exp(i~k·~ei) for some
~k. Therefore, if we define a function φ~k(~r) by ψ(~r) = exp(i~k ·~r)φ~k(~r),
then Tiφ~k(~r) = φ~k(~r+~ei) so φ~k(~r) is periodic in the crystal lattice. This
concludes the proof.
.

Note: this gives rise to the expected result that the probability |ψ(~r)|2
is the same in every lattice cell.

4. The allowed momenta in the crystal, ~k + ~pm, can then be divided into
different Brillouin zones, with the first Brillouin zone correspond to
those with m = 0.

5. Being periodic, φ(~r) can be expanded into a Fourier series, namely,

linear combinations of exp(~pm ·~r), where ~pm = m1
~f1 +m2

~f2 +m3
~f3 is

a vector in the reciprocal lattice. With that, we can interpret Bloch’s
theorem in the following way. Let ~k be the momentum of the particle
in the absence of the crystal. With the crystal present, the particle can
scatter from the molecules in the crystal and alter its momentum to
~k+ ~pm for some m. This is called a Bragg diffraction. Experiments
can be carried out to verify this Bragg diffraction law using any
beam that can penetrate the crystal. Examples are x-ray, neutrons,
and electrons.

6. We are familiar with the rule of reflection of a beam of light from
the plane surface of a media: the reflection angle is equal to the inci-
dent angle. It turns out that Bragg diffraction can be interpreted in a
more intuitive way as the reflection of the beam from some appropriate
crystal plane that depend on m. To see that, let ~k′ = ~k+ ~pm. In or-
der for the incident angle to be equal to the reflected angle, ~k′−~k = ~pm
must be normal to the reflection plane. If I writem = (m1,m2,m3), f =

(f1, f2, f3), e = (e1, e2, e3), where ei and fj really stand for ~ei and ~fj,
then pm = m ·f . If r = n ·e is a lattice point in the crystal, then the
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plane of crystal lattice points satisfying the condition ~pm·~r = m·n = 0
would be the reflection plane.


