Introduction to Group Theory Note 1

July 27, 2009

Contents

1 INTRODUCTION 1
1.1 Examples OF Symmetry Groups in Physics 2
2 ELEMENT OF GROUP THEORY 3
2.1 Definition of Group 3
2.2 Rearrangement Theorem 5
2.3 Applications of Rearrangement Theorem 5
2.4 Group Induced Transformations 5
2.5 Transformation of Functions 6
2.6 Coset 7
2.7 Class 8
2.8 Class Multiplication 9

1 INTRODUCTION

Group theory is the framework for studying physical system with symmetry. In particular, the representation theory of the group simplifies the physical solutions to the systems which have symmetries. For example, suppose that an one-dimensional Hamiltonian has the symmetry $x \rightarrow-x$, i.e.

$$
H(x)=H(-x)
$$

Then from the time-independent Schrödinger's equation,

$$
H(x) \psi(x)=E \psi(x)
$$

we get

$$
H(-x) \psi(-x)=H(x) \psi(-x)=E \psi(-x)
$$

which means that $\psi(-x)$ is also an eigenstate with same eigenvalue E. Thus we can form the linear combinations of these two states,

$$
\psi_{ \pm}=\frac{1}{\sqrt{2}}(\psi(x) \pm \psi(-x))
$$

which are parity eigenstates and are either symmetric or anti-symmetric under $x \rightarrow-x$. These are the consequences of symmetry. Note that this means only that the eigenstates can be chosen to be either symmetric or antisymmetric and does not imply that the system has degenerate eigenstates. This is because the even or odd state can be identically zero. For example, in the case of one-dimensional harmonic oscillator potential, the enegy eigenstate is either symmetric or antisymmetric but not both

REMARK: The symmetry of H does not necessarily imply the symmetry of the eigenfunctions. It only says that given an eigenfunction, the symmetry operation will generate other solutions which may or may not be independent of the original eigenfunction. As we will discuss later, in fact eigenfunctions form irreducible representations of the symmetry group.

1.1 Examples OF Symmetry Groups in Physics

1. Finite groups

(a) Crystallographic groups (symmetry group of crystals)

Symmetry operations $\left\{\begin{array}{l}\text { translations - periodic } \\ \text { rotations - space group }\end{array}\right\}$
Example:
i. NaCl

NaCl

Molecules

(b) Permutation group

In quantum mechanics, the wavefunctions of identical particles are required to be either symmetric of antisymmetric under the permutation of the coordinates. These permutations form a group, permutation group S_{n}. Permutation group also plays an important role in the study of representations of unitary groups.

2. Continuous groups

(a) $O(3)$ or $S U(2)$-Rotation group in 3-dimension

This group forms the basis for the theory of angular momentum in quantum mechanics. The structure of this group also provides the foundation for describing other more complicated groups.
(b) $S U(3)$-Special unitary 3×3 matrices

This type of group has been used to describe the spectrum of hadrons in terms of quark model. But the symmetry here is only approximate. $S U(3)$ has also been used to formulate the theory of strong interaction, QCD. Here the symmetry is exact but has the peculiarity of confinement.
(c) $S U(2)_{L} \times U(1)_{Y}$

This is the symmetry group used to describe the standard model of electromagnetic and weak interactions. However the symmetry here is also broken (spontaneously).
(d) $S U(5), S O(10), E(6)$

These symmetries unify electromagnetic, weak and strong interactions, grand unified theories (GUT). Of course these groups are badly broken.
(e) $S L(2, C)$ Lorentz group

This is the group which provides the description of space-time structure in special relativity. It is a central dogma to any formulation of relativistic system. In particular, it plays a crucial role in the relativistic field theory.

2 ELEMENT OF GROUP THEORY

2.1 Definition of Group

A group G is set of elements $(a, b, c \ldots)$ with an operstion * which satisfies following properties:
(i) Closure : If a, b, \in, this implies $c=a * b$ is also in G.
(ii) Associative: $a *(b * c)=(a * b) * c$
(iii) Identity : \exists an element e such that $a * e=e * a=a \quad \forall a \in G$
(iv) Inverse : for every $a \in G, \exists$ an element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$

To simplify the notation, we will denote the group operation $a * b$ by the simple product $a b$. Examples of Group

1. All real numbers under "+"
2. All real numbers without " 0 " under " \times "
3. All integers under "+"
4. All rotations in 3-dimensional space: $O(3)$
5. All $n \times n$ matrices under " $+"$
6. All non-singular $n \times n$ matrices under " \times ": $G L(n)$ (General Linear Group in n-dimension)
7. All $n \times n$ matrices with determinant 1: $S L(n)$ (Special Linear Group in n-dimension)
8. All $n \times n$ unitary matrices under " \times ": U(n) (Unitary Group in n-dimension)
9. All $n \times n$ unitary matrices with determinant 1: $S U(n)$ (Special Unitary Group in n-dimension)
10. All $n \times n$ orthogonal matrices: $O(n)$
11. All $n \times n$ orthogonal matrices with determinant $1: S O(n)$
12. Permutations of n objects: S_{n}

Abelian Group - If the group multiplication is commutative, i.e. $a b=b a \quad \forall a, b \in G$.
Finite Group - If the number of elements in G is finite.
Order of the Group - \# of elements in the group.
Subgroup - a subset of the group which is also a group. e.g. $S L(n)$ is a subgroup of $G L(n)$.
Simple Example : Symmetry of a regular triangle (called D_{3} group)

Operations
A: rotation \curvearrowright by 120° in the plane of triangle
B: rotation \curvearrowright by 240° in the plane of triangle
K: rotation \curvearrowright by 180° about $z z^{\prime}$
L: rotation \curvearrowright by 180° about $y y^{\prime}$
M: rotation \curvearrowright by 180° about $x x^{\prime}$
E: no rotation
Group Multiplication : consider the product $K A$

Thus we have $K A=L$
This way we can work out the multiplication of any 2 group elements and summarize the result in multiplication table.

	E	A	B	K	L	M
E	E	A	B	K	L	M
A	A	B	E	M	K	L
B	B	E	A	L	M	K
K	K	L	M	E	A	B
Clearly $\{E, A, B\},\{E, L\},\{E, K\},\{E, M\}$ are subgroups						
L	L	M	K	B	E	A
M	M	K	L	A	B	E

Isomorphism: Two groups $G=\left\{x_{1}, x_{2}, \ldots\right\}$ and $G^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right\}$ are isomorphic if \exists a one-to-one mapping $x_{i} \rightarrow x_{i}^{\prime}$ such that

$$
x_{i} x_{j}=x_{k} \Longrightarrow x_{i}^{\prime} x_{j}^{\prime}=x_{k}^{\prime}
$$

In other words, the groups G and G^{\prime}, which might operate on different physical system, have the same structure as far as group theory is concerned.

Symmetry group S_{3} : permutation symmetry of 3 objects. S_{3} has 6 group elements.

$$
\binom{123}{123}, \quad\binom{123}{231}, \quad\binom{123}{312}, \quad\binom{123}{132}, \quad\binom{123}{321}, \quad\binom{123}{213}
$$

We can show that S_{3} is isomorphic to D_{3} by associate the vertices of the triangle with 1,2 and 3 .

2.2 Rearrangement Theorem

Theorem : Each element of G appears exactly once in each row or column of the multiplication table.
Proof: Take group elements to be $E, A_{2}, A_{3}, \ldots, A_{h}$.
Multiply by arbitrary group element A_{k} to this set producing $A_{k} E, A_{k} A_{2}, A_{k} A_{3}, \ldots, A_{k} A_{h}$.
Suppose 2 elements in this set are the same, e.g. $A_{k} A_{i}=A_{k} A_{j}$ where $A_{i} \neq A_{j}$.
Since A_{k}^{-1} exists, we can multiply this by A_{k}^{-1} to get the result $A_{i}=A_{j}$ which contradicts the initial assumption.
Hence all elements in each row after multiplication are different. But there are exactly h elements in each row.
Therefore, each group element occurs only once in each row. In other words, multiplication of the group by a fixed element of the group, simply rearrange them. This is why it is called the rearrangement theorem.

2.3 Applications of Rearrangement Theorem

1. Suppose we are summing over the group elements of some functions of group elements, ${\underset{A}{A_{i}}}^{\sum} f\left(A_{i}\right)$. Then rearrangement theorem implies that

$$
\underset{A_{i}}{\Sigma} f\left(A_{i}\right)=\sum_{A_{i}} f\left(A_{i} A_{k}\right)
$$

for any $A_{k} \in G$. This result is central to many important result of the representation theory of finite groups. The validity of this theorem for the case of continuous group is then an important requirement in taking over the results from the finite groups to continuous groups.
2. Using this theorem, we can show that there is only one group of order 3. This can be seen by using multiplication table

	E	A	B
E	E	A	B
A	A	B	E
B	B	E	A

In fact, this group is of the form $A, B=A^{2}, E=A^{3}$. This is an example of cyclic group of order 3 .

Cyclic Group of order n, is of the form, $Z_{n}=\left\{A, A^{2} A^{3}, \ldots A^{n}=E\right\}$
Clearly, all cyclic groups are Abelian.
Examples of cyclic groups:

1. 4th roots of unity; $1,-1, i,-i=\left\{i, i^{2}=-1, i^{3}=-i, i^{4}=1\right.$, $\}$
2. Benzene molecule

$$
Z_{6}=\left\{A, A^{2} \ldots A^{6}=E\right\} \quad A=\operatorname{rotation} \text { by } \frac{\pi}{3}
$$

2.4 Group Induced Transformations

For many groups in physics, the group transfomations are geometric in nature. In these cases, the group transfomations can be represented as operations in the coordinate space. As an example, take a coordinate system for the triangle as shown,

If we keep the triangle fixed and rotate the coordinate system, we get the relations between the old and new coordinates as
or

$$
\begin{aligned}
x^{\prime} & =\cos \frac{2 \pi}{3} x+\sin \frac{2 \pi}{3} y=-\frac{1}{2} x+\frac{\sqrt{3}}{2} y \\
y^{\prime} & =-\sin \frac{2 \pi}{3} x+\cos \frac{2 \pi}{3} y=-\frac{\sqrt{3}}{2} x-\frac{1}{2} y
\end{aligned}
$$

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \vec{x}^{\prime}=\mathbf{A} \vec{x} \quad \mathbf{A}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \quad \vec{x}=\binom{x}{y}
$$

Thus group element A can be represented by matrix \mathbf{A} acting on the coordinate system (x, y). We can do this for other group elements to get,

$$
\mathbf{B}=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad \mathbf{E}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

The product of the group elements can also be expressed in terms of matrices, e.g

$$
\begin{gathered}
\vec{x}^{\prime}=\mathbf{A} \vec{x} \quad \vec{x}^{\prime \prime}=\mathbf{K} \vec{x}^{\prime} \Longrightarrow \vec{x}^{\prime \prime}=\mathbf{K A} \vec{x} \\
\mathbf{K}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \mathbf{A}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad \mathbf{K A}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)=\mathbf{L}
\end{gathered}
$$

Thus, the matrix multiplication gives the same result as the multiplication table, isomorphism between the symmetry group and the set of 6 matrices. This is an example of representation - group elements are represented by a set of matrices (does not have to be 1-1 correspondence). From now on, for the simplicity of notation, we will denote the matrices by the same symbols as the group elements.

2.5 Transformation of Functions

We can generalize the transformations of coordinates to functions of $(x, y), f(x, y)$.
(i) Take any group element A of G, which generate matrix A on (x, y).
(ii) Replace \vec{x} by $A^{-1} x^{\prime}$. This defines a new function $g\left(x^{\prime}, y^{\prime}\right)$. We will denote $g(x, y)$ by $g(x, y)=P_{A} f(x, y)$ or more simply $P_{A} f(x)=f\left(A^{-1} x\right)$.

Example: $f(x, y)=x^{2}-y^{2}$, take

$$
A=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

then

$$
\begin{array}{rll}
x^{\prime} & =-\frac{1}{2} x+\frac{\sqrt{3}}{2} y & \text { or } \tag{or}\\
y^{\prime} & =-\frac{\sqrt{3}}{2} x-\frac{1}{2} y &
\end{array} \begin{aligned}
& x=-\frac{1}{2} x^{\prime}-\frac{\sqrt{3}}{2} y^{\prime} \\
& y=\frac{\sqrt{3}}{2} x^{\prime}-\frac{1}{2} y^{\prime}
\end{aligned}
$$

and

$$
f(x, y)=\left(\frac{1}{2} x^{\prime}+\frac{\sqrt{3}}{2} y^{\prime}\right)^{2}-\left(\frac{\sqrt{3}}{2} x^{\prime}-\frac{1}{2} y^{\prime}\right)^{2}=-\frac{1}{2}\left(x^{\prime^{2}}-y^{\prime^{2}}\right)+\sqrt{3} x^{\prime} y^{\prime}=g\left(x^{\prime}, y^{\prime}\right)
$$

Or

$$
g(x, y)=-\frac{1}{2}\left(x^{2}-y^{2}\right)+\sqrt{3} x y=P_{A} f(x, y)
$$

Symbolically, we have

$$
f(\vec{x}) \rightarrow f\left(A^{-1} \vec{x}\right)=g(\vec{x}) \quad \text { or } P_{A} f(\vec{x})=g(\vec{x})=f\left(A^{-1} \vec{x}\right)
$$

Theorem: If A 's form a group G, the P_{A} 's defined on certain function $f(\vec{x})$ also form a group G_{P}. Proof:

$$
\begin{gathered}
P_{A} f(\vec{x})=f\left(A^{-1} x\right)=g(\vec{x}) \\
P_{B} P_{A} f(\vec{x},)=P_{B} g(\vec{x})=g\left(B^{-1} \vec{x}\right)=f\left(A^{-1}\left(B^{-1} \vec{x}\right)\right)=f\left(A^{-1} B^{-1} \vec{x}\right)=f\left((B A)^{-1} \vec{x}\right)=P_{B A} f(\vec{x})
\end{gathered}
$$

Thus we have $P_{B} P_{A}=P_{B A} \Longrightarrow G$ is homomorphic to G_{P}. But the correspondence $A \rightarrow P_{A}$ is not necessarily one-to-one.
Note that we define P_{A} in terms of A^{-1} in order to get the homomorphism $P_{B} P_{A}=P_{B A}$.
For example if we have the function $f(x, y)=x^{2}+y^{2} \Longrightarrow P_{A}=P_{B}=P_{E}=\ldots=1$.

2.6 Coset

Coset of a group is a useful tool to decompose the group into disconnect sets. Let $H=\left\{E, S_{2}, S_{3} \ldots S_{g}\right\}$ be a subgroup of G.

For $x \in G$ but $\notin H$, if we multiply the whoe subgroup by x on the right we get

$$
\left\{E x, S_{2} x, S_{3} x, \ldots S_{g} x\right\} \quad \underline{\text { right coset of } x}, \text { denoted by } H x
$$

and the left multiplication gives,

$$
\left\{x E, x S_{2}, x S_{3}, \ldots x S_{g}\right\} \quad \underline{\text { left coset of } x}, \text { denoted by } x H
$$

Note that a coset can not form a group, because identity is not in the set.

Properties of Cosets

(i) $H x$ and H have no elements in common.

Suppose there is one element in common,

$$
S_{k}=S_{j} x, \quad \text { where } x \notin H
$$

then

$$
x=S_{j}^{-1} S_{k} \in H
$$

This is a contradiction because $x \notin H$ by construction.
(ii) Two right (or left) cosets either are identical or have no element in common.

Consider $H x$ and $H y$, with $x \neq y$.Suppose there is one element in common between these 2 cosets

$$
S_{k} x=S_{j} y
$$

then

$$
x y^{-1}=S_{k}^{-1} S_{j} \in H
$$

But $H x y^{-1}=H$ by rearrangement theorem which implies that $H x=H y$

Theorem: If H is a subgroup of G, then the order of H is a factor of order of G.
Proof: Consider all distinct right cosets

$$
H, H x_{2}, H x_{3}, \ldots, H x_{l}
$$

Each element of G must appear in exactly one of these cosets. Since there are no elements in common among these cosets, we must have $g=l \times h$ where h the order of H, l some integer and g order of G.

Remark: This theorm severely limits the possible subgroup of a finite group. For example, a group of order 6 , like D_{3}, the only non-trivial subgroups are those with orde 2 or 3 .

Conjugate: B and A are conjugate to each other if $\exists x \in G$ such that

$$
x A x^{-1}=B \quad \text { (similarity transformation) }
$$

Remark: Replacing each element by its conjugate under some fixed element x is an isomorphism under x. This can be seen as follows. From

$$
\begin{gathered}
A^{\prime}=x A x^{-1} \quad B^{\prime}=x B x^{-1} \\
A^{\prime} B^{\prime}=\left(x A x^{-1}\right)\left(x B x^{-1}\right)=x A B x^{-1}=(A B)^{\prime}
\end{gathered}
$$

we see that $g_{i} \rightarrow g_{i}^{\prime}=x g_{i} x^{-1}$ is an isomorphism because the correspondence is one-to-one.
In coordinate transformations, similarity transformations correspond to change of basis and do not represennt a intrinsically different operation.

Coset Space

$\overline{G / H}=\{\operatorname{cosets} H x, x \in G$ but not in $H\}$
Roughly speaking, coset space is obtained by grouping together elements which are related by left (or right) multiplication of elements in the subgroup H. This decomposition is useful in reducing the structure of the group to a smaller structure.

2.7 Class

All group elements which are conjugate to a given element is called a class. Roughly speaking these are group elements which are essentially the same operation with differenent basis and these basis can be tranformed into one another by the group transformation.

Denote the group elements by $G=\left\{E, x_{2}, \ldots, x_{n}\right\}$
Take $A \in G$, then

$$
\left.\begin{array}{c}
E A E^{-1} \\
x_{2} A x_{2}^{-1} \\
\vdots \\
x_{h} A x_{h}^{-1}
\end{array}\right\}
$$

Example: symmetry group of triangle D_{3} From the multiplication table, we see that

$$
\begin{array}{rlrl}
A A A^{-1} & =A & A K A^{-1} & =L \\
B A B^{-1} & =A & B K B^{-1} & =M \\
K A K^{-1} & =B & K K K^{-1} & =K \\
L A L^{-1} & =B & L K L^{-1} & =M \\
M A M^{-1} & =B & M K M^{-1} & =L
\end{array}
$$

Hence the classes are $\{E\},\{A, B\},\{K, L, M\}$.
Note: E is always in a class by itself because $A_{i}^{-1} E A_{i}=E A_{i}^{-1} A_{i}=E, \quad \forall A_{i} \in G$. In this example, $\{A, B\}-$ rotations by $\frac{2 \pi}{3}$ and $\{K, L, M\}$ - rotations by π. This is a very general feature-all elements in the same class have same angle of rotation. Thus roughly speaking elements in the same class have the same physical operation.

Invariant Subgroup: If a subgroup H of G consists entirely of complete classes. For example $H=\{E, A, B\}$ is an invariant subgroup while $\{E, K\}$ is not. Invariant subgroup is also called normal subgroup or normal divisor. Symbolically for invariant subgroups, we have $x H x^{-1}=H$ for any $x \in G$. which implies $x H=H x$, i.e. left cosets are the same as right cosets.

For every group G, there is at least two trivial invariant subgroups, $\{E\}$ and the group G itself. If a group only has these two invariant subgroups, then it is called a simple group. Examples of simple groups are cyclic groups of prime order.

Factor Group (or Quotient Group)

Consider the invariant subgroup $H=\left\{E, h \ldots h_{\ell}\right\}$ of G and the collection of all distinct left (or right) cosets $[a] \equiv a H,[b] \equiv b H, \ldots$ (where in this notation $[E]=H$).

Define the multiplication of cosets as follows: Suppose $r_{1} \in[a], r_{2} \in[b]$ and $r_{1} r_{2}=R^{\prime}$. Then we define $[a][b]=\left[R^{\prime}\right]$. Let $a, b \in G$ but not in H, then the product of elements from these two cosets can be written as

$$
\left(a h_{i}\right)\left(b h_{j}\right)=a b\left(b^{-1} h_{i} b\right) h_{j}=a b\left(h_{k} h_{j}\right) \in \text { coset containing } a b
$$

where we have set $h_{k}=b^{-1} h_{i} b$. Notation: If \mathcal{C}_{1} and \mathcal{C}_{2} are two classes, then $\mathcal{C}_{1}=\mathcal{C}_{2}$ means that \mathcal{C}_{1} and \mathcal{C}_{2} have same collection of group elements. Thus the coset multiplication is well-defined and is analogous to multiplication of the group elements. It is not hard to see that the collection of these cosets of H forms a group, called the Quotient Group and is denoted by G / H.

Theorem: If \mathcal{C} is a class, then for any $x \in G$, we have $x \mathcal{C} x^{-1}=\mathcal{C}$.
Proof: Write $\mathcal{C}=\left\{A_{1}, A_{2}, \ldots, A_{j}\right\}$ then $x \mathcal{C} x^{-1}=\left\{x A_{1} x^{-1}, x A_{2} x^{-1}, \ldots, x A_{j} x^{-1}\right\}$.
Take any element in $x \mathcal{C} x^{-1}$ say $x A_{i} x^{-1}$. This is an element related to A_{i} by conjugation. $x A_{i} x^{-1}$ is in the class containing A_{i} and hence $x A_{i} x^{-1} \in \mathcal{C}$. Thus, each element in $x \mathcal{C} x^{-1}$ must appear in \mathcal{C} because \mathcal{C} is a class. But all elements in $x \mathcal{C} x^{-1}$ are different. Therefore $x \mathcal{C} x^{-1}=\mathcal{C}$.

Theorem: Any collection \mathcal{C} which satisfies $x \mathcal{C} x^{-1}=\mathcal{C}$ for all $x \in G$ consists wholly of complete classes.
Proof: First we can subtract out all complete classes from both sides of the equation. Denote the remainder by R. So we have $x R x^{-1}=R$. Suppose R is not a complete class. This means that there exists some element A_{i} which is related to some element $R_{j} \in R$ by conjugate and $A_{i} \notin R$, i.e.

$$
A_{i}=y R_{j} y^{-1} \quad \text { and } \quad A_{i} \notin R
$$

But this violates the assumption $x R x^{-1}=R$ for all $x \in G$.

2.8 Class Multiplication

For 2 classes $\mathcal{C}_{i}, \mathcal{C}_{j}$ in G, we have from the previous theorems

$$
\mathcal{C}_{i} \mathcal{C}_{j}=\left(x^{-1} \mathcal{C}_{i} x\right)\left(x^{-1} \mathcal{C}_{j} x\right)=x^{-1}\left(\mathcal{C}_{i} \mathcal{C}_{j}\right) x \quad \forall x \in G
$$

Thus $\mathcal{C}_{i} \mathcal{C}_{j}$ consists of complete classes, and we can write

$$
\mathcal{C}_{i} \mathcal{C}_{j}=\sum_{k} c_{i j k} \mathcal{C}_{k}
$$

where $c_{i j k}$ are some integers.

Direct Product of Two Groups

Given two groups $G=\left\{x_{i}, i=1, \ldots, n\right\}, G^{\prime}=\left\{y_{j}, j=1, \ldots, m\right\}$, the direct product group is defined as

$$
G \otimes G^{\prime}=\left\{\left(x_{i}, y_{j}\right) ; i=1, \ldots n, j=1, \ldots, m\right\}
$$

with group multiplication defined by

$$
\left(x_{i}, y_{j}\right) \times\left(x_{i^{\prime}}, y_{j^{\prime}}\right)=\left(x_{i} x_{i^{\prime}}, y_{j} y_{j^{\prime}}\right)
$$

It is clear that $G \otimes G^{\prime}$ forms a group. Note that

$$
\left(E, y_{j}\right) \times\left(x_{i}, E^{\prime}\right)=\left(x_{i}, y_{j}\right)=\left(x_{i}, E^{\prime}\right) \times\left(E, y_{j}\right)
$$

In some sense, this means that G and G^{\prime} are subgroups of $G \otimes G^{\prime}$ with the property that group elements from G commutes with group elements from G^{\prime}.

We can generalize this to define direct product of 2 subgroups. Let S and T be subgroups of G such that S and T commute with each other,

$$
s_{i} t_{j}=t_{j} s_{i} \quad \forall s_{i} \in S, t_{j} \in T
$$

Then we can define the direct product $S \otimes T$ as

$$
S \otimes T=\left\{s_{i} t_{j} \mid s_{i} \in S, t_{j} \in T\right\}
$$

Example:

$$
\begin{aligned}
& Z_{2}=\{1,-1\} \quad Z_{3}=\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\} \\
& Z_{2} \otimes Z_{3}=\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3},-1,-e^{2 \pi i / 3},-e^{4 \pi i / 3}\right\} \\
& =\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3}, e^{i \pi}, e^{5 \pi i / 3}, e^{\pi i / 3}\right\}
\end{aligned}
$$

Clearly, this is isomorphic to Z_{6}.

There is an interesting connection between direct product of groups and quotient group. Sometimes it is possible to reconstruct a group G by taking the direct product of G / H and H (where H is an invariant subgroup of G). The question of whether this reconstruction is possible or not is called the extension problem.

