
Introduction to Group Theory
Note 2 Theory of Representation

August 5, 2009

Contents

1 Group Representation 1
1.1 De�nition of Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reducible and Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Unitary Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Schur�s Lemma 4

3 Great Orthogonality Theorem 6

4 Character of Representation 7
4.1 Decomposition of Reducible Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Regular Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Character Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Product Representation (Kronecker product) 12

6 Direct Product Group 13

1 Group Representation

In phyiscal application, the group representation plays a very important role in deducing the consequence of the
symmetries of the system. Roughly speaking, representation of a group is just some way to realize the same group
operation other than the original de�nition of the group. Of particular interest to most phyical application is the
realization of group operation by the matrices whose multiplication operation can be naturally associated with group
multiplication.

1.1 De�nition of Representation

Given a group G = fAi; i = 1 � � �ng : If for each Ai 2 G; there is an n� n matrix D (Ai) such that

D (Ai)D (Aj) = D (AiAj) (1)

then D�s forms a n-dimensional representation of the group G. In other words, the correspondence Ai ! D (Ai) is
a homomorphism. The condition in Eq(1) simply means that the matrices D (Ai) satisfy the same multiplication
law as the group elments. If this homomorphism turns out to be an isomorphism (1� 1) then the representation
iscalled faithful. Note that a matrice Mij can be viewed as linear operators M acting on some vector space V with
respect to some choice of basis ei;

Mei =
X
j

ejMji

One way to generate such matrices for the symmetry of certain geometric objects is to use the group induced
transformations, discussed before. Recall that each group element Aa will induce a transformation of the coordinate
vector ~r;

~r ! Aa~r

Then we can take any function of ~r; say ' (~r) and for any group element Aa de�ne a new transformation PAa
by
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PAa' (~r) = '
�
A�1a ~r

�
Among the transformed functions obtained this way, PA1' (~r) ; PA2' (~r) ; � � �PAn' (~r) ; we select the linearly inde-
pendent set '1 (~r) ; '2 (~r) � � �'` (~r) :Then it is clear that PA'a can be expressed as linear combination of 'i;

PAi'a =
X̀
b=1

'bDba (Ai)

and Dba (Ai) forms a representation of G: This can be seen as follows.

PAiAj
'a = PAi

PAj
'a = PAi

X
b

�bDba (Aj) =
X
b:c:

�cDcb (Ai)Dba (Aj)

On the other hand,
PAiAj'a =

X
c

'cD (AiAj)ca

This gives

D (AiAj)ca = Dcb (Ai)Dba (Aj)

which means that D (Ai)
0
s form representation of the group.

Example: Group D3; symmetry of the triangle.
As we have discussed in the previous chapter, choosing a coordinate system on the plane, we can represent the

group elements by the following matrices,

A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
; B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
; E =

�
1 0
0 1

�

K =

�
�1 0
0 1

�
; L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
; M =

 
1
2

p
3
2p

3
2 � 1

2

!
Choose f (~r) = f (x; y) = x2 � y2; we get

PAf (~r) = f
�
A�1~r

�
=
1

4

�
x+

p
3y
�2
� 1
4

�p
3x� y

�2
= �1

2

�
x2 � y2

�
+
p
3xy:

We now have a new function g (x; y) = �2xy: We can operate on g (r) to get,

PAg (~r) = g
�
A�1~r

�
= 2

�
�1
2

��
x+

p
3y
� 1
2

�p
3x� y

�
= �1

2

h�p
3
� �
x2 � y2

�
� 2xy

i
= �

p
3

2

�
x2 � y2

�
� 1
2
(2xy)

Thus we have

PA (f; g) = (f; g)

 
� 1
2

p
3
2p

3
2 � 1

2

!
The matrix generated this way is the same as A as given above.
Similarly

PBf (~r) = f
�
B�1~r

�
=
1

4

�
x�

p
3y
�2
� 1
4

�p
3x+ y

�2
= �1

2

�
x2 � y2

�
+
p
3 (�xy)

PBg (~r) = g
�
B�1~r

�
= �2

�
1

2

��
x�

p
3y
��
�1
2

��p
3x+ y

�
= � +

r
1

2

h
+
p
3
�
x2 � y2

�
� 2xy

i
= �

p
3

2

�
x2 � y2

�
� 1
2
(�2xy)

PB (f; g) = (f; g)

 
� 1
2 �

p
3
2p

3
2 � 1

2

!
same as B as given before.
Remarks
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1. If D(1) (A) and D(2) (A) are both representation of the group, then it is clear that

D(3) (A) =

�
D(1) (A) 0

0 D(2) (A)

�
(block diagonal form)

also forms a representation. We will denote it as a direct sum �;

D(3) (A) = D(1) (A)�D(2) (A) direct sum

2. If D(1) (A) and D(2) (A) are 2 representations of G with same dimension and there exists a square matrix U
such that

D(1) (Ai) = UD
(2) (Ai)U

�1 for all Ai 2 G:

thenD(1) andD(2) are said to be equivalent representations . Recall that if we change the basis used to represent
the linear operators, the corresponding matrices undergo similar transformation. Since they represent the same
operators, we consider them the "same" representation but with respect to di¤erent choice of basis.

1.2 Reducible and Irreducible Representations

A representation D of a group G is called irreducible if it is de�ned on a vector space V (D) which has no non-
trivial invariant subspace. Otherwise, it is reducible. In essence this de�nition simply means that for a reducible
representation, the linear opertors correponding to the group elements will leave some smaller vector space invariant.
In other words, all the group actions can be realized in some subspace.
We need to convert these statment into more practical criterion. Suppose the representaion D is reducible on the

vector space V . Then there exists a subspace S which is invariant under D. For any vector v 2 V; we can decompos
it as,

v = s+ s?

where s 2 S and s? belongs to the complement S? of S: If we write the vector v in the block form,

v =

�
s
s?

�
then the representation matrix can be written as

Av = D (A) v =

�
D1 (A) D2 (A)
D3 (A) D4 (A)

��
s
s?

�
For the space S to be invariant under group operators means that

D3 (Ai) = 0; 8Ai 2 G
i.e. the matrices D (Ai) are all of the upper triangular form,

D (Ai) =

�
D1 (Ai) D2 (Ai)
0 D4 (Ai)

�
; 8Ai 2 G (2)

A representation is completely reducible if all the matrices in the representations D (Ai) can be simultaneously
brought into block diagonal form by the same similarity transformation U;

UD (Ai)U
�1 =

�
D1 (Ai) 0
0 D2 (Ai)

�
; for all Ai 2 G

i.e. D2 (Ai) = 0 in the upper triangular matrices given in Eq (2). In other words, the space complement to S is also
invariant under the group operation. This will be the case if the represnetation mstrices are unitary as stated in the
theorem;
Theorem: Any unitary reducible representation is completely reducible.
Proof: For simplicity we assume that the vector space V is equipped with a scalar product (u; v) : It is easy to

see in this case we can choose the complement space S? to be perpendicular to S; i.e.
(u; v) = 0; if u 2 S; v 2 S?

Recall that the scalar product is invariant under the unitary transformation,

0 = (u; v) = (D (Ai)u;D (Ai) v)

Thus if D (Ai)u 2 S; then D (Ai) v 2 S? which implies that S? is also invariant under the group operation.�
In physical applications, we deal mostly with unitary representations and they are completely reducible.
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1.3 Unitary Representation

Since unitary operators preserve the scalar product of a vector space, representation by unitary matrices will simplify
the analysis of group theory. In the realm of �nite groups, it turns out that we can always transform the representation
into unitay one. This is the content of the following theorem.
Fundamental Theorem
Every irrep of a �nite group is equivalent to a unitary irrep (rep by unitary matrices)
Proof:
Let D (Ar) be a representation of the group G = fE;A2 � � �Ang

Consider the sum

H =
nX
r=1

D (Ar)D
y (Ar) then Hy = H

Since H is positive semide�nite, we can de�ne squre root h by

h2 = H; hy = h

De�ne new set of matrices by

�D (Ar) = h
�1D (Ar)h r = 1; 2; � � � ; n

Since this is a similarity transformation, �D (Ar) also forms a rep which is equivalent to D (Ar) : We will now
demonstrate that �D (Ar) is unitary,

�D (Ar) �D
y (Ar) =

�
h�1D (Ar)h

� �
hDy (Ar)h

�1� = h�1D (Ar) nX
s=1

�
D (As)D

y (As)
�
Dy (Ar)h

�1

= h�1

"
nX
s=1

D (ArAs)D
y (ArAs)

#
h�1 = h�1

nX
s0=1

D (As0)D
y (As0)h = h

�1h2h = 1

where we have used the rearrangement theorem.�

2 Schur�s Lemma

One of the most important theorems in the study of the irreducible reprentation is the following lemma.
Schur�s Lemma

(i) Any matrix which commutes with all matrices of irrep is a multiple of identity matrix.

Proof: Assume 9 M such that
MD (Ar) = D (Ar)M 8 Ar 2 G

then by taking the hermitian conjugate, we get

Dy (Ar)M
y =MyDy (Ar)

As shown above, we can take D (Ar) to be unitary, so we can write

My = D (Ar)M
yDy (Ar) or MyD (Ar) = D (Ar)M

y

This means that My also commutes with all D�s and so are the combination M +My and i
�
M �My� ; which

are hermitian. Thus, we only have to consider the case where M is hermitian. Start by diagonalizing M by
unitary matrix U;

M = UdUy d : diagonal

De�ne �D (Ar) = U
yD (Ar)U; then we have

d �D (Ar) = �D (Ar) d

or in terms of matrix elements, X
�

d��
_
D�r (As) =

X
�

_
D�� (As) d�
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Since the matrix d is diagonal, we get

(d�� � d

) �D�
 (As) = 0 =) if d�� 6= d

 ; then �D�
 (As) = 0

This means if diagonal elements dii are all di¤erent, then the o¤-diagonal elements of
_
D are all zero. In this

case,
_
D
0
s are all diagonal and hence all reducible. The only possible non-zero o¤-diagonal elements of

_
D can

arise when some of d0��s are equal. For example, if d11 = d22; then
_
D12 can be non-zero. Thus �D will be in

the block diagonal form, i.e.

if d =

266666666666664

d1
d1

. . .
d1

d2
. . .

d2
. . .

377777777777775
then �D =

264 D1 0
0 D2

. . .

375

This is true for every matrix in the representation. Thus all the matrices in the representation are in the block
diagonal form. But D is irreducible which means that not all matrices can be brought into block diagonal form.
Thus all di�s have to be equal

d = cI: or M = UdUy = dUUy = d = cI �

(ii) If the only matrix that commutes with all the matrices of a representation is a multiple of identity, then the
representation is irrep.

Proof: Suppose D is reducible, then we can transform them into

D (Ai) =

�
D(1) (Ai)

D(2) (Ai)

�
for all Ai 2 G

construct M =

�
I 0
0 2I

�
then clearly

D (Ai)M =MD (Ai) for all i

But M is not a multiple of identity (contradiction). Therefore D must be irreducible.

Remarks
1. Any irrep of Abelian group is 1�dimensional. This is because for any element A;D (A) commutes with all

D (Ai) : Then Schur�s lemma =) D (A) = cI 8A 2 G: But D is irrep, so D has to be 1� 1 matrix.
2. In any irrep, the identity element E is always represented by identity matrix. This follows Schur�s lemma.
3. From D (A)D

�
A�1

�
= D (E) = I:; we see that D

�
A�1

�
= [D (A)]

�1and for unitary representation
D
�
A�1

�
= D+ (A) :

(iii) If D(1) and D(2) are irreps of dimension l1; and dimension l2 and

MD(1) (Ai) = D
(2) (Ai)M :for all Ai 2 G (3)

then (a) if l1 6= l2 M = 0

(b) if l1 = l2; then either M = 0 or detM 6= 0 and reps are equivalent.
Proof: : Without loss of generality we can take l1 � l2: Note that since Eq(3) is true for all elements we can
replace Ai by A

�1
i ;

MD(1)
�
A�1i

�
= D(2)

�
A�1i

�
M

which can be written as
MD(1) (Ai)

y
= D(2) (Ai)

y
M

Hermitian conjugate of Eq(3) gives

D(1)yMy =MyD(2)y; MMyD(2) (Ai)
y
=MD(1) (Ai)

y
My = D(2) (Ai)

y
MMy

5



or �
MMy�D(2) (Ai) = D

(2) (Ai)
�
MMy� 8 (Ai) 2 G

Then from Schur�s lemma (i) we get MMy = cI;where I is a l2�dimensional identity matrix.
First consider the case l1 = l2; where we get jdetM j2 = c`1 : Then either detM 6= 0;which implies M is
non-singular and from Eq(3)

D(1) (Ai) =M
�1D(2) (Ai)M 8 (Ai) 2 G

This means D(1) (Ai) and D(2) (Ai) are equivalent. Otherwise if the determinant is zero,

detM = 0 =) c = 0 or MMy = 0 =)
X



M�
M
�
�
 = 0 8�:�:

In particular, for � = �
P


jM�
 j2 = 0 M�
 = 0 for all �:
 =)M = 0:

Next, if l1 < l2; then M is a retangular l2 � l1; matrix

M =

�
: :
: :

�
| {z }

l1

l2

we can de�ne de�ne a square matrix by adding colums of zeros

N =

l2z }| {
[M; 0]gl2 l2 � l2 square matrix

then

Ny =

�
My

0

�
and NNy = (M; 0)

�
My

0

�
=MMy = cI

where I is the l2 � l2 identity matrix. But from construction we see that detN = 0; Hence c = 0;=) NNy =
0 or M = 0 identically. �

3 Great Orthogonality Theorem

The most useful theorem for the representation of the �nite group is the following one.
Theorem(Great orthogonality theorem): SupposeG is a group with n elements,fAi; i = 1; 2; � � �ng ; andD(�) (Ai) ;

� = 1; 2 � � � are all the inequivalent irreps of G with dimension l�:
Then

nX
�=1

D
(
)
ij (A�)D

(�)�
k` (A�) =

n

l

�
��ik�j`

Proof: De�ne
M =

X
a

D(�) (Aa)XD
(�)
�
A�1a

�
where X is an arbitrary l� � l� matrix. Then multiplying M by representation matrices, we get

D(�) (Ab)M = D(�) (Ab)
X
a

D(�) (Aa)XD
(�)
�
A�1a

� h
D(�)

�
A�1b

�
D(�) (Ab)

i
=

X
a

D(�) (AbAa)XD
(�)
�
(AbAa)

�1
�
D(�) (Ab) =MD

(�) (Ab)

(i) If � 6= �; then M = 0 from Schur�s lemma, we get

M =
X

a

D
(�)
ir (Aa)XrsD

(�)
sk

�
A�1a

�
=
X
a

D
(�)
ir (Aa)XrsD

(�)�
ks (Aa) = 0

Choose Xrs = �rj�sl (i.e. X is zero except the jl element). Then we haveX
a

D
(�)
ij (A�)D

(�)�
k` (A�) = 0

This shows that for di¤erent irreducible representations , the matrix elements, after summing over group
elements, are orthogonal to each other.
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(ii) � = � then we can write M =
P
a
D(�) (Aa)XD

(�)
�
A�1a

�
:This implies

D(�) (Aa)M =MD(�) (Ab) =) M = cI

which gives, X
a

Tr

h
D(�) (Aa)XD

(�)
�
A�1a

�i
= cl2 or nTrX = cl2; or c =

(TrX)n

l�

Take Xrs = �rj�s` then TrX = �j` andX
a

D(�) (Aa)ij D
(�) (Aa)

�
k` =

n

l�
�ik�j`

This gives the orthogonality for di¤erent matrix elements within a given irreducible representation. �

Geometric Interpretation
Imagine a complex n�dimensional vector space in which axes (or componenets) are labeled by group elements

E;A2:A3���An(Group element space). Consider the vector in this space with componets made out of the matrix
element of irreducible representation matrix D(�) (Aa)ij :Each vector in this n�dimensionl space is labeled by 3
indices, i; �:�

~D(i)
�� =

�
D(i)
�� (E) ; D

(i)
�� (A2) ; � � �D(i)

�� (An)
�

(4)

Great orthogonality theorem says that all these vectors are ? to each other. As a resultX
i

l2i � n

because there can be no more than n mutually ? vectors in n-dimensiona vector space.
As an example, we take the 2-dimensional representation we have work out before,

E =

�
1 0
0 1

�
; A =

 
� 1
2

p
3
2

�
p
3
2 � 1

2

!
; B =

 
� 1
2 �

p
3
2p

3
2 � 1

2

!

K =

�
�1 0
0 1

�
; L =

 
1
2 �

p
3
2

�
p
3
2 � 1

2

!
; M =

 
1
2

p
3
2p

3
2 � 1

2

!
Label the axises by the groupl elements in the order (E;A;B;K;L;M) : Then we can construct four 6-dimensional
ectors from these 2�2 matrices,

D
(2)
11 = (1 ;� 1

2 ;� 1
2 ;�1 ; 12 ; 12 )

D
(2)
12 = (0 ;

p
3
2 �

p
3
2 ; 0 ;�

p
3
2 ;

p
3
2 )

D
(2)
21 = (0 ;�

p
3
2 ;

p
3
2 ; 0 �

p
3
2 ;

p
3
2 )

D
(2)
21 = (1 ;� 1

2 ;� 1
2 ; 1 ;� 1

2 ;� 1
2 )

It is straightforward to check that these 4 vectors are perpendicular to each other.
Note that the other two vectors which are orthogonal to these vectors are of the form,

DE = (1 ; 1 ; 1 ; 1 ; 1 ; 1)
DA = (1 ; 1 ; 1 ;�1 ;�1 ;�1)

coming from the identity representation and other 1-dimensional representation.

4 Character of Representation

The matrices in irrep are not unique, becuase we can generate another equivalent irrep by similairty transformation.
However, the trace of a matrix is invariant under such transformation,

Tr
�
SAS�1

�
= TrA

We can use the trace, or character, to characterize the irrep.

�(�) (Ai) � Tr
h
D(�) (Ai)

i
=
X
a

D(�)
aa (Ai)

Useful Properties

7



1. If D(�) and D(�) are equivalent, then

�(�) (Ai) = �
(�) (Ai) 8Ai 2 G

2. If A and B are in the same class,
�(�) (A) = �(�) (B)

Proof: If A and B are in same class =) 9x 2 G such that xAx�1 = B =) D(�) (x)D(�) (A)D(�)
�
x�1

�
=

D(�) (B)

Using
D(�)

�
x�1

�
= D(�) (x)

�1

we get

Tr

h
D(�) (x)D(�) (A)D(�) (x)

�1
i
= Tr

h
D(�) (B)

i
or �(�) (A) = �(�) (B)

Hence �(�) is a function of class, not of each element.

3. Denote �i = � (Ci) ; the character of ith class. Let nc be the number of classes in G; and ni the number of
group elements in Ci:
From great orthogonality theorem X

r

D
(�)
ij (Ar)D

(�)�
k` (Ar) =

n

l�
����ik�jl

we get X
r

�(�) (Ar)�
(�)� (Ar) =

n

l�
� ���l� = n���

or
P

i ni�
(�)
i �

(�)�
i = n���

This is the great orthogonality theorem for the characters.
De�ne U�i =

p
ni
n �

(�) (Ci) ; then great orthogonality theorem implies,

ncX
i=1

U�iU
�
�i = ���

Thus, if we consider U�i as components in nc dimensional vector space, ~U� = (U�1U�2 � � �U�nc) ; then ~U� � =
1; 2; 3 � � �nr (nr : # of indep irreps)form an othornormal set of vectors, i.e.

U�U� =

ncX
i=1

U�iU
�
�i = ���

This implies that
nr � nc

i. e. number of irreps is smaller than the number of classes. This greatly restricts the number of possible irreps.

4.1 Decomposition of Reducible Representation

For a reducible representation, we can write

D = D(1) �D(2) i.e. D (Ai) =
�
D(1) (Ai)

D(2) (Ai)

�
8Ai 2 G

Then we have for the trace
� (Ai) = �

(1) (Ai) + �
(2) (Ai)

Denote by D(�); � = 1; 2 � � �nr; all the inequivalent unitary irrep. Then any rep D can be decomposed as

D =
X
�

c�D
(�) c� : some integer ,

�
# of time D(�) appears

�
In terms of traces, we get

� (Ci) =
X
�

c��
(�) (Ci)

8



where we indicate that the trace is a function of class Ci:The coe¢ cient can be calculated as follows (by using
orthogonity theorem). Multiply by ni�

(�)�
i and sum over iX

i

�i�
(�)�
i ni =

X
i

X
�

c��
(�)
i �

(�)�
i ni =

X
�

c� � n��� = nc�

or

c�= 1
n

P
i

�i�
(�)�
i ni

From this we also get, X
i

ni�i�
�
i =

X
i

ni
X
�;�

c��
(�)
i c��

(�)�
i = n

X
�

jc�j2

This leads to the following theorem:
Theorem: If the rep D with character �i sati�es the relation,X

i

ni�i�
�
i = n

then the representation D is irreducible.

4.2 Regular Representation

Given a group G = fA1 = E;A2���Ang :We can construct the regular rep as follows:
Take any A 2 G: If

AA2 = A3 = 0A1 + 0A2 + 1 �A3 + 0A4 + � � �

i.e. we write the product "formally" as linear combination of group elements,

AAs =

nX
r=1

CrsAr =

nX
r=1

ArDrs (A) ; i.e. Crs = Drs (A) is either 0 or1: (5)

i.e. Drs (A) = 1 if AAs = Ar or A = ArA
�1
s

= 0 otherwise

Note strictly speaking, the sum over group elments is unde�ned. But here only one group element shows up in the
right-hand side in Eq(5), we do not need to de�ne the sum of group elements. Then D (A)�s form a rep of G : regular
representation with dimensional n: This can be seen as follows:X

r

ArDrs (AB) = ABAs = A
X
t

AtDts (B) =
X
t�r
Dts (B)ArDrt (A)

or
Drs (AB) = Drt (A)Dts (B)

From the de�nition of the regular representation

Drs (A) = 1 i¤ AAs = Ar

we see that the diagonal elements are of the form,

Drr (A) = 1 iff AAr = Ar or A = E

Therefore every character is zero except for identity class,

�(reg) (Ci) = 0 i 6= 1
�(reg) (Ci) = n i = 1 (6)

From this we can work out how D(reg) reduces to irreps. Write

D(reg) =
X
�

c�D
(�)

9



then
c� =

1

n

X
i

�
(reg)
i �

(�)�
i ni =

1

n
�
(reg)
1 �

(�)�
1 =

1

n
� nl� = l�

This means that Dreg contains the irreps as many times as its dimension;

�
(reg)
i =

nrX
�

l��
(�)
i or �

(reg)
i =

nrX
�=1

�
(�)�
i �

(�)
i = n�i1

For the identity class �reg1 = n; �
(�)
1 = l�; then we getP

�
l2� = n

(7)

This severely constraints the possible dimensionalities of irreps becuase both n and l� have to be integers. For D3,
with n = 6; the only possible solution for

P
�
l2� = 6 is l1 = 1: l2 = 1: l3 = 2; and their permutations.

The relation in Eq(7) implies that the vector space formed by vectors de�ned in Eq(4) has dimension n; the number
of elements in the group. Since those vectors in Eq(4) are orthogonal to each other, hence linearly independent, and
there are n such vectors, they must satisfy the completeness relation,X

�;�;�

l�
n
D(�)
�� (Ak)

�
D(�)
�� (Al) = �kl completeness relation (8)

The factor
l�
n
comes from the normalization of the vectors in Eq(4).

We now want to show that
nc = nr

i.e. # of classes = # of irreps.
De�ne D(�)

i by adding up all matrices corresponding to elements in the same class Ci;

D
(�)
i =

X
A2Ci

D(�) (A)

Then,

D(�) (Aj)D
(�)
i D(�)

�
A�1j

�
=

X
A

D(�) (Aj)D
(�) (A)D(�)

�
A�1j

�
=

X
A

D(�)
�
AjAA

�1
j

�
= D

(�)
i

Using
D(�)

�
A�1j

�
= D(�) (Aj)

�1

we get
D(�) (Aj)D

(�)
i = D

(�)
i D(�) (Aj)

i.e. D(�)
i commutes with all matrice in the irrep. From Schur�s lemma, we get

D
(�)
i = �

(�)
i 1 where �

(�)
i is some number

Taking the trace, we get

ni�
(�)
i = �

(�)
i li or �

(�)
i =

ni�
(�)
i

li
=
ni�

(�)
i

�
(�)
1

(9)

where �(�)1 is the character of identity class. In the completeness relation in Eq(8), we can sum Ak over group elements
in class Cr and Al over class Cs to get X

�;�;�

li
n

h
D(�)�
r

i
��

h
D(�)
s

i
��
= nr�rs

10



Using value of �(�)i in Eq(9) we have

nrX
�=1

�(�)r �(�)�s =
n

nr
�rs completeness

This the completeness relation for the characters. If we now consider �(�)i as a vector in nr dim space
!
� i =�

�
(1)
i ; �

(2)
i ; : : : �

(nr)
i

�
we get

nc � nr
Combine this with the result nr � nc; we have derived before, we get

nr = nc

4.3 Character Table

For a �nite group, the essential information about the irreducible representations can be summarized in a table which
lists the characters of each irreducible representation in terms of the classes. This table has many useful applications.
To construct such table we can use the following useful information:

1. # of columns = # of rows = # of classes

2.
P
�
l2� = n

3.
P
i

ni�
(�)
i �

(�)�
i = n��� and

P
�
�
(�)
i �

(�)�
j = n

ni
�ij

4. If l� = 1; �i is itself a rep.

5. �(�)
�
A�1

�
= Tr

�
D(�)

�
A�1

��
= Tr

�
D(�)+

�
A�1

��
= �(�)� (A)

If A and A�1 are in the same class then � (A) is real.

6. D(�) is a rep =) D(�)� is also a rep

so if �(�)�s are complex numbers, another row will be their complex conjugate

7. If l� > 1; �
(�)
i = 0 for at least one class. This follows from the relationX

i

ni j�ij
2
= n and

X
i

ni = n

8. For physical symmetry group, x:y and z form a basis of a rep.

Example : D3 character table
E 2C3 3C

0

2

x2 + y2; z2 A1 1 1 1
Rz;z: A2 1 1 �1

(xz; yz) (x; y) E 2 �1 0
x2 � y2; xy (Rx:Ry)

In this table, the typical basis functions up to quadratic in coordinate system are listed.
Remark: the basis functions listed in the usual character table are not necessarily normalized. In particular,

the quadratic functions have to be handled carefully. The danger is that if we use the basis functions given in the
character table, we might not generate unitary matrices.
Using the transformation properties of the coordinate, we can also infer the transformation properties of any

vectors.
For example, the usual coordinates have the transformation property,

~r = (x; y; z) � A2 � E in D3

This means that electric �eld of ~E or magnetic �eld ~B will have same transformation property,

~B s ~E s A2 � E
because they all transform the same way under the rotation.
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5 Product Representation (Kronecker product)

Let xi be the basis for D(�) ; i.e. x0i =
`�P
j=1

xjD
(�)
ji (A)

y` be the basis for D(�) ; i.e. y0k =
`�P̀
=1

y`D
(�)
`k (A)

then the products xjyl transform as

x0iy
0
k =

X
j�`
D
(�)
ij (A)D

(�)
k` (A)xjy` �

X
j�`
D
(���)
j`;ik (A)xjy`

where
D
(���)
j`;ik (A) = D

(�)
ij (A)D

(�)
`k (A)

Note that in these matrices, row and column are labelled by 2 indices, instead of one. It is easy to show that
D(���) forms a rep of the group.h

D(���) (A)D(���) (B)
i
ij;k`

=
X
s:t

D(���) (A)ij;stD
(���) (B)st;k`

=
X
s:t

D
(�)
is (A) D

(�)
jt (A) D

(�)
sk (B) D

(�)
t` (B) = D

(�)
ik (AB)D

(�)
j` (AB) = D

(���) (AB)ik;k`

or
D(���) (A)D(���) (B) = D(���) (AB)

The basis functions for D(���) are xiyj
The character of this new rep can be calculated by making the row and colum indices the same and sum over,

�(���) (A) =
X
j�`
D
(���)
j`;j` (A) =

X
j�`
D
(�)
jj (A)D

(�)
`` (A) = �

(�) (A)�(�) (A)

�(���) (A) = �(�) (A)�(�) (A)

If � = �; we can further decompose the product rep by symmetrization or antisymmetrization;

D
f���g
ik;j` (A) =

1

2

h
D
(�)
ij (A)D

(�)
k` (A) +D

(�)
i` (A)D

(�)
kj (A)

i
basis

1p
2
(xiyk + xkyi)

D
[���]
ik;j` (A) =

1

2

h
D
(�)
ij (A)D

(�)
k` (A)�D

(�)
i` (A)D

(�)
kj (A)

i
basis

1p
2
(xiyk � xkyi)

These matrices also form rep of G and the characters are given by

�f���g (A) =
1

2

��
�(�) (A)

�2
+ �(�)

�
A2
��
; �[���] (A) =

1

2

��
�(�) (A)

�2
� �(�)

�
A2
��

Example D3

E: 2C3 3C
0

2

�1 1 1 1
Rz:z �2 1 1 �1

(xz; yz) (x; y) �3 2 �1 0�
x2 � y2; xy

�
�3 � �3 4 1 0 = �1 � �2 � �3
(�3 � �3)s 3 0 1 = �1 � �3
(�3 � �3)a 1 1 �1 = �2
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6 Direct Product Group

Given 2 groups G1 = fE;A2 � � �Ang ; G2 = fE;B2 � � �Bmg ; we can de�ne the product group as G1 
 G2 =
fAiBj ; i = 1 � � �n; j = 1 � � �mg with multiplication law

(AkB`)� (Ak0B`0) = (AkAk0) (B`B`0)

It turns out that irrep of G1 
G2 are just direct product of irreps of G; and G2: Let D(�) (Ai) be an irrep of G1and
D(�) (Bj) an irrep of G2then the matrices de�ned by

D(���) (AiBj)ab;cd � D
(�) (Ai)acD

(�) (Bj)bd

will have the property

h
D(���) (AiBj)D

(���) (AkB`)
i
ab;cd

=
X
e�f

h
D(���) (AiBj)

i
ab;ef

h
D(���) (AkB`)

i
ef ;cd

=
X
e�f

h
D(�) (Ai)acD

(�) (Ak)ec

i h
D(�) (Bj)bf D

(�) (Be)fd

i
= D(�) (AiAk)acD

(�) (BjB`)bd = D
(���) (AiAk:BjB`)ab;cd

This means that the matrice D(���) (AiBj) form a representation of the product group G1
G2: The characters can
be calculated,

�(���) (AiBj) =
X
ab

D(���) (AiBj)ab;ab =
X
a�b
D(�) (Ai)aaD

(�) (Bj)bb = �
(�) (Ai)�

(�) (Bj)

Then X
i�j

����(���) (AiBj)���2 =  X
i

����(�) (Ai)���2!
0@X

j

����(�) (Bj)���2
1A = nm =) D(���) is irrep.

Example, G1 = D3 = fE; 2C3; 3C 02g ; G2 = fE; �hg = ' where �h : re�ection on the plane of triangle.
Direct product group is thenD3h � D3 
 ' = E;A;B = fE; 2C3; 3C 02; �h; 2C3�h; 3C 02�hg

Character Table

' E �h
�+ 1 1
�� 1 �1

2C3 2C 02
D3 E AB KLM
�1 1 1 1
�2 1 1 �1
�3 2 �1 0

Character Table

E 2C3 2C 02 �h 2C3�h 2C 02�h
�+1 1 1 1 1 1 1
�+2 1 1 �1 1 1 �1
�+3 2 �1 0 2 �1 0
�+1 1 1 1 �1 �1 �1
�+2 1 1 �1 �1 �1 1
��13 2 �1 0 �2 1 0
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