Introduction to Group Theory Note 2 Theory of Representation

August 5, 2009

Contents

1 Group Representation 1
1.1 Definition of Representation 1
1.2 Reducible and Irreducible Representations 3
1.3 Unitary Representation 4
2 Schur's Lemma 4
3 Great Orthogonality Theorem 6
4 Character of Representation 7
4.1 Decomposition of Reducible Representation 8
4.2 Regular Representation 9
4.3 Character Table 11
5 Product Representation (Kronecker product) 12
6 Direct Product Group 13

1 Group Representation

In phyiscal application, the group representation plays a very important role in deducing the consequence of the symmetries of the system. Roughly speaking, representation of a group is just some way to realize the same group operation other than the original definition of the group. Of particular interest to most phyical application is the realization of group operation by the matrices whose multiplication operation can be naturally associated with group multiplication.

1.1 Definition of Representation

Given a group $G=\left\{A_{i}, i=1 \cdots n\right\}$. If for each $A_{i} \in G$, there is an $n \times n$ matrix $D\left(A_{i}\right)$ such that

$$
\begin{equation*}
D\left(A_{i}\right) D\left(A_{j}\right)=D\left(A_{i} A_{j}\right) \tag{1}
\end{equation*}
$$

then D 's forms a n-dimensional representation of the group G. In other words, the correspondence $A_{i} \rightarrow D\left(A_{i}\right)$ is a homomorphism. The condition in Eq(1) simply means that the matrices $D\left(A_{i}\right)$ satisfy the same multiplication law as the group elments. If this homomorphism turns out to be an isomorphism $(1-1)$ then the representation iscalled faithful. Note that a matrice $M_{i j}$ can be viewed as linear operators M acting on some vector space V with respect to some choice of basis e_{i},

$$
M e_{i}=\sum_{j} e_{j} M_{j i}
$$

One way to generate such matrices for the symmetry of certain geometric objects is to use the group induced transformations, discussed before. Recall that each group element A_{a} will induce a transformation of the coordinate vector \vec{r},

$$
\vec{r} \rightarrow A_{a} \vec{r}
$$

Then we can take any function of \vec{r}, say $\varphi(\vec{r})$ and for any group element A_{a} define a new transformation $P_{A_{a}}$ by

$$
P_{A_{a}} \varphi(\vec{r})=\varphi\left(A_{a}^{-1} \vec{r}\right)
$$

Among the transformed functions obtained this way, $P_{A_{1}} \varphi(\vec{r}), P_{A_{2}} \varphi(\vec{r}), \cdots P_{A n} \varphi(\vec{r})$, we select the linearly independent set $\varphi_{1}(\vec{r}), \varphi_{2}(\vec{r}) \cdots \varphi_{\ell}(\vec{r})$. Then it is clear that $P_{A} \varphi_{a}$ can be expressed as linear combination of φ_{i},

$$
P_{A_{i}} \varphi_{a}=\sum_{b=1}^{\ell} \varphi_{b} D_{b a}\left(A_{i}\right)
$$

and $D_{b a}\left(A_{i}\right)$ forms a representation of G. This can be seen as follows.

$$
P_{A_{i} A_{j}} \varphi_{a}=P_{A_{i}} P_{A_{j}} \varphi_{a}=P_{A_{i}} \sum_{b} \phi_{b} D_{b a}\left(A_{j}\right)=\sum_{b . c .} \phi_{c} D_{c b}\left(A_{i}\right) D_{b a}\left(A_{j}\right)
$$

On the other hand,

$$
P_{A_{i} A_{j}} \varphi_{a}=\sum_{c} \varphi_{c} D\left(A_{i} A_{j}\right)_{c a}
$$

This gives

$$
D\left(A_{i} A_{j}\right)_{c a}=D_{c b}\left(A_{i}\right) D_{b a}\left(A_{j}\right)
$$

which means that $D\left(A_{i}\right)^{\prime} s$ form representation of the group.
Example: Group D_{3}, symmetry of the triangle.
As we have discussed in the previous chapter, choosing a coordinate system on the plane, we can represent the group elements by the following matrices,

$$
\begin{array}{cll}
A=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & B=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & E=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
K=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), & L=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & M=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

Choose $\quad f(\vec{r})=f(x, y)=x^{2}-y^{2}$, we get

$$
P_{A} f(\vec{r})=f\left(A^{-1} \vec{r}\right)=\frac{1}{4}(x+\sqrt{3} y)^{2}-\frac{1}{4}(\sqrt{3 x}-y)^{2}=-\frac{1}{2}\left(x^{2}-y^{2}\right)+\sqrt{3} x y
$$

We now have a new function $g(x, y)=-2 x y$. We can operate on $g(r)$ to get,
$P_{A} g(\vec{r})=g\left(A^{-1} \vec{r}\right)=2\left(-\frac{1}{2}\right)(x+\sqrt{3} y) \frac{1}{2}(\sqrt{3 x}-y)=-\frac{1}{2}\left[(\sqrt{3})\left(x^{2}-y^{2}\right)-2 x y\right]=-\frac{\sqrt{3}}{2}\left(x^{2}-y^{2}\right)-\frac{1}{2}(2 x y)$
Thus we have

$$
P_{A}(f, g)=(f, g)\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

The matrix generated this way is the same as A as given above.
Similarly

$$
\begin{gathered}
P_{B} f(\vec{r})=f\left(B^{-1} \vec{r}\right)=\frac{1}{4}(x-\sqrt{3} y)^{2}-\frac{1}{4}(\sqrt{3} x+y)^{2}=-\frac{1}{2}\left(x^{2}-y^{2}\right)+\sqrt{3}(-x y) \\
P_{B} g(\vec{r})=g\left(B^{-1} \vec{r}\right)=-2\left(\frac{1}{2}\right)(x-\sqrt{3} y)\left(-\frac{1}{2}\right)(\sqrt{3} x+y)=-\sqrt[+]{\frac{1}{2}}\left[\sqrt[+]{3}\left(x^{2}-y^{2}\right)-2 x y\right]=-\frac{\sqrt{3}}{2}\left(x^{2}-y^{2}\right)-\frac{1}{2}(-2 x \\
P_{B}(f, g)=(f, g)\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

same as B as given before.
Remarks

1. If $D^{(1)}(A)$ and $D^{(2)}(A)$ are both representation of the group, then it is clear that

$$
D^{(3)}(A)=\left(\begin{array}{cc}
D^{(1)}(A) & 0 \\
0 & D^{(2)}(A)
\end{array}\right) \quad \text { (block diagonal form) }
$$

also forms a representation. We will denote it as a direct sum \oplus,

$$
D^{(3)}(A)=D^{(1)}(A) \oplus D^{(2)}(A) \quad \text { direct sum }
$$

2. If $D^{(1)}(A)$ and $D^{(2)}(A)$ are 2 representations of G with same dimension and there exists a square matrix U such that

$$
D^{(1)}\left(A_{i}\right)=U D^{(2)}\left(A_{i}\right) U^{-1} \quad \text { for all } A_{i} \in G
$$

then $D^{(1)}$ and $D^{(2)}$ are said to be equivalent representations. Recall that if we change the basis used to represent the linear operators, the corresponding matrices undergo similar transformation. Since they represent the same operators, we consider them the "same" representation but with respect to different choice of basis.

1.2 Reducible and Irreducible Representations

A representation D of a group G is called irreducible if it is defined on a vector space $V(D)$ which has no nontrivial invariant subspace. Otherwise, it is reducible. In essence this definition simply means that for a reducible representation, the linear opertors correponding to the group elements will leave some smaller vector space invariant. In other words, all the group actions can be realized in some subspace.

We need to convert these statment into more practical criterion. Suppose the representaion D is reducible on the vector space V. Then there exists a subspace S which is invariant under D. For any vector $v \in V$, we can decompos it as,

$$
v=s+s_{\perp}
$$

where $s \in S$ and s_{\perp} belongs to the complement S_{\perp} of S. If we write the vector v in the block form,

$$
v=\binom{s}{s_{\perp}}
$$

then the representation matrix can be written as

$$
A v=D(A) v=\left(\begin{array}{cc}
D_{1}(A) & D_{2}(A) \\
D_{3}(A) & D_{4}(A)
\end{array}\right)\binom{s}{s_{\perp}}
$$

For the space S to be invariant under group operators means that

$$
D_{3}\left(A_{i}\right)=0, \quad \forall A_{i} \in G
$$

i.e. the matrices $D\left(A_{i}\right)$ are all of the upper triangular form,

$$
D\left(A_{i}\right)=\left(\begin{array}{cc}
D_{1}\left(A_{i}\right) & D_{2}\left(A_{i}\right) \tag{2}\\
0 & D_{4}\left(A_{i}\right)
\end{array}\right), \quad \forall A_{i} \in G
$$

A representation is completely reducible if all the matrices in the representations $D\left(A_{i}\right)$ can be simultaneously brought into block diagonal form by the same similarity transformation U,

$$
U D\left(A_{i}\right) U^{-1}=\left(\begin{array}{cc}
D_{1}\left(A_{i}\right) & 0 \\
0 & D_{2}\left(A_{i}\right)
\end{array}\right), \quad \text { for all } A_{i} \in G
$$

i.e. $D_{2}\left(A_{i}\right)=0$ in the upper triangular matrices given in $\mathrm{Eq}(2)$. In other words, the space complement to S is also invariant under the group operation. This will be the case if the represnetation mstrices are unitary as stated in the theorem;

Theorem: Any unitary reducible representation is completely reducible.
Proof: For simplicity we assume that the vector space V is equipped with a scalar product (u, v). It is easy to see in this case we can choose the complement space $S \perp$ to be perpendicular to S, i.e.

$$
(u, v)=0, \quad \text { if } \quad u \in S, v \in S_{\perp}
$$

Recall that the scalar product is invariant under the unitary transformation,

$$
0=(u, v)=\left(D\left(A_{i}\right) u, D\left(A_{i}\right) v\right)
$$

Thus if $D\left(A_{i}\right) u \in S$, then $D\left(A_{i}\right) v \in S_{\perp}$ which implies that S_{\perp} is also invariant under the group operation.
In physical applications, we deal mostly with unitary representations and they are completely reducible.

1.3 Unitary Representation

Since unitary operators preserve the scalar product of a vector space, representation by unitary matrices will simplify the analysis of group theory. In the realm of finite groups, it turns out that we can always transform the representation into unitay one. This is the content of the following theorem.

Fundamental Theorem

Every irrep of a finite group is equivalent to a unitary irrep (rep by unitary matrices)
Proof:
$\overline{\text { Let } D}\left(A_{r}\right)$ be a representation of the group $G=\left\{E, A_{2} \cdots A_{n}\right\}$
Consider the sum

$$
H=\sum_{r=1}^{n} D\left(A_{r}\right) D^{\dagger}\left(A_{r}\right) \quad \text { then } H^{\dagger}=H
$$

Since H is positive semidefinite, we can define squre root h by

$$
h^{2}=H, \quad h^{\dagger}=h
$$

Define new set of matrices by

$$
\bar{D}\left(A_{r}\right)=h^{-1} D\left(A_{r}\right) h \quad r=1,2, \cdots, n
$$

Since this is a similarity transformation, $\bar{D}\left(A_{r}\right)$ also forms a rep which is equivalent to $D\left(A_{r}\right)$. We will now demonstrate that $\bar{D}\left(A_{r}\right)$ is unitary,

$$
\begin{aligned}
\bar{D}\left(A_{r}\right) \bar{D}^{\dagger}\left(A_{r}\right) & =\left[h^{-1} D\left(A_{r}\right) h\right]\left[h D^{\dagger}\left(A_{r}\right) h^{-1}\right]=h^{-1} D\left(A_{r}\right) \sum_{s=1}^{n}\left[D\left(A_{s}\right) D^{\dagger}\left(A_{s}\right)\right] D^{\dagger}\left(A_{r}\right) h^{-1} \\
& =h^{-1}\left[\sum_{s=1}^{n} D\left(A_{r} A_{s}\right) D^{\dagger}\left(A_{r} A_{s}\right)\right] h^{-1}=h^{-1} \sum_{s^{\prime}=1}^{n} D\left(A_{s^{\prime}}\right) D^{\dagger}\left(A_{s^{\prime}}\right) h=h^{-1} h^{2} h=1
\end{aligned}
$$

where we have used the rearrangement theorem.

2 Schur's Lemma

One of the most important theorems in the study of the irreducible reprentation is the following lemma.

Schur's Lemma

(i) Any matrix which commutes with all matrices of irrep is a multiple of identity matrix.

Proof: Assume $\exists M$ such that

$$
M D\left(A_{r}\right)=D\left(A_{r}\right) M \quad \forall A_{r} \in G
$$

then by taking the hermitian conjugate, we get

$$
D^{\dagger}\left(A_{r}\right) M^{\dagger}=M^{\dagger} D^{\dagger}\left(A_{r}\right)
$$

As shown above, we can take $D\left(A_{r}\right)$ to be unitary, so we can write

$$
M^{\dagger}=D\left(A_{r}\right) M^{\dagger} D^{\dagger}\left(A_{r}\right) \quad \text { or } \quad M^{\dagger} D\left(A_{r}\right)=D\left(A_{r}\right) M^{\dagger}
$$

This means that M^{\dagger} also commutes with all D 's and so are the combination $M+M^{\dagger}$ and $i\left(M-M^{\dagger}\right)$, which are hermitian. Thus, we only have to consider the case where M is hermitian. Start by diagonalizing M by unitary matrix U,

$$
M=U d U^{\dagger} \quad d: \text { diagonal }
$$

Define $\bar{D}\left(A_{r}\right)=U^{\dagger} D\left(A_{r}\right) U$, then we have

$$
d \bar{D}\left(A_{r}\right)=\bar{D}\left(A_{r}\right) d
$$

or in terms of matrix elements,

$$
\sum_{\beta} d_{\alpha \beta} \bar{D}_{\beta r}\left(A_{s}\right)=\sum_{\beta} \bar{D}_{\alpha \beta}\left(A_{s}\right) d_{\beta \gamma}
$$

Since the matrix d is diagonal, we get

$$
\left(d_{\alpha \alpha}-d_{\gamma \gamma}\right) \bar{D}_{\alpha \gamma}\left(A_{s}\right)=0 \Longrightarrow \quad \text { if } d_{\alpha \alpha} \neq d_{\gamma \gamma}, \text { then } \bar{D}_{\alpha \gamma}\left(A_{s}\right)=0
$$

This means if diagonal elements $d_{i i}$ are all different, then the off-diagonal elements of \bar{D} are all zero. In this case, $\bar{D}^{\prime} s$ are all diagonal and hence all reducible. The only possible non-zero off-diagonal elements of \bar{D} can arise when some of $d_{\alpha \alpha}^{\prime} s$ are equal. For example, if $d_{11}=d_{22}$, then \bar{D}_{12} can be non-zero. Thus \bar{D} will be in the block diagonal form, i.e.

This is true for every matrix in the representation. Thus all the matrices in the representation are in the block diagonal form. But D is irreducible which means that not all matrices can be brought into block diagonal form. Thus all d_{i} 's have to be equal

$$
d=c I . \quad \text { or } \quad M=U d U^{\dagger}=d U U^{\dagger}=d=c I
$$

(ii) If the only matrix that commutes with all the matrices of a representation is a multiple of identity, then the representation is irrep.
Proof: Suppose D is reducible, then we can transform them into

$$
D\left(A_{i}\right)=\left[\begin{array}{cc}
D^{(1)}\left(A_{i}\right) & \\
& D^{(2)}\left(A_{i}\right)
\end{array}\right] \quad \text { for all } A_{i} \in G
$$

construct $M=\left[\begin{array}{cc}I & 0 \\ 0 & 2 I\end{array}\right] \quad$ then clearly

$$
D\left(A_{i}\right) M=M D\left(A_{i}\right) \quad \text { for all } i
$$

But M is not a multiple of identity (contradiction). Therefore D must be irreducible.

Remarks

1. Any irrep of Abelian group is 1-dimensional. This is because for any element $A, D(A)$ commutes with all $D\left(A_{i}\right)$. Then Schur's lemma $\Longrightarrow D(A)=c I \quad \forall A \in G$. But D is irrep, so D has to be 1×1 matrix.
2. In any irrep, the identity element E is always represented by identity matrix. This follows Schur's lemma.
3. From $D(A) D\left(A^{-1}\right)=D(E)=I$., we see that $D\left(A^{-1}\right)=[D(A)]^{-1}$ and for unitary representation $D\left(A^{-1}\right)=D^{+}(A)$ 。
(iii) If $D^{(1)}$ and $D^{(2)}$ are irreps of dimension l_{1}, and dimension l_{2} and

$$
\begin{equation*}
M D^{(1)}\left(A_{i}\right)=D^{(2)}\left(A_{i}\right) M \quad \text {.for all } A_{i} \in G \tag{3}
\end{equation*}
$$

then $\quad(a)$ if $l_{1} \neq l_{2} \quad M=0$
(b) if $l_{1}=l_{2}$, then either $M=0$ or $\operatorname{det} M \neq 0$ and reps are equivalent.

Proof: : Without loss of generality we can take $l_{1} \leq l_{2}$. Note that since $\mathrm{Eq}(3)$ is true for all elements we can replace A_{i} by A_{i}^{-1},

$$
M D^{(1)}\left(A_{i}^{-1}\right)=D^{(2)}\left(A_{i}^{-1}\right) M
$$

which can be written as

$$
M D^{(1)}\left(A_{i}\right)^{\dagger}=D^{(2)}\left(A_{i}\right)^{\dagger} M
$$

Hermitian conjugate of $\mathrm{Eq}(3)$ gives

$$
D^{(1)^{\dagger}} M^{\dagger}=M^{\dagger} D^{(2) \dagger}, \quad M M^{\dagger} D^{(2)}\left(A_{i}\right)^{\dagger}=M D^{(1)}\left(A_{i}\right)^{\dagger} M^{\dagger}=D^{(2)}\left(A_{i}\right)^{\dagger} M M^{\dagger}
$$

or

$$
\left(M M^{\dagger}\right) D^{(2)}\left(A_{i}\right)=D^{(2)}\left(A_{i}\right)\left(M M^{\dagger}\right) \quad \forall\left(A_{i}\right) \in G
$$

Then from Schur's lemma (i) we get $M M^{\dagger}=c I$, where I is a l_{2}-dimensional identity matrix.
First consider the case $l_{1}=l_{2}$, where we get $|\operatorname{det} M|^{2}=c^{\ell_{1}}$. Then either $\operatorname{det} M \neq 0$, which implies M is non-singular and from $\operatorname{Eq}(3)$

$$
D^{(1)}\left(A_{i}\right)=M^{-1} D^{(2)}\left(A_{i}\right) M \quad \forall\left(A_{i}\right) \in G
$$

This means $D^{(1)}\left(A_{i}\right)$ and $D^{(2)}\left(A_{i}\right)$ are equivalent. Otherwise if the determinant is zero,

$$
\operatorname{det} M=0 \quad \Longrightarrow c=0 \quad \text { or } M M^{\dagger}=0 \quad \Longrightarrow \quad \sum_{\gamma} M_{\alpha \gamma} M_{\beta \gamma}^{*}=0 \quad \forall \alpha . \beta .
$$

In particular, for $\alpha=\beta \quad \sum_{\gamma}\left|M_{\alpha \gamma}\right|^{2}=0 \quad M_{\alpha \gamma}=0$ for all $\alpha \cdot \gamma \Longrightarrow M=0$.
Next, if $l_{1}<l_{2}$, then M is a retangular $l_{2} \times l_{1}$, matrix

$$
M=\underbrace{\left(\begin{array}{ll}
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right)}_{l_{1}} l_{2}
$$

we can define define a square matrix by adding colums of zeros

$$
N=\overbrace{[M, 0]}^{l_{2}}\} l_{2} \quad l_{2} \times l_{2} \text { square matrix }
$$

then

$$
N^{\dagger}=\binom{M^{\dagger}}{0} \quad \text { and } \quad N N^{\dagger}=(M, 0)\binom{M^{\dagger}}{0}=M M^{\dagger}=c I
$$

where I is the $l_{2} \times l_{2}$ identity matrix. But from construction we see that $\operatorname{det} N=0$, Hence $c=0, \Longrightarrow N N^{\dagger}=$ 0 or $M=0$ identically.

3 Great Orthogonality Theorem

The most useful theorem for the representation of the finite group is the following one.
Theorem(Great orthogonality theorem): Suppose G is a group with n elements, $\left\{A_{i}, i=1,2, \cdots n\right\}$, and $D^{(\alpha)}\left(A_{i}\right)$, $\alpha=1,2 \cdots$ are all the inequivalent irreps of G with dimension l_{α}.

Then

$$
\sum_{\alpha=1}^{n} D_{i j}^{(\gamma)}\left(A_{\alpha}\right) D_{k \ell}^{(\beta) *}\left(A_{\alpha}\right)=\frac{n}{l_{\gamma}} \delta_{\gamma \beta} \delta_{i k} \delta_{j \ell}
$$

Proof: Define

$$
M=\sum_{a} D^{(\alpha)}\left(A_{a}\right) X D^{(\beta)}\left(A_{a}^{-1}\right)
$$

where X is an arbitrary $l_{\alpha} \times l_{\beta}$ matrix. Then multiplying M by representation matrices, we get

$$
\begin{aligned}
D^{(\alpha)}\left(A_{b}\right) M & =D^{(\alpha)}\left(A_{b}\right) \sum_{a} D^{(\alpha)}\left(A_{a}\right) X D^{(\beta)}\left(A_{a}^{-1}\right)\left[D^{(\beta)}\left(A_{b}^{-1}\right) D^{(\beta)}\left(A_{b}\right)\right] \\
& =\sum_{a} D^{(\alpha)}\left(A_{b} A_{a}\right) X D^{(\beta)}\left(\left(A_{b} A_{a}\right)^{-1}\right) D^{(\beta)}\left(A_{b}\right)=M D^{(\beta)}\left(A_{b}\right)
\end{aligned}
$$

(i) If $\alpha \neq \beta$, then $M=0$ from Schur's lemma, we get

$$
M=\sum_{a} D_{i r}^{(\alpha)}\left(A_{a}\right) X_{r s} D_{s k}^{(\beta)}\left(A_{a}^{-1}\right)=\sum_{a} D_{i r}^{(\alpha)}\left(A_{a}\right) X_{r s} D_{k s}^{(\beta) *}\left(A_{a}\right)=0
$$

Choose $X_{r s}=\delta_{r j} \delta_{s l}$ (i.e. X is zero except the $j l$ element). Then we have

$$
\sum_{a} D_{i j}^{(\alpha)}\left(A_{\alpha}\right) D_{k l}^{(\beta) *}\left(A_{\alpha}\right)=0
$$

This shows that for different irreducible representations, the matrix elements, after summing over group elements, are orthogonal to each other.
(ii) $\alpha=\beta$ then we can write $M=\sum_{a} D^{(\alpha)}\left(A_{a}\right) X D^{(\alpha)}\left(A_{a}^{-1}\right)$.This implies

$$
D^{(\alpha)}\left(A_{a}\right) M=M D^{(\alpha)}\left(A_{b}\right) \quad \Longrightarrow \quad M=c I
$$

which gives,

$$
\sum_{a} T_{r}\left[D^{(\alpha)}\left(A_{a}\right) X D^{(\alpha)}\left(A_{a}^{-1}\right)\right]=c l_{2} \quad \text { or } n T_{r} X=c l_{2}, \quad \text { or } c=\frac{\left(T_{r} X\right) n}{l_{\alpha}}
$$

Take $\quad X_{r s}=\delta_{r j} \delta_{s \ell}$ then $T_{r} X=\delta_{j \ell}$ and

$$
\sum_{a} D^{(\alpha)}\left(A_{a}\right)_{i j} D^{(\alpha)}\left(A_{a}\right)_{k \ell}^{*}=\frac{n}{l_{\alpha}} \delta_{i k} \delta_{j \ell}
$$

This gives the orthogonality for different matrix elements within a given irreducible representation.

Geometric Interpretation

Imagine a complex n-dimensional vector space in which axes (or componenets) are labeled by group elements $E, A_{2} . A_{3 \ldots} . A_{n}$ (Group element space). Consider the vector in this space with componets made out of the matrix element of irreducible representation matrix $D^{(\alpha)}\left(A_{a}\right)_{i j}$. Each vector in this n-dimensionl space is labeled by 3 indices, $i, \mu . \nu$

$$
\begin{equation*}
\vec{D}_{\mu \nu}^{(i)}=\left(D_{\mu \nu}^{(i)}(E), D_{\mu \nu}^{(i)}\left(A_{2}\right), \cdots D_{\mu \nu}^{(i)}\left(A_{n}\right)\right) \tag{4}
\end{equation*}
$$

Great orthogonality theorem says that all these vectors are \perp to each other. As a result

$$
\sum_{i} l_{i}^{2} \leq n
$$

because there can be no more than n mutually \perp vectors in n-dimensiona vector space.
As an example, we take the 2-dimensional representation we have work out before,

$$
\begin{array}{cll}
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & A=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & B=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \\
K=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), & L=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & M=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

Label the axises by the groupl elements in the order (E, A, B, K, L, M). Then we can construct four 6 -dimensional ectors from these 2×2 matrices,

$$
\left.\begin{array}{lllllll}
D_{11}^{(2)} & =(1 & ,-\frac{1}{2} & ,-\frac{1}{2} & ,-1 & , \frac{1}{2} & \left., \frac{1}{2}\right) \\
D_{12}^{(2)} & =(0 & , \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} & , 0 & ,-\frac{\sqrt{3}}{2} & , \frac{\sqrt{3}}{2}
\end{array}\right)
$$

It is straightforward to check that these 4 vectors are perpendicular to each other.
Note that the other two vectors which are orthogonal to these vectors are of the form,

$$
\left.\begin{array}{l}
D_{E}=(1
\end{array}, 1 \quad, 1 \quad, 1 \quad, 1 \quad, 1\right)
$$

coming from the identity representation and other 1-dimensional representation.

4 Character of Representation

The matrices in irrep are not unique, becuase we can generate another equivalent irrep by similairty transformation. However, the trace of a matrix is invariant under such transformation,

$$
\operatorname{Tr}\left(S A S^{-1}\right)=\operatorname{Tr} A
$$

We can use the trace, or character, to characterize the irrep.

$$
\chi^{(\alpha)}\left(A_{i}\right) \equiv T_{r}\left[D^{(\alpha)}\left(A_{i}\right)\right]=\sum_{a} D_{a a}^{(\alpha)}\left(A_{i}\right)
$$

$\underline{\text { Useful Properties }}$

1. If $D^{(\alpha)}$ and $D^{(\beta)}$ are equivalent, then

$$
\chi^{(\alpha)}\left(A_{i}\right)=\chi^{(\beta)}\left(A_{i}\right) \quad \forall A_{i} \in G
$$

2. If A and B are in the same class,

$$
\chi^{(\alpha)}(A)=\chi^{(\alpha)}(B)
$$

Proof: If A and B are in same class $\Longrightarrow \exists x \in G$ such that $x A x^{-1}=B \Longrightarrow D^{(\alpha)}(x) D^{(\alpha)}(A) D^{(\alpha)}\left(x^{-1}\right)=$ $D^{(\alpha)}(B)$
Using

$$
D^{(\alpha)}\left(x^{-1}\right)=D^{(\alpha)}(x)^{-1}
$$

we get

$$
T_{r}\left[D^{(\alpha)}(x) D^{(\alpha)}(A) D^{(\alpha)}(x)^{-1}\right]=T_{r}\left[D^{(\alpha)}(B)\right] \quad \text { or } \chi^{(\alpha)}(A)=\chi^{(\alpha)}(B)
$$

Hence $\chi^{(\alpha)}$ is a function of class, not of each element.
3. Denote $\chi_{i}=\chi\left(\mathcal{C}_{i}\right)$, the character of i th class. Let n_{c} be the number of classes in G, and n_{i} the number of group elements in \mathcal{C}_{i}.

From great orthogonality theorem

$$
\sum_{r} D_{i j}^{(\alpha)}\left(A_{r}\right) D_{k \ell}^{(\beta) *}\left(A_{r}\right)=\frac{n}{l_{\alpha}} \delta_{\alpha \beta} \delta_{i k} \delta_{j l}
$$

we get

$$
\sum_{r} \chi^{(\alpha)}\left(A_{r}\right) \chi^{(\beta) *}\left(A_{r}\right)=\frac{n}{l_{\alpha}} \cdot \delta_{\alpha \beta} l_{\alpha}=n \delta_{\alpha \beta}
$$

or $\quad \sum_{i} n_{i} \chi_{i}^{(\alpha)} \chi_{i}^{(\beta) *}=n \delta_{\alpha \beta}$
This is the great orthogonality theorem for the characters.
Define $\quad U_{\alpha i}=\sqrt{\frac{n_{i}}{n}} \chi^{(\alpha)}\left(\mathcal{C}_{i}\right)$, then great orthogonality theorem implies,

$$
\sum_{i=1}^{n_{c}} U_{\alpha i} U_{\beta i}^{*}=\delta_{\alpha \beta}
$$

Thus, if we consider $U_{\alpha i}$ as components in n_{c} dimensional vector space, $\vec{U}_{\alpha}=\left(U_{\alpha 1} U_{\alpha 2} \cdots U_{\alpha n_{c}}\right)$, then $\vec{U}_{\alpha} \alpha=$ $1,2,3 \cdots n_{r}$ ($n_{r}: \#$ of indep irreps)form an othornormal set of vectors, i.e.

$$
U_{\beta} U_{\alpha}=\sum_{i=1}^{n_{c}} U_{\alpha i} U_{\beta i}^{*}=\delta_{\alpha \beta}
$$

This implies that

$$
n_{r} \leq n_{c}
$$

i. e. number of irreps is smaller than the number of classes. This greatly restricts the number of possible irreps.

4.1 Decomposition of Reducible Representation

For a reducible representation, we can write

$$
D=D^{(1)} \oplus D^{(2)} \quad \text { i.e. } D\left(A_{i}\right)=\left(\begin{array}{ll}
D^{(1)}\left(A_{i}\right) & \\
& D^{(2)}\left(A_{i}\right)
\end{array}\right) \quad \forall A_{i} \in G
$$

Then we have for the trace

$$
\chi\left(A_{i}\right)=\chi^{(1)}\left(A_{i}\right)+\chi^{(2)}\left(A_{i}\right)
$$

Denote by $D^{(\alpha)}, \alpha=1,2 \cdots n_{r}$, all the inequivalent unitary irrep. Then any rep D can be decomposed as

$$
D=\sum_{\alpha} c_{\alpha} D^{(\alpha)} \quad c_{\alpha}: \text { some integer },\left(\# \text { of time } D^{(\alpha)} \text { appears }\right)
$$

In terms of traces, we get

$$
\chi\left(\mathcal{C}_{i}\right)=\sum_{\alpha} c_{\alpha} \chi^{(\alpha)}\left(\mathcal{C}_{i}\right)
$$

where we indicate that the trace is a function of class \mathcal{C}_{i}. The coefficient can be calculated as follows (by using orthogonity theorem). Multiply by $n_{i} \chi_{i}^{(\beta) *}$ and sum over i

$$
\sum_{i} \chi_{i} \chi_{i}^{(\beta) *} n_{i}=\sum_{i} \sum_{\alpha} c_{\alpha} \chi_{i}^{(\alpha)} \chi_{i}^{(\beta) *} n_{i}=\sum_{\alpha} c_{\alpha} \cdot n \delta_{\alpha \beta}=n c_{\beta}
$$

or

$$
\mathrm{c}_{\beta}=\frac{1}{n} \sum_{i} \chi_{i} \chi_{i}^{(\beta) *} \mathrm{n}_{i}
$$

From this we also get,

$$
\sum_{i} n_{i} \chi_{i} \chi_{i}^{*}=\sum_{i} n_{i} \sum_{\alpha, \beta} c_{\alpha} \chi_{i}^{(\alpha)} c_{\beta} \chi_{i}^{(\beta) *}=n \sum_{\alpha}\left|c_{\alpha}\right|^{2}
$$

This leads to the following theorem:
Theorem: If the rep D with character χ_{i} satifies the relation,

$$
\sum_{i} n_{i} \chi_{i} \chi_{i}^{*}=n
$$

then the representation D is irreducible.

4.2 Regular Representation

Given a group $G=\left\{A_{1}=E, A_{2} \ldots A_{n}\right\}$. We can construct the regular rep as follows:
Take any $A \in G$. If

$$
A A_{2}=A_{3}=0 A_{1}+0 A_{2}+1 \cdot A_{3}+0 A_{4}+\cdots
$$

i.e. we write the product "formally" as linear combination of group elements,

$$
\begin{align*}
A A_{s}=\sum_{r=1}^{n} C_{r s} A_{r}=\sum_{r=1}^{n} A_{r} D_{r s} & (A), \tag{5}\\
& \quad \text { i.e. } C_{r s}=D_{r s}(A) \text { is either } 0 \text { or1. } \\
\text { i.e. } \quad D_{r s}(A) & =1 \quad \text { if } A A_{s}=A_{r} \quad \text { or } A=A_{r} A_{s}^{-1} \\
& =0
\end{aligned} \begin{aligned}
& \text { otherwise }
\end{align*}
$$

Note strictly speaking, the sum over group elments is undefined. But here only one group element shows up in the right-hand side in $\operatorname{Eq}(5)$, we do not need to define the sum of group elements. Then $D(A)$'s form a rep of G : regular representation with dimensional n. This can be seen as follows:

$$
\sum_{r} A_{r} D_{r s}(A B)=A B A_{s}=A \sum_{t} A_{t} D_{t s}(B)=\sum_{t \cdot r} D_{t s}(B) A_{r} D_{r t}(A)
$$

or

$$
D_{r s}(A B)=D_{r t}(A) D_{t s}(B)
$$

From the definition of the regular representation

$$
D_{r s}(A)=1 \quad \text { iff } \quad A A_{s}=A_{r}
$$

we see that the diagonal elements are of the form,

$$
D_{r r}(A)=1 \quad \text { iff } \quad A A_{r}=A_{r} \quad \text { or } \quad A=E
$$

Therefore every character is zero except for identity class,

$$
\begin{array}{lll}
\chi^{(r e g)}\left(\mathcal{C}_{i}\right) & =0 & i \neq 1 \\
\chi^{(r e g)}\left(\mathcal{C}_{i}\right) & =n & i=1 \tag{6}
\end{array}
$$

From this we can work out how $D^{(r e g)}$ reduces to irreps. Write

$$
D^{(r e g)}=\sum_{\alpha} c_{\alpha} D^{(\alpha)}
$$

then

$$
c_{\alpha}=\frac{1}{n} \sum_{i} \chi_{i}^{(r e g)} \chi_{i}^{(\alpha) *} n_{i}=\frac{1}{n} \chi_{1}^{(r e g)} \chi_{1}^{(\alpha) *}=\frac{1}{n} \cdot n l_{\alpha}=l_{\alpha}
$$

This means that $D_{\text {reg }}$ contains the irreps as many times as its dimension,

$$
\chi_{i}^{(r e g)}=\sum_{\alpha}^{n_{r}} l_{\alpha} \chi_{i}^{(\alpha)} \quad \text { or } \quad \chi_{i}^{(r e g)}=\sum_{\alpha=1}^{n_{r}} \chi_{i}^{(\alpha) *} \chi_{i}^{(\alpha)}=n \delta_{i 1}
$$

For the identity class $\chi_{1}^{\text {reg }}=n, \quad \chi_{1}^{(\alpha)}=l_{\alpha}$, then we get

$$
\begin{equation*}
\sum_{\alpha} l_{\alpha}^{2}=n \tag{7}
\end{equation*}
$$

This severely constraints the possible dimensionalities of irreps becuase both n and l_{α} have to be integers. For D_{3}, with $n=6$, the only possible solution for $\sum_{\alpha} l_{\alpha}^{2}=6$ is $l_{1}=1 . l_{2}=1 . l_{3}=2$, and their permutations.

The relation in $\mathrm{Eq}(7)$ implies that the vector space formed by vectors defined in $\mathrm{Eq}(4)$ has dimension n, the number of elements in the group. Since those vectors in $\mathrm{Eq}(4)$ are orthogonal to each other, hence linearly independent, and there are n such vectors, they must satisfy the completeness relation,

$$
\begin{equation*}
\sum_{\alpha, \mu, \nu} \frac{l_{\alpha}}{n} D_{\mu \nu}^{(\alpha)}\left(A_{k}\right)^{*} D_{\mu \nu}^{(\alpha)}\left(A_{l}\right)=\delta_{k l} \quad \quad \text { completeness relation } \tag{8}
\end{equation*}
$$

The factor $\frac{l_{\alpha}}{n}$ comes from the normalization of the vectors in $\operatorname{Eq}(4)$.
We now want to show that

$$
n_{c}=n_{r}
$$

i.e. $\#$ of classes $=\#$ of irreps.

Define $D_{i}^{(\alpha)}$ by adding up all matrices corresponding to elements in the same class \mathcal{C}_{i},

$$
D_{i}^{(\alpha)}=\sum_{A \in \mathcal{C}_{i}} D^{(\alpha)}(A)
$$

Then,

$$
\begin{aligned}
D^{(\alpha)}\left(A_{j}\right) D_{i}^{(\alpha)} D^{(\alpha)}\left(A_{j}^{-1}\right) & =\sum_{A} D^{(\alpha)}\left(A_{j}\right) D^{(\alpha)}(A) D^{(\alpha)}\left(A_{j}^{-1}\right) \\
& =\sum_{A} D^{(\alpha)}\left(A_{j} A A_{j}^{-1}\right)=D_{i}^{(\alpha)}
\end{aligned}
$$

Using

$$
D^{(\alpha)}\left(A_{j}^{-1}\right)=D^{(\alpha)}\left(A_{j}\right)^{-1}
$$

we get

$$
D^{(\alpha)}\left(A_{j}\right) D_{i}^{(\alpha)}=D_{i}^{(\alpha)} D^{(\alpha)}\left(A_{j}\right)
$$

i.e. $D_{i}^{(\alpha)}$ commutes with all matrice in the irrep. From Schur's lemma, we get

$$
D_{i}^{(\alpha)}=\lambda_{i}^{(\alpha)} 1 \quad \text { where } \quad \lambda_{i}^{(\alpha)} \text { is some number }
$$

Taking the trace, we get

$$
\begin{equation*}
n_{i} \chi_{i}^{(\alpha)}=\lambda_{i}^{(\alpha)} l_{i} \quad \text { or } \quad \lambda_{i}^{(\alpha)}=\frac{n_{i} \chi_{i}^{(\alpha)}}{l_{i}}=\frac{n_{i} \chi_{i}^{(\alpha)}}{\chi_{1}^{(\alpha)}} \tag{9}
\end{equation*}
$$

where $\chi_{1}^{(\alpha)}$ is the character of identity class. In the completeness relation in $\operatorname{Eq}(8)$, we can sum A_{k} over group elements in class \mathcal{C}_{r} and A_{l} over class \mathcal{C}_{s} to get

$$
\sum_{\alpha, \mu, \nu} \frac{l_{i}}{n}\left[D_{r}^{(\alpha) *}\right]_{\mu \nu}\left[D_{s}^{(\alpha)}\right]_{\mu \nu}=n_{r} \delta_{r s}
$$

Using value of $\lambda_{i}^{(\alpha)}$ in $\operatorname{Eq}(9)$ we have

$$
\sum_{\alpha=1}^{n_{r}} \chi_{r}^{(\alpha)} \chi_{s}^{(\alpha) *}=\frac{n}{n_{r}} \delta_{r s} \quad \quad \text { completeness }
$$

This the completeness relation for the characters. If we now consider $\chi_{i}^{(\alpha)}$ as a vector in n_{r} dim space $\vec{\chi}_{i}=$ $\left(\chi_{i}^{(1)}, \chi_{i}^{(2)}, \ldots \chi_{i}^{\left(n_{r}\right)}\right)$ we get

$$
n_{c} \leq n_{r}
$$

Combine this with the result $n_{r} \leq n_{c}$, we have derived before, we get

$$
n_{r}=n_{c}
$$

4.3 Character Table

For a finite group, the essential information about the irreducible representations can be summarized in a table which lists the characters of each irreducible representation in terms of the classes. This table has many useful applications. To construct such table we can use the following useful information:

1. $\#$ of columns $=\#$ of rows $=\#$ of classes
2. $\sum_{\alpha} l_{\alpha}^{2}=n$
3. $\sum_{i} n_{i} \chi_{i}^{(\alpha)} \chi_{i}^{(\beta) *}=n \delta_{\alpha \beta} \quad$ and $\quad \sum_{\alpha} \chi_{i}^{(\alpha)} \chi_{j}^{(\alpha) *}=\frac{n}{n_{i}} \delta_{i j}$
4. If $l_{\alpha}=1, \chi_{i}$ is itself a rep.
5. $\chi^{(\alpha)}\left(A^{-1}\right)=T_{r}\left(D^{(\alpha)}\left(A^{-1}\right)\right)=T_{r}\left(D^{(\alpha)^{+}}\left(A^{-1}\right)\right)=\chi^{(\alpha) *}(A)$

If A and A^{-1} are in the same class then $\chi(A)$ is real.
6. $D^{(\alpha)}$ is a rep $\Longrightarrow D^{(\alpha) *}$ is also a rep
so if $\chi^{(\alpha)}$'s are complex numbers, another row will be their complex conjugate
7. If $l_{\alpha}>1, \chi_{i}^{(\alpha)}=0$ for at least one class. This follows from the relation

$$
\sum_{i} n_{i}\left|\chi_{i}\right|^{2}=n \text { and } \sum_{i} n_{i}=n
$$

8. For physical symmetry group, $x . y$ and z form a basis of a rep.

Example : D_{3} character table

$$
\begin{array}{cc|c|ccc}
& & & E & 2 C_{3} & 3 C_{2}^{\prime} \\
\cline { 2 - 6 } x^{2}+y^{2}, z^{2} & & A_{1} & 1 & 1 & 1 \\
(x z, y z) & R_{z}, z . & A_{2} & 1 & 1 & -1 \\
x^{2}-y^{2}, x y & (x, y) & E & 2 & -1 & 0 \\
\left(R_{x}, R_{y}\right) & & & &
\end{array}
$$

In this table, the typical basis functions up to quadratic in coordinate system are listed.
Remark: the basis functions listed in the usual character table are not necessarily normalized. In particular, the quadratic functions have to be handled carefully. The danger is that if we use the basis functions given in the character table, we might not generate unitary matrices.

Using the transformation properties of the coordinate, we can also infer the transformation properties of any vectors.

For example, the usual coordinates have the transformation property,

$$
\vec{r}=(x, y, z) \sim A_{2} \oplus E \quad \text { in } \quad D_{3}
$$

This means that electric field of \vec{E} or magnetic field \vec{B} will have same transformation property,

$$
\vec{B} \sim \vec{E} \sim A_{2} \oplus E
$$

because they all transform the same way under the rotation.

5 Product Representation (Kronecker product)

Let x_{i} be the basis for $D^{(\alpha)}$, i.e. $\quad x_{i}^{\prime}=\sum_{j=1}^{\ell_{\alpha}} x_{j} D_{j i}^{(\alpha)}(A)$

$$
y_{\ell} \text { be the basis for } D^{(\beta)} \text {, i.e. } \quad y_{k}^{\prime}=\sum_{\ell=1}^{\ell_{\beta}} y_{\ell} D_{\ell k}^{(\beta)}(A)
$$

then the products $x_{j} y_{l}$ transform as

$$
x_{i}^{\prime} y_{k}^{\prime}=\sum_{j \cdot \ell} D_{i j}^{(\alpha)}(A) D_{k \ell}^{(\beta)}(A) x_{j} y_{\ell} \equiv \sum_{j \cdot \ell} D_{j \ell ; i k}^{(\alpha \times \beta)}(A) x_{j} y_{\ell}
$$

where

$$
D_{j \ell ; i k}^{(\alpha \times \beta)}(A)=D_{i j}^{(\alpha)}(A) D_{\ell k}^{(\beta)}(A)
$$

Note that in these matrices, row and column are labelled by 2 indices, instead of one. It is easy to show that $D^{(\alpha \times \beta)}$ forms a rep of the group.

$$
\begin{gathered}
{\left[D^{(\alpha \times \beta)}(A) D^{(\alpha \times \beta)}(B)\right]_{i j ; k \ell}=\sum_{s . t} D^{(\alpha \times \beta)}(A)_{i j, s t} D^{(\alpha \times \beta)}(B)_{s t ; k \ell}} \\
=\sum_{s . t} D_{i s}^{(\alpha)}(A) D_{j t}^{(\beta)}(A) D_{s k}^{(\alpha)}(B) D_{t \ell}^{(\beta)}(B)=D_{i k}^{(\alpha)}(A B) D_{j \ell}^{(\beta)}(A B)=D^{(\alpha \times \beta)}(A B)_{i k ; k \ell}
\end{gathered}
$$

or

$$
D^{(\alpha \times \beta)}(A) D^{(\alpha \times \beta)}(B)=D^{(\alpha \times \beta)}(A B)
$$

The basis functions for $D^{(\alpha \times \beta)}$ are $x_{i} y_{j}$
The character of this new rep can be calculated by making the row and colum indices the same and sum over,

$$
\begin{gathered}
\chi^{(\alpha \times \beta)}(A)=\sum_{j \cdot \ell} D_{j \ell ; j \ell}^{(\alpha \times \beta)}(A)=\sum_{j \cdot \ell} D_{j j}^{(\alpha)}(A) D_{\ell \ell}^{(\beta)}(A)=\chi^{(\alpha)}(A) \chi^{(\beta)}(A) \\
\chi^{(\alpha \times \beta)}(A)=\chi^{(\alpha)}(A) \chi^{(\beta)}(A)
\end{gathered}
$$

If $\alpha=\beta$, we can further decompose the product rep by symmetrization or antisymmetrization;

$$
\begin{array}{ll}
D_{i k, j \ell}^{\{\alpha \times \alpha\}}(A)=\frac{1}{2}\left[D_{i j}^{(\alpha)}(A) D_{k \ell}^{(\alpha)}(A)+D_{i \ell}^{(\alpha)}(A) D_{k j}^{(\alpha)}(A)\right] & \text { basis } \frac{1}{\sqrt{2}}\left(x_{i} y_{k}+x_{k} y_{i}\right) \\
D_{i k, j \ell}^{[\alpha \times \alpha]}(A)=\frac{1}{2}\left[D_{i j}^{(\alpha)}(A) D_{k \ell}^{(\alpha)}(A)-D_{i \ell}^{(\alpha)}(A) D_{k j}^{(\alpha)}(A)\right] & \text { basis } \frac{1}{\sqrt{2}}\left(x_{i} y_{k}-x_{k} y_{i}\right)
\end{array}
$$

These matrices also form rep of G and the characters are given by

$$
\chi^{\{\alpha \times \alpha\}}(A)=\frac{1}{2}\left[\left(\chi^{(\alpha)}(A)\right)^{2}+\chi^{(\alpha)}\left(A^{2}\right)\right], \quad \chi^{[\alpha \times \alpha]}(A)=\frac{1}{2}\left[\left(\chi^{(\alpha)}(A)\right)^{2}-\chi^{(\alpha)}\left(A^{2}\right)\right]
$$

Example $\quad D_{3}$

$$
\begin{array}{ccc|cccll}
& & & E . & 2 \mathcal{C}_{3} & 3 C_{2}^{\prime} & \\
\cline { 3 - 6 } & & \Gamma_{1} & 1 & 1 & 1 & & \\
(x z, y z) & R_{z .} z & \Gamma_{2} & 1 & 1 & -1 & & \\
\left(x^{2}-y^{2}, x y\right) & (x, y) & \Gamma_{3} & 2 & -1 & 0 & & \\
& & \Gamma_{3} \times \Gamma_{3} & 4 & 1 & 0 & = & \Gamma_{1} \oplus \Gamma_{2} \oplus \Gamma_{3} \\
& \left(\Gamma_{3} \times \Gamma_{3}\right)_{s} & 3 & 0 & 1 & = & \Gamma_{1} \oplus \Gamma_{3} \\
& & \left(\Gamma_{3} \times \Gamma_{3}\right)_{a} & 1 & 1 & -1 & = & \Gamma_{2}
\end{array}
$$

6 Direct Product Group

Given 2 groups $G_{1}=\left\{E, A_{2} \cdots A_{n}\right\}, \quad G_{2}=\left\{E, B_{2} \cdots B_{m}\right\}$, we can define the product group as $G_{1} \otimes G_{2}=$ $\left\{A_{i} B_{j} ; i=1 \cdots n, j=1 \cdots m\right\}$ with multiplication law

$$
\left(A_{k} B_{\ell}\right) \times\left(A_{k^{\prime}} B_{\ell^{\prime}}\right)=\left(A_{k} A_{k^{\prime}}\right)\left(B_{\ell} B_{\ell^{\prime}}\right)
$$

It turns out that irrep of $G_{1} \otimes G_{2}$ are just direct product of irreps of G, and G_{2}. Let $D^{(\alpha)}\left(A_{i}\right)$ be an irrep of G_{1} and $D^{(\beta)}\left(B_{j}\right)$ an irrep of G_{2} then the matrices defined by

$$
D^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)_{a b ; c d} \equiv D^{(\alpha)}\left(A_{i}\right)_{a c} D^{(\beta)}\left(B_{j}\right)_{b d}
$$

will have the property

$$
\begin{aligned}
{\left[D^{(\alpha \times \beta)}\left(A_{i} B_{j}\right) D^{(\alpha \times \beta)}\left(A_{k} B_{\ell}\right)\right]_{a b ; c d} } & =\sum_{e \cdot f}\left[D^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)\right]_{a b ; e f}\left[D^{(\alpha \times \beta)}\left(A_{k} B_{\ell}\right)\right]_{e f ; c d} \\
& =\sum_{e \cdot f}\left[D^{(\alpha)}\left(A_{i}\right)_{a c} D^{(\alpha)}\left(A_{k}\right)_{e c}\right]\left[D^{(\beta)}\left(B_{j}\right)_{b f} D^{(\beta)}\left(B_{e}\right)_{f d}\right] \\
& =D^{(\alpha)}\left(A_{i} A_{k}\right)_{a c} D^{(\beta)}\left(B_{j} B_{\ell}\right)_{b d}=D^{(\alpha \times \beta)}\left(A_{i} A_{k \cdot} B_{j} B_{\ell}\right)_{a b ; c d}
\end{aligned}
$$

This means that the matrice $D^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)$ form a representation of the product group $G_{1} \otimes G_{2}$. The characters can be calculated,

$$
\chi^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)=\sum_{a b} D^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)_{a b ; a b}=\sum_{a \cdot b} D^{(\alpha)}\left(A_{i}\right)_{a a} D^{(\beta)}\left(B_{j}\right)_{b b}=\chi^{(\alpha)}\left(A_{i}\right) \chi^{(\beta)}\left(B_{j}\right)
$$

Then

$$
\sum_{i \cdot j}\left|\chi^{(\alpha \times \beta)}\left(A_{i} B_{j}\right)\right|^{2}=\left(\sum_{i}\left|\chi^{(\alpha)}\left(A_{i}\right)\right|^{2}\right)\left(\sum_{j}\left|\chi^{(\beta)}\left(B_{j}\right)\right|^{2}\right)=n m \quad \Longrightarrow \quad D^{(\alpha \times \beta)} \text { is irrep. }
$$

Example, $G_{1}=D_{3}=\left\{E, 2 C_{3}, 3 C_{2}^{\prime}\right\}, G_{2}=\left\{E, \sigma_{h}\right\}=\varphi \quad$ where σ_{h} : reflection on the plane of triangle.
Direct product group is then $D_{3 h} \equiv D_{3} \otimes \varphi=E, A, B=\left\{E, 2 C_{3}, 3 C_{2}^{\prime}, \sigma_{h}, 2 C_{3} \sigma_{h}, 3 C_{2}^{\prime} \sigma_{h}\right\}$
Character Table

		$2 C_{3}$				$2 C_{2}^{\prime}$
φ	E	σ_{h}				
Γ^{+}	1	1	D_{3}	E	$A B$	$K L M$
Γ^{-}	1	-1	Γ_{1}	1	1	1
		Γ_{2}	1	1	-1	
		Γ_{3}	2	-1	0	

Character Table

	E	$2 C_{3}$	$2 C_{2}^{\prime}$	σ_{h}	$2 C_{3} \sigma_{h}$	$2 C_{2}^{\prime} \sigma_{h}$
Γ_{1}^{+}	1	1	1	1	1	1
Γ_{2}^{+}	1	1	-1	1	1	-1
Γ_{3}^{+}	2	-1	0	2	-1	0
Γ_{1}^{+}	1	1	1	-1	-1	-1
Γ_{2}^{+}	1	1	-1	-1	-1	1
Γ_{3}^{-1}	2	-1	0	-2	1	0

