Quantum Field Theory Homework set 1, Due Tu Oct 19

1. Show that the combination

$$\frac{d^3p}{2E}$$
, with $E = \sqrt{\overrightarrow{p}^2 + m^2}$

which occurs frequently in phase space calculation integration is invariant under Lorentz transformation.

2. Consider the combination of the form,

$$(\phi_1, \phi_2) \equiv \int d^3x \left[\phi_1^* \partial_0 \phi_2 - \phi_2 \partial_0 \phi_1^*\right]$$

- (a) Show that this combination is time independent
- (b) Write the plane wave solutions in the form,

$$f_p^{(\pm)}(x) = e^{\pm i p \cdot x} \frac{1}{\sqrt{(2\pi)^3 2\omega_p}}, \quad \text{where } p_0 = \omega_p = \sqrt{\overrightarrow{p}^2 + \mu^2} \ge 0$$

Show that

and

$$\int d^3x \left[f_{p'}^{(\pm)*} \left(x \right) i \overleftrightarrow{\partial}_0 f_p^{(\pm)} \left(x \right) \right] = \pm \delta^3 \left(\overrightarrow{p} - \overrightarrow{p}' \right)$$
$$\int d^3x \left[f_{p'}^{(\pm)*} \left(x \right) i \overleftrightarrow{\partial}_0 f_p^{(\mp)} \left(x \right) \right] = 0$$

(c) If we write the general solution $\phi(x)$ in the form,

$$\phi(x) = \int d^3p \left[a_p f_p^{(+)}(x) + a_p^* f_p^{(-)}(x) \right]$$

compute the coefficients, a_p and a_p^* .

3. Consider a system where 2 particles interacting with eac other through potential energy $V\left(\vec{x}_1 - \vec{x}_2\right)$ so that the Lagrangian is of the form,

$$L = \frac{m_1}{2} \left(\frac{d\vec{x}_1}{dt}\right)^2 + \frac{m_2}{2} \left(\frac{d\vec{x}_2}{dt}\right)^2 - V\left(\vec{x}_1 - \vec{x}_2\right)$$

(a) Show that this Lagrangian is invariant under the spatial translation given by

$$\vec{x}_1 \to \vec{x}'_1 = \vec{x}_1 + \vec{a}, \qquad \vec{x}_2 \to \vec{x}'_2 = \vec{x}_2 + \vec{a},$$

where \overrightarrow{a} is an arbitrary vector.

- (b) Use Noether's theorem to construct the conserved quantity corresponding to this symmetry.
- 4. (Optional) Construct the Lorentz transformation for motion of coordinate axis in arbitrary ddirection by using the fact that coordinates perpendicualr to the direction of motion remain unchanged.
- 5. (Optional) Show that 2 consecutive Lorentz transformation for motion in the same direction is also a Lorentz transformation in the same direction. What is the corresponding velocity for the resulting transformation.