Quantum Field Theory I

Ling-Fong Li

December 21, 2010

Homework set 5, Due Tue Jan 4

1. In the $\lambda \phi^{4}$ theory, the interaction is given by

$$
H_{I}=\frac{\lambda}{4!} \phi^{4}
$$

(a) Show that to lowest order in λ, the differential cross section for 2 particles elastic scattering in the center of mass frame is given by

$$
\frac{d \sigma}{d \Omega}=\frac{\lambda^{2}}{128 \pi^{2} S}
$$

where $S=\left(q_{1}+q_{2}\right)^{2}, q_{1}, q_{2}$ are the momenta of the particles in the initial state.
(b) Show that the 2 -point Green's function satisifies the relation,

$$
\left(\square_{x}+\mu^{2}\right)\langle 0| T(\phi(x) \phi(y))|0\rangle=\lambda\langle 0| T\left(\phi^{3}(x) \phi(y)\right)|0\rangle-i \delta^{4}(x-y)
$$

Verify this relation diagramatically to first order in λ.
2. Given a sequence of numbers $g_{0}, g_{1}, g_{3}, \cdots$, the most economical way to encompass them is through the generating function,

$$
Z(j)=\sum_{m=0}^{\infty} \frac{g_{m} j^{m}}{m!}
$$

so that

$$
g_{m}=\left.\frac{\partial^{m} Z(j)}{\partial j^{m}}\right|_{j=0}
$$

The generating functional for the Green's functions of scalar fields is defined by,

$$
Z[J]=\sum_{m=0}^{\infty} \frac{i^{m}}{m!} \int d^{4} x_{1} \cdots d^{4} x_{m} J\left(x_{1}\right) \cdots J\left(x_{m}\right) G^{(m)}\left(x_{1}, \cdots x_{m}\right)
$$

where

$$
G^{(m)}\left(x_{1}, \cdots x_{m}\right)=\langle 0| T\left(\phi\left(x_{1}\right) \cdots \phi\left(x_{m}\right)\right)|0\rangle
$$

and can be expressed in terms of generating functional as

$$
G^{(m)}\left(x_{1}, \cdots x_{m}\right)=\left.(-i)^{m} \frac{\delta^{m} Z[J]}{\delta J\left(x_{1}\right) \cdots \delta J\left(x_{m}\right)}\right|_{J=0}
$$

(a) Show that $Z[J]$ can be written as

$$
Z[J]=\langle 0| T \exp \left(i \int \phi(x) J(x) d^{4} x\right)|0\rangle
$$

(b) Show that for the case of free scalar field $Z[J]$ can be written as

$$
Z[J]=\exp \left[-\frac{i}{2} \int d^{4} x d^{4} y J(x) \Delta_{F}(x-y) J(y)\right]
$$

where

$$
i \Delta_{F}(x-y)=\langle 0| T(\phi(x) \phi(y))|0\rangle
$$

3. Transistion amplitude for a free particle with mass m moving in one dimension is given by

$$
\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle=\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle
$$

and

$$
H=\frac{p^{2}}{2 m}
$$

(a) Compute this amplitude directly from the Hamiltonian given above.
(b) Compute this amplitude by using path integral method.
4. The Lagrangian for a simple harmonic oscillator is of the form

$$
L=\frac{m}{2} \dot{q}^{2}-\frac{m \omega^{2}}{2} q^{2}
$$

(a) Show that the transistion amplitude has the form,

$$
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\left[\frac{m \omega}{2 \pi i \sin \omega\left(t_{f}-t_{i}\right)}\right]^{1 / 2} \exp \left\{\frac{i m \omega}{2 \sin \omega\left(t_{f}-t_{i}\right)}\left[\left(q_{f}^{2}+q_{i}^{2}\right) \cos \omega\left(t_{f}-t_{i}\right)-2 q_{f} q_{i}\right]\right\}
$$

(b) Show that for an initial wave packet of the Gaussian form

$$
\psi_{a}(q, 0)=\left(\frac{m \omega}{\pi}\right)^{1 / 4} \exp \left[-\frac{m \omega}{2}(q-a)^{2}\right]
$$

the wave function for $t \neq 0$ satisfies

$$
\left|\psi_{a}(q, 0)\right|^{2}=\left(\frac{m \omega}{\pi}\right)^{1 / 2} \exp \left[-\frac{m \omega}{2}(q-a \cos \omega t)^{2}\right]
$$

Namely, there is no spread of wave packet.
5. The Lagrangian for electromagnetic field is of the form,

$$
L=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
$$

where

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

Suppose we add a mass term to the Lagrangian so that

$$
L^{\prime}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+m^{2} A_{\mu} A^{\mu}
$$

(a) Show that the equation of motion is of the form,

$$
\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) A^{\nu}-\partial^{\nu} \partial_{\mu} A^{\mu}=0
$$

(b) Define the generating functional by

$$
W[J]=\int\left[d A^{\mu}\right] \exp \left\{i \int d^{4} x\left(L^{\prime}+J^{\mu} A_{\mu}\right)\right\}
$$

Show that

$$
W[J]=\exp \left\{\frac{i}{2} \int d^{4} x d^{4} y J^{\mu}(x) G_{\mu \nu}(x-y) J^{\nu}(y)\right\}
$$

where Green's function by

$$
\left[\left(\partial^{\alpha} \partial_{\alpha}+m^{2}\right) g_{\mu \nu}-\partial_{\nu} \partial_{\mu}\right] G^{\nu \beta}(x-y)=g_{\mu}^{\beta} \delta^{4}(x-y)
$$

Find the Green's function in momentum space.

