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1 Klein Gordon Equation

Classically, the energy momentum relation is of the form

E =

!
p
2

2m
+ V (~r)

For the quantization of this system, we do the replacement E ! i @@t ,
!
p ! �i

!
r and act on a wavefunction

 

i
@ 

@t
= [� 1

2m
r2 + V (~r)] Schrodinger equation

This equation does not work for relativistic system because spatial coordinate x and time t are not on
equal footing. In other words, this is not invariant under Lorentz transformations. For relativistic free
particle, we have instead

E2 = ~p2 +m2

The corresponding wave equation is then

(r2 +m2) = �@20 

Or
(�+m2) = 0; where � = @20 �r2 = @�@� = @2

This is known as Klein-Gordon equation.

1.1 Probablity interpretation

From Klein-Gordon equation
(@20 �r2 +m2) = 0

and its complex conjugate,
(@20 �r2 +m2) � = 0

we can derive the continuity equation,
@�

@t
+
!
r �

!
j = 0

where
� = i( @0 

� �  @0 �); ~j = ( 
!
r � �  

!
�r )



Then P =
R
�d3x is conserved, i.e.

dP

dt
=

Z
V
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d3x = �

Z
V

!
r �

!
j d3x = �

I
S

!
j �

!
ds = 0 if

!
j = 0; on S

Since P is conserved, we would like to interpret it as probability. However it is easy to see that P is not
positive as required by the de�nition of probabilty. For example,

if  ~eiEt� (x) ; then � = �2E j� (x)j2 � 0

i. e. we get negative probability and it is not viable. On the other hand if we take the probabilty density
to be � =   � which is positive as in the case of Schrodinger equation, then it is easy to see that it is not
conserved,

d

dt

Z
  �d3x 6= 0

Thus it is not possible to have probability interpretation for Klein-Gordon equation.

1.2 Solutions to Klein-Gordon Equation

The Klein Gordon equation

(�+m2) (x) = (�r2 + @20 +m2) (x) = 0;

is a di¤erential equation with constant coe¢ cients and has plain wave solution,

�(x) = e�ipx if p20 � P 2 �m2 = 0 or p0 = �
p
~p2 +m2

(a) Positive energy solution: P0 = !p =
p
~p2 +m2; ~p arbitrary

�(+)(x) = exp
�
�i!pt+ i

!
p �!x

�
(b) Negative energy solution: P0 = �!p = �

p
~p2 +m2

�(�)(x) = exp
�
i!pt� i

!
p �!x

�
Note that positive energy solutions �(+)(x) togather with the negative energy solution �(�)(x) form
a complete set of solutions. The most general solution is a linear superposition of positve energy and
negative energy soulutions,

�(x) =

Z
d3kp
(2�)32!k

[a(k)ei
~k~x�i!kt + a(k)+e�i

~k~x+i!kt]

=

Z
d3kp
(2�)32!k

[a(k)e�ikx + a(k)+eikx] (1)

where kx = !kt� ~k � ~x



2 Dirac Equation

Dirac(1928) want to construct a relativistic wave equation �rst order in time derivative just like Schrodinger
equation which has conserved probabilty and positive. By special relativity the wave equation is also �rst
order in spatial coordinates. He assume an Ansatz

E = �1p1 + �2p2 + �3p3 + �m = ~� � ~p+ �m (2)

where �i; � are assumed to be matrices. Then

E2 = (�1p1 + �2p2 + �3p3 + �m)
2 =

1

2
(�i�j + �j�i)pipj + �

2p2 + (�i� + ��i)m

To get relativistic energy momentum relation, we require

�i�j + �j�i = 2�ij (3)

�i� + ��i = 0 (4)

�2 = 1 (5)

From Eq( 3) we get
�2i = 1 (6)

Togather with Eq(5) we see that �i; � all have eigenvalues �1. Eq( 3) also implies

�1�2 = ��2�1 =) �2 = ��1�2�1

Taking the trace
Tr�2 = �Tr (�1�2�1) = �Tr

�
�2�

2
1

�
= �Tr (�2)

Thus
Tr (�i) = 0 (7)

Similarly,
Tr (�) = 0

From Eqs(6,7) we get the important result that �i; � all have even dimension. Recall that Pauli matrices
�1; �2; �3 are all traceless and anti-commuting. But here we need 4 such matrices. Thus �i; � all have to
be 4� 4 matrices. One conveient choics is that used by Bjoken and Drell where matrices take the form

�i =

�
0 �i
�i 0

�
; � =

�
1 0
0 1

�

Dirac equation is obtained from Eq(2) by the replacenments, E ! i
@

@t
; ~p! �i

!
r

(�i~� � r+ �m) = i
@ 

@t

Or
(�i�~� � r � i�@t +m) = 0

For conveient, de�ne a new set of matrices


0 = �; 
i = ��i

and in Bjorken and Drell notation,


0 =

�
1 0
0 �1

�

i =

�
0 �i
��i 0

�
(8)



Dirac equation is then

(�i
i@i � i
0@0 +m) = 0; or (�i
�@� +m) = 0

This is usually referred to as Dirac equation in covariant form. Note that the anti-commutations are now
in a simpler form,

f
�; 
�g = 2g��

2.1 Probability interpretation

We can now show that Dirac equation give a correct form for the peobability. From the Dirac equation in
the hermitian form we get

�i@ 
y

@t
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!
r+ �m) g)y

and
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 +  y
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@t
) =  y(�i~� �

!
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!
r+ �m) gy 

Integrate over space, we get

i
d

dt

Z
d3x( y ) =

Z
f�i y(~� �

!
r) � if(~� �

!
r) gy gd3x

= �i
Z !
r y(~� �

!
r) d3x = 0

The probability
R
d3x( y ) is conserved and positive.

2.2 Solution to Dirac equation

We look for solution in the plane wave form,

 (x) = e�ipx
�
u
l

�
where u and l are 2 components column vector. Then Dirac equation becomes

( /p�m)
�
u
l

�
= 0 where /p = 
�p�

Using the representation given in Eq(8), we get�
m ~� � ~p
~� � ~p �m

��
u
l

�
= p0

�
u
l

�
Or �

(p0 �m)u� (~� � ~p)l = 0
�(~� � ~p)u+ (p0 +m)l = 0

(9)

These are homogeneous linear equations of u and l: Non-trivial solution exists if���� p0 �m ~� � ~p
~� � ~p p0 +m

���� = 0
It is easy to see that this determinantal condition gives

p20 = ~p2 +m2 or p0 = �
p
~p2 +m2



(a) Positive energy solution p0 = E =
p
~p2 +m2,

Substitute this into Eqs(9) we get,

l =
~� � ~p
E +m

u

We can write the solution in the form,

 = e�ipx
�
u
l

�
= e�ipxN

�
1
~��~p
E+m

�
�

Here � is an arbitrary 2 components vector and N is normalization constant to be determined later.

(b) Negative energy solution p0 = �E = �
p
~p2 +m2,

Similarly, the solution can be written as,

 = e�ipxN

� �~��~p
E+m

1

�
�

The standard notation for these 4-component column vector, spinors are,

u(p:s) = N

�
1
~��~p
E+m

�
�s v(p; s) = e�ipxN

� �~��~p
E+m

1

�
�s N =

p
E +m

Dirac conjugate
One of the unual features of Dirac equation in momentum space

( /p�m) (p) = 0

is not hermitian. This is because in the Hermitian conjugate

 y(p)( /py �m) = 0


0�s are not hermitian,


y0 = 
0 
yi = �
i
But we can write


y� = 
0
�
0

Then
 y(p)(
0
�
0p

� �m) = 0 or  y(p)
0(
�p
� �m) = 0

Or
� ( /p�m) = 0 where � =  y
0 Dirac conjugate

2.3 Dirac equation under Lorentz transformation

Unlike the Klein-Gordon equation which is invariant under Lorentz transformation, Dirac equation is not.
We now study how Dirac equation

(i
�@� �m) (x) = 0

behaves under Lorentz transformation
x� ! x

0� = ���x
�



In the new coordinate system, the Dirac equation is of the form

(i
�@
0
� �m) 

0
(x

0
) = 0 (10)

Note that we have used the same 
 matrices (In general, di¤erent sets of 
-matrices are related by similarity
transformation - Pauli�s theorem). Assume that  

0
(x

0
) and  (x) are related by a linear transformation,

 
0
(x

0
) = S (x)

We need to �nd the operator S: Invert the Lorentz transformation

x
 = �
�x
0� =) @

@x0�
=

@

@x

@x


@x0�
= �
�

@

@x


Then Eq(10) becomes

(i
����@� �m)S (x) = 0 or (i(S�1
�S)���@� �m) (x) = 0

In order for this equation to be equivalent to the original Dirac equation, we require

(S�1
�S)��� = 
� or (S�1
�S) = ���

� (11)

To construct S, we consider in�nitesimal transformation

��� = g�� + �
�
� +O(�

2) with j��� j << 1

Pseudo-othogonality implies
g��(g

�
� + �

�
�)(g

�
� + �

�
�) = g��

Or
��� + ��� = 0; =) ��� antisymmetric

Write S as S = 1� i
4����

�� +O(�2) then S�1 = 1 + i
4����

�� ��� : 4� 4 matrices. Then Eq(11) yields,
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�
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� =

1

2
���(g��
� � g

�
�
�)

Identifying coe¢ cient of "�� ; we get

[��� ; 
�] = 2i(g��
� � g��
�) (12)

It is straightforward to check that ��� given by

��� =
i

2
[
�; 
� ]

satisfy Eq(12). It is not hard to see that for the �nite Lorentz transformation, we have

 
0
(x

0
) = S (x); with S = exp[� i

4
����

�� ] (13)

Note that
�y�� = 
0���
0 and Sy = 
0S�1
0



Thus S is not unitary. From  
0
(x

0
) = S we get

 y
0
(x

0
) =  ySy =  y
0S�1
0; or � 

0
(x

0
) =

_
 (x)S�1

This shows that
_
 has simple transformation property.

Fermion bilinears
Even though the Dirac wave function  has rather complicate transformation under the Lorentz trans-

formation as shown in Eq(13). The fermion bi-linears � �(x) � (x) has rather simple transformation. For
example,

� 
0
(x0) 0(x0) = � (x)S�1S (x) = � (x) (x)

This means that the combination � (x) (x) is Lorentz invariant. Similarly, we can work out the other
combination to get the following results.

� 
� 4-vector
� 
�
5 axial vector
� ��� 2nd rank antisymmetric ensor
� 
5 pseudo scalar

where 
5 = i
0
1
2
3

Hole Theory ( Dirac 19 )
To solve the problem with negative energy states, Dirac proposed that the vaccum is the one in which E < 0
states are all �lled and E > 0 states are empty. Then Pauli exclusion principle will prevent an electron
from moving into E<0 states. In this picture hole in the negative sea, i.e. absence of an electron with
charge � jej with negative energy � jEj is equivalent to a presence of a particle with energy jEj and charge
+ jej . This new particle is called "positron" and sometime also called anti�particle. This correspondence
of particle and anti-particle is called charge conjugation:


