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1 Klein Gordon Equation

Classically, the energy momentum relation is of the form

—2
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For the quantization of this system, we do the replacement £ — i%, 5 — —iV and act on a wavefunction

Y
za—%b = [—LV2 + V()¢ Schrodinger equation
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This equation does not work for relativistic system because spatial coordinate x and time t are not on
equal footing. In other words, this is not invariant under Lorentz transformations. For relativistic free
particle, we have instead

B? = 4 m?

The corresponding wave equation is then
(V2 +m?)yp = —05

Or
(O+m?)p =0, where O =093 — V? = 09"9, = 0

This is known as Klein-Gordon equation.

1.1 Probablity interpretation

From Klein-Gordon equation
and its complex conjugate,

we can derive the continuity equation,

where

p = (W00 —YOW®),  §= (VY — V)



Then P = [ pd3z is conserved, i.e.
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Since P is conserved, we would like to interpret it as probability. However it is easy to see that P is not
positive as required by the definition of probabilty. For example,
if v ePlo(z), then p=—2E¢p()*<0

i. e. we get negative probability and it is not viable. On the other hand if we take the probabilty density
to be p = 1™ which is positive as in the case of Schrodinger equation, then it is easy to see that it is not
conserved,
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Thus it is not possible to have probability interpretation for Klein-Gordon equation.

1.2 Solutions to Klein-Gordon Equation
The Klein Gordon equation

(O +m?)p(z) = (V> + 95 + m*)p(z) =0,
is a differential equation with constant coeflicients and has plain wave solution,
(x) =e T if PE—P>—m?=0 or py=+\i2+m?
(a) Positive energy solution: Py = w, = \/]m , Dparbitrary

¢ (x) = exp (—z'wpt +ip - E)

(b) Negative energy solution: Py = —w, = —+/p? + m?
qb(_)(a:) = exp (iwpt —ip - ;)
Note that positive energy solutions ¢(+) (x) togather with the negative energy solution qﬁ(_)(a:) form
a complete set of solutions. The most general solution is a linear superposition of positve energy and

negative energy soulutions,
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k)e—ikx + a(k)-i-eik:x] (1)
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where kx = wpt — k-7



2 Dirac Equation

Dirac(1928) want to construct a relativistic wave equation first order in time derivative just like Schrodinger
equation which has conserved probabilty and positive. By special relativity the wave equation is also first

order in spatial coordinates. He assume an Ansatz
E = aip1 + agpa + agps + fm = a - p+ Bm

where «;, 8 are assumed to be matrices. Then

1
E? = (cqp1 + aap2 + asps + fm)? = 5(041‘0@' + ajo)pipj + B7p* + (if + Bai)m

To get relativistic energy momentum relation, we require

Qo+ ooy = 2(51']‘

a;f + Pa; =0
pr=1
From Eq( 3) we get
a?=1

(3

Togather with Eq(5) we see that «;, 5 all have eigenvalues +1. Eq( 3) also implies

109 = —0px] —> (g = — (100
Taking the trace
Trag =—-Tr (avjasay) = =T (04204%) =—-Tr (ag)
Thus
Tr(a;) =0
Similarly,
Tr(B)=0

(2)

(7)

From Eqs(6,7) we get the important result that «;, 5 all have even dimension. Recall that Pauli matrices
01,09,03 are all traceless and anti-commuting. But here we need 4 such matrices. Thus «a;, 8 all have to
be 4 x 4 matrices. One conveient choics is that used by Bjoken and Drell where matrices take the form

0 o 10
w=(n ) =)
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Dirac equation is obtained from Eq(2) by the replacenments, £ — i—, p' — —iV

ot

(—ia@ -V + pfm)y = Z(Zf

Or
(—ifa -V —ifoy+m) =0

For conveient, define a new set of matrices
v= 67 Pyl = /Bai

and in Bjorken and Drell notation,

1 0 ; 0 o
0 __ i 7
(o ) (5 )



Dirac equation is then
(—i7'0; — 7% +m)p =0,  or (=iy 9, +m)P =0

This is usually referred to as Dirac equation in covariant form. Note that the anti-commutations are now
in a simpler form,

{’7“7 71/} = 29uy

2.1 Probability interpretation

We can now show that Dirac equation give a correct form for the peobability. From the Dirac equation in
the hermitian form we get

oyl =
_iaLi = ({—id -V + Bm)p )t
and t
0 0 o v
i(a—wtw + z/ﬁaif) =i (=id - V + pm)y — {(=id - V + fm)y}

Integrate over space, we get

i [l = [-wl@ D - i@ Fyeyvlas

S / vol(@- Vyyddz =0

The probability [ d%(lﬂw) is conserved and positive.

2.2 Solution to Dirac equation

We look for solution in the plane wave form,

W(z) = e e < 1; >

where u and [ are 2 components column vector. Then Dirac equation becomes

U

W-m () =0 whee  y=r,

Using the representation given in Eq(8), we get

(po —m)u— (&-p)l =0
{ —(;-ﬁ)u—i-(pO-i-m)l:O (9)

These are homogeneous linear equations of u and [. Non-trivial solution exists if

po—m G-p
G-p  pot+m

It is easy to see that this determinantal condition gives

po=p"+m* or  po=+VPiP+m?



(a) Positive energy solution pg = E = /p? + m2,
Substitute this into Eqs(9) we get,

We can write the solution in the form,

. X 1
pmem () mem( L )
E+m

Here x is an arbitrary 2 components vector and N is normalization constant to be determined later.

(b) Negative energy solution pg = —FE = —/p? + m?,

Similarly, the solution can be written as,
, —ap
) = e TN < E+m > Y

The standard notation for these 4-component column vector, spinors are,

1 ) =P
up) :N( 2 )Xs v(p,s) = ¢ PN ( " )xs N=VEtm
E+m

Dirac conjugate
One of the unual features of Dirac equation in momentum space

(#—m)y(p) =0

is not hermitian. This is because in the Hermitian conjugate

Y (p) ' —m) =0

! o .
Yu$ are not hermitian,

=% =%

But we can write
v = Y070

Then
D (p) (Yoy,voP" —m) =0 or 1 (p)yo (v, 0" —m) =0

Y@ —m) =0 where ¢ =1y, Dirac conjugate

2.3 Dirac equation under Lorentz transformation

Unlike the Klein-Gordon equation which is invariant under Lorentz transformation, Dirac equation is not.
We now study how Dirac equation

(70 —m)ip(z) = 0

behaves under Lorentz transformation
i
at — axt = A"



In the new coordinate system, the Dirac equation is of the form

(iv"0), —m)y'(¢') =0 (10)

Note that we have used the same v matrices (In general, different sets of y-matrices are related by similarity
transformation - Pauli’s theorem). Assume that ¢ (z') and 1(z) are related by a linear transformation,

W' (x') = St (x)
We need to find the operator S. Invert the Lorentz transformation
/ 0 0 o0z7 0
Y — AV P — — AV
vh= Ay O R

Then Eq(10) becomes
(i7" AL Oa — m)Sy(x) = 0 or (i(S_lfy“S)Afj@a —m)Y(x) =0
In order for this equation to be equivalent to the original Dirac equation, we require

(STIMS)AL =9 or (STI9"S) = Aly” (11)

To construct S, we consider infinitesimal transformation

AP = gl + € + O(€?) with  |e!| << 1

Pseudo-othogonality implies
9uv(gh + €2)(95 + €3) = Gap
Or
€af T €80 = 0, =  €qp antisymmetric
Write S as S =1 — 40,6/ + O(e?) then S™' =1+ %5,,e" 04 : 4 x 4 matrices. Then Eq(11) yields,

1
Tase 11 (1 = Zoae™) = (gl + by

1

1
1+

Or

1

|
e [0, = ehy™ = 5 (g — 957a)

Identifying coefficient of €*?, we get
(00 Yl = 2i(981Ya — GanVp) (12)
It is straightforward to check that o,g given by

?

5 [Ya» V3]

Tap
satisfy Eq(12). It is not hard to see that for the finite Lorentz transformation, we have
W (z) = Sp(z),  with §= exp[—%awe’“’] (13)

Note that
ol =Y0mwv  and  ST=7057140



Thus S is not unitary. From ¢’ (') = Sy we get
W@ =plst =¢10570 oo (e

This shows that 1 has simple transformation property.

Fermion bilinears

Even though the Dirac wave function 1 has rather complicate transformation under the Lorentz trans-
formation as shown in Eq(13). The fermion bi-linears 1, (z)14 (z) has rather simple transformation. For
example,

(@)Y (@) = P(a)ST Sy(x) = P(a)y (2)

This means that the combination 1 (x)y (x) is Lorentz invariant. Similarly, we can work out the other
combination to get the following results.

&’YM/J 4-vector

Yy, 75 axial vector

Yo 2nd rank antisymmetric ensor
@7)75111 pseudo scalar

where 75 = i7%y'y%y?

Hole Theory ( Dirac 19 )
To solve the problem with negative energy states, Dirac proposed that the vaccum is the one in which £ < 0
states are all filled and E > 0 states are empty. Then Pauli exclusion principle will prevent an electron
from moving into E<0 states. In this picture hole in the negative sea, i.e. absence of an electron with
charge — |e| with negative energy — |E| is equivalent to a presence of a particle with energy |E| and charge
+ |e| . This new particle is called "positron" and sometime also called anti — particle. This correspondence
of particle and anti-particle is called charge conjugation.



