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Note 4
Interaction Theory and Feynman Rule

Ling fong Li

1 Interaction Theory

As an illustration we discuss the electromagnetic interaction. From the principle of minimum substitution,
the Lagrangian density is of the form,

L =  (x) � (i@� � eA�) (x)�m (x) (x)�
1

4
F��F

��

Equations of motion are

(i�@� �m) (x) = eA�
� non-linear coupled equations

@�F
�� = e � 

Quantization
Write L= L0 + Lint

L0 =  (i�@� �m) �
1

4
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��

Lint = �e � A�

where L0; contains only the quadratic part and are the free �eld Lagrangian we studied before while Lint
is the part describing interaction.

Conjugate momenta for the fermion �eld is



@L
@ (@0 �)

= i y� (x)

For electromagnetic �elds, we choose the gauge

�!r � �!A = 0

then

�i =
@L

@ (@0Ai)
= �F 0i = Ei

From equation of motion

@�F
0� = e y =) �r2A0 = e y 

Thus A0 is not zero but it is not an independent dynamical variable and can be expressed in terms of other
�eld,

A0 = e
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Commutation relation
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Commutators involving A0 can be worked out as follows,
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Hamiltonian
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@ (@0 �)
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A0 does not appear in the interaction,
But if we write

�!
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The longitudinal part is
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� (�!x ; t) � (�!y ; t)
j�!x ��!y j Coulomb interaction

Even though we can set up the commutators or anti-commutators for quantization, it is di¢ cult, if not
impossible, to �nd the physical consequences.This is because we do not know how to solve the classical
equations of motion which is highly non-linear. Without the classical solutions we can not carryout the
mode expansion to introduce the creation and annihilation operators and it is di¢ cult to �nd the eigenvalues
and eigenstates of the Hamiltonian. The only approximation we know how to do in �eld theory is the
perturbation theory. We will now set up the framework for the perturbation.

1.1 Physical states

In high energy physics,we study the interactions by scattering processes.We assume that the interactions
of interest are all short-range in nature.Then far away from the interaction region, particles propagate as
free particles.

Choose the physical states to be eigensates of energy momentum operators,

P�j	i = p�j	i

They are required to satisfy following reasonable requirements;

(a) The eigenvalues p� all lie within forward light cone,

p2 = p�p
� > 0; p0 > 0

(b) There exists a non-degenerate Lorentz invariant ground state j0 > with lowest energy taken to be
the zero point ,

p0j0i = 0

which implies
�!p j0i = 0

(c) There exists stable single particle states j�!pi i with p2i = m2
i for each stable particle.

(d) The vaccum and one particle states form discrete spectrum in p�

We associate a �eld � (x) for each discrete state appearing in the spectrum of p� and assume that
interactions do not violently the spectrum of states. This means that there is no room in this formalism
to describe bound states which are not there to begin with.

1.2 In-�elds and in-states� asymptotic conditions

For simplicity, consider

L = 1

2
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2 � �20
2
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Equation of motion

�
�+ �20

�
� = j (x) =

�

3!
�3

conjugate momenta

� (x) =
@L
@0�

= @0�



Commutation relations

[� (x; t) ; � (y; t)] = �i�3 (x� y) [� (x; t) ; � (y; t)] = [� (x; t) ; � (y; t)] = 0

In scattering problem,at t = �1 , particles progate freely. Let �in (x) be the operator which creates free
particle propagating with physical mass �.�

�+ �2
�
�in (x) = 0

Here we allow the particle�s physical mass � to be di¤erent from �0 that appear in the Largrangian. This has
to do with the renormalization e¤ect which will be described later. We will assume that �in (x) transforms
under coordinate displacements and Lorentz transformation in the same way as � (x) : In particular,

[p�; �in (x)] = �i@��in (x)

This implies that �in (x) creates one particle state from vacuum. To see this, consider states with de�nite
momentum,

P�jni = p�njni

Then

�i@�hnj�in (x) j0i = hnj [p�; �in (x)] j0i = p�nhnj�in (x) j0i

From this we get �
�+ �2

�
hnj�in (x) j0i =

�
�2 � p2n

�
hnj�in (x) j0i = 0; =) p2n = �2

This means hnj�in (x) j0i is non-zero only for state hnj with p2n = �2 which is an one-particle state. Thus
the state �in (x) j0i is an one-particle state with mass �2.

Since �in (x) satis�es free �eld equation, we can expand �in (x) in terms of free solution of Klein-Gordon
equation,

�in (x) =

Z
d3k

h
ain (k) fk (x) + a

y
in (k) f

�
k (x)

i
fk (x) =

1q
(2�)3 2wk

e�ik�x

Invert this expansion

ain (k) = i

Z
d3xf�k (x)

 !
@0�in (x)

We also have

[p�; ain (k)] = �k�ain (k) ;
h
p�; ayin (k)

i
= k�ayin (k)

States are de�ned by

jk1; ini =
q
(2�)3 2wka

y
in (k) j0i

jk1; k2; :::knjini =
"Y
i

q
(2�)3 2wkia

y
in (ki)

#
j0i

With normalization

hk2; injk1; ini = (2�)3 2w1�3
��!
k1 �

�!
k2

�



hp1; p2; :::; pm; injk1; k2; :::knjini = 0

unless m=n and (p1; p2; :::; pm) conicides with (k1; k2; :::kn)

Relation between �in (x) and � (x)
We now want to �nd the relation between interacting �eld � (x) and the �in (x) which is a free �eld in

order to set up the perturbation expansion. The �eld equations for these �elds can be written as�
�+ �20

�
� (x) = j (x) or

�
�+ �2

�
� (x) = j (x) + ��2� (x) = gj (x) ��2 = �2 � �20�

�+ �2
�
�in (x) = 0

Formally we can relate the solution to the inhomogeneous equation � (x) to the solution to homogeneous
equation �in (x) as,

p
z�in (x) = � (x)�

Z
d4y4ret

�
x� y; �2

� gj (y)
where �

�x + �2
�
4ret

�
x� y; �2

�
= �4 (x� y) and 4ret

�
x� y; �2

�
= 0 for x0 < y0

is the usual retarded Green�s function. This suggests that as x0 ! �1; � (x)!
p
z�in (x) : This relation

which relates 2 operators can be viewed as strong convergence relation:It turns out that this leads to
contradiction. The argument is quite technical and will not be discussed here.

Correct asymptotic condition (Lehmann, Symanzik, and Zimmermann)
Let j�i; j�i be any two normalizable states, �f (t) is de�ned by smearing � (x) over space-like region

�f (t) � i
Z
d3xf�k (

�!x ; t) !@0� (�!x ; t) with
�
�+ �2

�
f = 0

where fk (
�!x ; t) is an arbitrary normalizable solution to Klein-Gordon equation. Then the correct asymp-

totic condition is

lim
x0!�1

h�j�f (t) j�i =
p
zh�j�fin (t) j�i

where

�fin (t) = i

Z
d3xf� (�!x ; t) !@0�in (�!x ; t) time-independent

This is known as weak convergence relation.
Out �elds and out states
Just like the case of in-�eld and in states,we can also reduce the dynamics to that of free particles for

t!1 by de�ning �
�+ �20

�
�out (x) = 0

�out (x) =

Z
d3k

h
aout (k) fk (x) + a

y
out (k) f

�
k (x)

i
;

h
p�; ayout (k)

i
= �k�ayout (k)

Asymptotic condition

lim
t!1
h�j�f (t) j�i =

p
zh�j�fout (t) j�i



2 S-matrix

Description of scattering processes: start with state with n non-interacting particles.They interact when
they are close to each other. After interaction, m particles seperate and again propagate freely.

Denote the initial state by

jp1; p2; :::; pn; ini = j�; ini
and �nal state by

jp01; p02; :::; p0m; outi = j�; outi
The S-matrix for the transistion from initial state j�; ini to �nal state j�; outi is

S�� � h�; outj�; ini
We can introduce S-operator which will take an in� state and turn it into out� state;

h�; outj � h�; injS h�; outjS�1 = h�; inj
then the S �matrix element can be written as a matrix element of S�operator between 2 in� states;

S�� = h�; outj�; ini = h�; injSj�; ini
Properties of S-matrix

(a) From the stability of vacuum jS00j = 1

h0; injS = h0; outj = e�i'h0; inj

(b) Stability of the one-particle state requires

hp; injSjp; ini = hp; outjp; ini = 1 * jp; ini = jp; outi

(c)
�in (x) = S�out (x)S

�1

To prove this, consider

h�; outj�out (x) j�; ini = h�; injS�out (x) j�; ini

Since h�; outj�out (x) is an out state

h�; outj�out (x) = h�; inj�in (x)S

then
h�; injS�out (x) j�; ini = h�; inj�in (x)Sj�; ini

Or
S�out = �in (x)S or �in (x) = S�out (x)S

�1

(d) Unitarity
Since

h�; injS = h�; outj , =) Syj�; ini = j�; outi
Combinnng these two relations gives

h�; injSSyj�; ini = h�; outj�; outi = ���

As operator we see that SSy = 1;similar argument=) SyS = 1



(e) S is translational and Lorentz invariance
Under Lorentz transformation

x� ! x0� = ���x
� + b�

then
U (�; b)SU�1 (�; b) = S

where
U (�; b)� (x)U�1 (�; b) = � (�x+ b)

Proof:

�in (�x+ b) = U (�; b)�in (x)U
�1 (�; b) = US�out (x)S

�1U�1

=
�
USU�1

�
�out (�x+ b)

�
US�1U�1

�
But

�in (�x+ b) = S�out (�x+ b)S
�1

This implies that
U (�; b)SU�1 (�; b) = S

which completes the proof.

3 LSZ reduction

We now work to set up the framework to compute the transistion matrix element S��:
Consider

S�;�p = h�; outj�; p; ini

Using the creation operator for the in� state; we get

S�;�p = h�; outj�; p; ini =
q
(2�)3 2wph�; outjayin (p) j�; ini

=

q
(2�)3 2wph�; outjayout (p) j�; ini+ h�; outj

h
ayin (p)� a

y
out (p)

i
j�; ini]

=

q
(2�)3 2wp

�
h� � p; outj�; ini � ih�; outj

Z
d3xfp (x)

 !
@0 [�in (x)� �out (x)]�; ini

�
Here h� � p; outj is the state obtained from h�; outj by removing a particle with momentum �!p . Use the
symptotic conditions

h�j�in (x) j�i =
1p
z
lim
t!�1

h�j� (x) j�i; h�j�out (x) j�i =
1p
z
lim
t!1
h�j� (x) j�i

and the identity

�
lim
x0!1

� lim
x0!�1

�Z
d3xg1 (x)

 !
@0 g2 (x) =

Z 1

�1
d4x@0

�
g1 (x)

 !
@0 g2 (x)

�
=

Z 1

�1
d4x

�
g1 (x) @

2
0g2 (x)� @20g1 (x) g2 (x)

�
we get

Z
d3xfp (x)

 !
@0 [�in (x)� �out (x)] =

Z
d4x

�
@20fp (x)� (x)� fp (x) @20� (x)

�
= �

Z
d4xfp (x)

�
�+ �2

�
� (x)



where we have used @20fp (x) =
�
@2i � �2

�
fp (x) and carry out the integration by parts. Put these together,

we get the reduction formula,

h�; outj�; p; ini =
q
(2�)3 2wph� � p; outj�; ini+ ip

z

R
e�ip�xd4x

�
�+ �2

�
h�; outj� (x) j�; ini

To remove a particle with momentum p0 from � in the matrix element h�; outj� (x) j�; ini, write � = p0

and use the annililation operator,

h�; outj� (x) j�; ini = hp0; outj� (x) j�; ini =
q
(2�)3 2wp0h; outjaout

�
p0
�
� (x) j�; ini

=

q
(2�)3 2wp0

�
h; outj� (x) ain

�
p0
�
j�; ini � h; outj(aout

�
p0
�
� (x)� � (x) ain

�
p0
�
j�; ini

�
=

q
(2�)3 2wp0 [h; outj� (x) j�� p0; ini � i

Z
d3yh; outj(�out (y)� (x)� � (x)�in (y))j�; ini

 !
@0 f

�
p0 (y)]

=

q
(2�)3 2wp0 [h; outj� (x) j��p0; ini�

ip
z

Z
d3y

�
lim
y0!1

� lim
y0!�1

�
h; outj (T (� (y)� (x))) j�; ini !@0 f�p0 (y)]

Following the same procedure as before,we can get

h�; outj� (x) j�; ini =
q
(2�)3 2wp0fh; outj� (x) j��p0; inig+

ip
z

Z
d4yh; outjT (� (y)� (x)) j�; ini

� ��y + �2� eip�x
It is clear how to remove all particles from "in" and "out" state

hp1; :::; pn; outjq1; :::; qm; ini =

�
ip
z

�m+n mY
i=1

nY
j=1

Z
d4xid

4yje
�iqixi

��!�x + �2�
h0jT (� (y1) :::� (ym)� (x1) :::� (xm)) j0i

� ���yj + �2� eipj �xj
for all pj 6= qi

3.1 In and Out �elds for Fermions

It is now clear how to generalize the discussion to the case of fermions. The in-�eld can be written as

 in (x) =

Z
d3p
X
s

h
bin (p; s)Up;s (x)� dyin (p; s)Vp;s (x)

i
where

Up;s (x) =
1q

(2�)3 2Ep

u (p; s) e�ip�x Vp;s (x) =
1q

(2�)3 2Ep

� (p; s) eip�x

Inversion

bin (p; s) =

Z
d3xU yp;s (x) in (x) din (p; s) =

Z
d3x yin (x)Vp;s (x)

byin (p; s) =

Z
d3x yin (x)Up;s (x) dyin (p; s) =

Z
d3xV yp;s (x) in (x)

Reduction formula for fermions



(a) remove electron from the in-state

h�; outj�; ps; ini = � i
p
z2

Z
d4xh�; outj � (x) j�; ini

 ������������
(�i�@� �m)��u (p; s) e

�ip�x

(b) remove positron(anti-particle) from the in-state

h�; outj�; ps; ini = i
p
z2

Z
d4xe�ip�x�� (p; s)

����������!
(i�@� �m)��h�; outj � (x) j�; ini

(c) remove electron from out-state

h�; p0s0; outj�; ini = � i
p
z2

Z
d4xu�

�
p0; s0

�
eip

0�x����������!(i�@� �m)��h�; outj � (x) j�; ini

(d) remove positron from out-state

h�; p0s0; outj�; ini = i
p
z2

Z
d4xh�; outj � (x) j�; ini

 ������������
(�i�@� �m)���

�
p;0 s0

�
e�ip

0�x

4 U matrix

For the purpose of perturbation theory we want to �nd the relation between interacting �elds � (x), � (x)
and the free �elds �in (x), �in (x) : Assum they are related by unitary U matrix,

� (�!x ; t) = U�1 (t)�in (
�!x ; t)U (t) ; � (�!x ; t) = U�1 (t)�in (

�!x ; t)U (t)

The in-�elds satisfy the free �eld equation of motion,

@0�in (x) = i [Hin (�in; �in) ; �in] ; @0�in (x) = i [Hin (�in; �in) ; �in] (1)

where Hin (�in; �in) is the free �eld Hamiltonian with mass �:On the other hand, the time evolution of
interacting �eld is governed by full Hamiltonian,

@0� (x) = i [H (�; �) ; �] ; @0� (x) = i [H (�; �) ; �]

Then from equation for �in ,we get

@0�in =
@

@t

�
U�U�1

�
=
@U

@t
�U�1 + U

@�

@t
U�1 + U�

@U�1

@t

=
@U

@t

�
U�1�inU

�
U�1 + U (i [H (�; �) ; �])U�1 � U�U�1@U

@t
U�1

=

�
@U

@t
U�1

�
�in + i [H (�in; �in) ; �in]� �in

@U

@t
U�1

Using Eq(1), we simplify �
@U

@t
U�1 + iHI (�in; �in) ; �in

�
= 0

where HI (�in; �in) = H (�in; �in)�Hin (�in; �in) contains all the interaction. Similarly,we can show�
@U

@t
U�1 + iHI (�in; �in) ; �in

�
= 0



This means the combination @U
@t U

�1 + iHI commutes with all the operators, we can take this to be a
c-number. For simlicity,we can take this c-number to be zero.Thus

i
@U (t)

@t
=HI (t)U (t) (2)

For convenience, we de�ne

U
�
t; t0
�
� U (t)U�1

�
t0
�

time evolution operator

then Eq(2) becomes,

i
@U (t; t0)

@t
= HI (t)U

�
t; t0
�

with U (t; t) = 1

We can convert this to integral equation

U
�
t; t0
�
= 1� i

Z t

t0
dt1HI (t1)U

�
t1; t

0�
which includes the initial condition. Iterate this equation assuming HI is "small",

U
�
t; t0
�
= 1� i

Z t

t0
dt1HI (t1) + (�i)2

Z t

t0
dt1HI (t1)

Z t1

t0
dt2HI (t2) + :::

+(�i)n
Z t

t0
dt1

Z t1

t0
dt2:::

Z tn�1

t0
dtnHI (t1)HI (t2) :::HI (tn) + :::

The second term can be written as

U (2) = (�i)2
Z t

t0
dt1

Z t1

t0
dt2HI (t1)HI (t2) = (�i)2

Z t

t0
dt2

Z t

t2

dt1HI (t1)HI (t2)

= (�i)2
Z t

t0
dt1

Z t

t2

dt2HI (t2)HI (t1)

where we have interchange the order of integration. Renaming t1 and t2 ,we get

U (2) = (�i)2
Z t

t0
dt1

Z t

t2

dt2HI (t2)HI (t1)

We can use time-ordered product to combine these two equivalent expression so that the t2 integration
goes from t0 to t

U (2) =
(�i)2

2

Z t

t0
dt1

Z t

t0
dt2T (HI (t2)HI (t1))

We can generalize these steps to higher terms in U so that

U
�
t; t0
�
= 1 +

1X
n=1

(�i)n

n!

Z t

t0
dt1

Z t

t0
dt2:::

Z t

t0
dtnT (HI (t1)HI (t2) :::HI (tn))

= T

�
exp

�
�i
Z t

t0
d4xHI (�in; �in)

��



4.1 Perturbation Expansion of Vaccum expectation value

From LSZ reduction formula we see that the scattering matrix element, S�matrix can be written in terms
of vacuum expectation value of the form,

� (x1; x2; :::; xn) = h0jT (� (x1)� (x2) :::� (xn))j0i

Using U matrix we can write this in terms of �in

� = h0jT
�
U�1 (t1)�in (x1)U (t1; t2)�in (x2)U (t2; t3) :::U (tn�1; tn)�in (xn)U (tn)

�
j0i

= h0jT
�
U�1 (t)U (t; t1)�in (x1) :::�in (xn)U

�
tn; t

0�U �t0�� j0i
Let t > t1:::tn > t0;then we can pull U�1 (t) and U (t0) out of the time-ordered product, and combine U 0s
and �in

� = h0jU�1 (t)TU (t; t1)�in (x1) :::�in (xn)U
�
tn; t

0�)U �t0� j0i
= h0jU�1 (t)T (�in (x1) :::�in (xn) exp

�
�i
Z t

t0
HI (t") dt"

�
)U
�
t0
�
j0i

We need to take care of the factor U�1 (t) and U (t0) : First we show the following theorem.
Theorem: j0i is an eigenstate ofU(�t) as t!1
Proof: Consider a matrix element of the type hp; �; injU(�t)j0i: Use the method the same as reduction

formula we can write

hp; �; injU(�t)j0i =

q
(2�)3 2wph�; injain (p)U(�t)j0i

= i

q
(2�)3 2wp

Z
d3xf�p

��!x ;�t0� !@00 h�; inj�in ��!x ;�t0�U(�t)j0i
= i

q
(2�)3 2wp

Z
d3xf�p

��!x ;�t0� !@00 h�; injU(�t0)� ��!x ;�t0�U(�t0)U(�t)j0i
Carrying out the operation

 !
@00 and taking the limit t = t0;,we get

f�p
��!x ;�t0� !@00U(�t0)� ��!x ;�t0�U(�t0)U(�t)

= @00f
�
p

��!x ;�t0�U(�t)�(�t)��f�p ��!x ;�t0� h _U(�t)�(�t) + U(�t) _�(�t) + U(�t)�(�t) _U�1(�t)U�1(�t)i
Then

hp; �; injU(�t)j0i =
q
(2�)3 2wpfh�; injU(�t)ain (p) j0i+ i

Z
d3xf�p

��!x ;�t0� h�; inj _U�+ U� _U�1U j0ig
In the last term

_U�+ U� _U�1U = _U
�
U�1�inU

�
+ U

�
U�1�inU

� �
�U�1 _UU�1

�
U

= _UU�1�inU � �in _UU�1U =
h
_UU�1; �in

i
U

= �i [HI (�in; �in) ; �in]U = 0

if there is no derivative coupling. Then we get the result hp; �; injU(�t)j0i = 0 as t ! 1 for all in-
states.This means

U(�t)j0i = ��j0i �� some phase as t!1



This completes the proof.
Similarly we can show that

U(t)j0i = �+j0i �+ some phase as t!1

These phases can be written as

���
�
+ = h0jU(�t)j0ih0jU�1(t)j0i = h0jU(�t)U�1(t)j0i

= h0jT (exp
�
i

Z t

�t
HI
�
t0
�
dt0
�
)j0i

= [h0jT exp(�i
Z t

�t
HI
�
t0
�
dt0)j0i]�1

Now we have express the vacuum expectation value � (x1; x2; :::; xn) completely in terms of �in;

� (x1; x2; :::; xn) = h0jU�1(�t)T
�
�in (x1)�in (x2) :::�in (xn) exp(�i

Z t

�t
HI
�
t0
�
dt0)

�
U(t)j0i

= ���
�
+h0jT

�
�in (x1)�in (x2) :::�in (xn) exp(�i

Z t

�t
HI
�
t0
�
dt0)

�
j0i

or

� (x1; x2; :::; xn) =
h0jT

�
�in (x1)�in (x2) :::�in (xn) exp(�i

R1
�1HI (t

0) dt0)
�
j0i

h0jT
�
exp(�i

R1
�1HI (t0) dt0)

�
j0i

To do any computation we need to expand the exponential of HI , to write

� (x1; x2; :::; xn) =

1P
m=0

(�i)m
m!

R1
�1 dy1:::dymh0jT (�in (x1)�in (x2) :::�in (xn)HI (y1)HI (y2) :::HI (ym))j0i

1P
m=0

(�i)m
m!

R1
�1 dy1:::dymh0jT (HI (y1)HI (y2) :::HI (ym))j0i

Wick�s theorem
To compute the matrix elements of time-ordered products of free �elds �in between vacuum, the

procedure is straightforward but tedious. The strategy is to convert time-ordered product to normal
ordering whose vacuum expectation values are trivial to do. The results are summarized in the form of
Wick�s theorem which is stated below;

T (�in (x1) :::�in (xn)) =: �in (x1) :::�in (xn) : + [h0j�in (x1)�in (x2) j0i : �in (x3)�in (x4) :::�in (xn) : +permutations]

+[h0j�in (x1)�in (x2) j0ih0j�in (x3)�in (x4) j0i : �in (x5) :::�in (xn) : +permutations]:::

+

�
[h0j�in (x1)�in (x2) j0ih0j�in (x3)�in (x4) j0i:::h0j�in (xn�1)�in (xn) j0i+ permutations] neven

[h0j�in (x1)�in (x2) j0i:::h0j�in (xn�2)�in (xn�1) j0i�in (xn) + permutations] n odd

This theorem can be proved by induction.We will illustrate this for the simple case of n=2. It is clear that
the di¤erence between time-ordered product and normal ordering is a c-number,



T (�in (x1)�in (x2)) =: �in (x1)�in (x2) : + (c� number)

To compute this c-number we can take matrix element between vacuum state,

h0jT (�in (x1)�in (x2))j0i = (c� number)

Then we get
T (�in (x1)�in (x2)) =: �in (x1)�in (x2) : +h0jT (�in (x1)�in (x2))j0i

Most useful application of Wick�s theorem

h0jT (�in (x1) :::�in (xn))j0i = 0 n odd

h0jT (�in (x1) :::�in (xn))j0i =
X

permutation

[h0jT (�in (x1)�in (x2))j0ih0jT (�in (x3)�in (x4))j0i:::] n even

Notation

�in (x1)�in(x2)
j________j

= h0jT (�in (x1)�in (x2))j0i Contraction

Example:

4.2 Feynman Propagators

From Wick�s theorem we see that the most important quantity in the computation of matrix element is
the vacuum expecation of two free �elds, called Feynman propagator. It is strightforward to work out
these propagator for various type of �elds. The result for real scalar �eld is,

h0jT (�in (x)�in (y))j0i = i4F
�
x� y; �2

�
= i

Z
d4k

(2�)4
e�ik�(x�y)

k2 � �2 + i" = i

Z
d4k

(2�)4
e�ik�(x�y)i4F (k)

with i4F (k) =
i

k2 � �2 + i"

For complex scalar �eld

h0jT (�in (x)��in (y))j0i = i4F
�
x� y; �2

�
= i

Z
d4k

(2�)4
e�ik�(x�y)

k2 � �2 + i"
Fermion �eld

h0jT ( in� (x) 
in
� (y))j0i = iSF (x� y;m)�� = i

Z
d4p

(2�)4
e�ip�(x�y)

(�p� +m)��
p2 �m2 + i"

=

Z
d4p

(2�)4
e�ip�(x�y)iSF (p)��



photon �eld

h0jT (Ain� (x)Ain� (y))j0i = iDtr
F (x� y) = i

Z
d4k

(2�)4
e�ik�(x�y)

k2 + i"
�"

�g�� �
k�k�

(k � �)2 � k2
+
(k � �)

�
k��� + k���

�
(k � �)2 � k2

�
k2����

(k � �)2 � k2

#

where �� = (1; 0; 0; 0)
It can be shown that in QED only term contributes is "�g��" as a consequence of the gauge invariance.

Graphical representation

�
y
� � � � � � �

x
i4F

�
x� y; �2

�
�
y� �>� �

�
x iSF (x� y;m)��

��������� iDtr
F (x� y)

Each line (propagator) represents a contraction in Wick�s expansion
e.q.

4.3 Vaccum Amplitude

In the denominator of ��function, there are no external lines
1X
m=0

(�i)m

m!

Z 1

�1
d4y1:::d

4ymh0jT (HI (�in (y1)) :::HI (�in (ym))) j0i

e.q. 2nd order term for the case HI = �
3! : �

3
in :



closed loop diagram :graphs with no external lines(lines with open end)
disconnected diagram :a subgraph not connected to any external lines
connected diagram :graph not disconnected

All graphs appearing in the numerator of the ��function can be seperated uniquely into connected and
disconnected parts

1X
m=0

(�i)m

m!

Z 1

�1
d4y1:::d

4ymh0jT (�in (x1)�in (x2) :::�in (xn)HI (�in (y1)) :::HI (�in (ym))) j0i

=
1X
m=0

(�i)m

m!

Z 1

�1
d4y1:::d

4ymh0jT (�in (x1)�in (x2) :::�in (xn)HI (�in (y1)) :::HI (�in (ys))) j0iC

� m!

s! (m� s)!h0jT (HI (�in (ys+1)) :::HI (�in (ym))) j0i

=
X
s

(�i)s

s!

Z 1

�1
d4y1:::d

4ymh0jT (�in (x1)�in (x2) :::�in (xn)HI (�in (y1)) :::HI (�in (ys))) j0i

�
X
s

(�i)r

r!

Z 1

�1
d4z1:::d

4zrh0jT (HI (�in (z1)) :::HI (�in (zr))) j0i

where r = m� s
It is not hard to see that

� (x1; x2; :::; xn) =

P
i
Gi (x1; x2; :::; xn)P

k

Dk
=

P
i
GCi (x1; x2; :::; xn)

P
k

DkP
k

Dk

=
X
i

GCi (x1; x2; :::; xn)

where GCi (x1; x2; :::; xn) :connected diagrams with n external lines
Dk :closed loop diagrams
Hence in calculating ��function with n external lines,we can ignore all disconnected graphs.

Example :HI = �
3!�

3
in

� (q1) + � (q2) �! � (p1) + � (p2)



S�� = h�; outj�; ini = hp1; p2; outjq1; q2; ini

=

�
�ip
z

�4 Z
d4x1d

4x2d
4y1d

4y2e
ip1y1eip2y2

�
�y1 + �2

� �
�y2 + �2

�
�h0jT (�in (y1)�in (y2)�in (x1)�in (x2)) j0i

� ���x1 + �2�� ���x2 + �2� e�iq1x1e�iq2x2
=

�
�ip
z

�4 Z
d4x1d

4x2d
4y1d

4y2
�
�2 � p21

� �
�2 � p22

� �
�2 � q21

� �
�2 � q22

�
�� (y1; y2; x1; x2) ei(p1y1+p2y2)e�i(q1x1+q2x2)

Perturbation expansion of ��function

� (y1; y2; x1; x2) =
X
n

(�i)n

n!

Z 1

�1
d4z1:::d

4znh0jT (�in (y1)�in (y2)�in (x1)�in (x2)HI (�in (z1)) :::HI (�in (zn))) j0i

Lowest order contribution

� (2) (y1; y2; x1; x2) =
(�i)2

2!

Z 1

�1
d4z1d

4z2h0jT
�
�in (y1)�in (y2)�in (x1)�in (x2)

�
�

3!
�3in (z1)

�
(
�

3!
�3in (z2))

�
j0i

Using Wick�s theorem, we get for the connected diagrams.

Their contribution to � (y1; y2; x1; x2) is

� (2) (y1; y2; x1; x2) =
(�i�)2

2!

Z 1

�1
d4z1d

4z2i4F (y1 � z1) i4F (y2 � z1)

i4F (z2 � x1) i4F (z2 � x2) i4F (z1 � z2) + :::

use the propagator in momentum space

i4F (x) =
Z

d4k

(2�)4
i

k2 � �2 + i"e
�ik�x

Then

� (2) (y1; y2; x1; x2) =
(�i�)2

2!

Z 1

�1
d4z1d

4z2

Z
d4k1

(2�)4

Z
d4k2

(2�)4
:::

Z
d4k5

(2�)4
e�ik1�(y1�z1)i4F (k1) e�ik2�(z1�x1)i4F (k2)

e�ik3�(z1�z2)i4F (k3) e�ik4�(y2�z2)i4F (k4) e�ik5�(z2�x2)i4F (k5)



z1 integration
Z
d4z1e

i(k1�k2�k3)�z1 = (2�)4 �4 (k1 � k2 � k3)

z2 integration
Z
d4z2e

i(k3+k4�k5)�z2 = (2�)4 �4 (k3 + k4 � k5)

energy-momentum conservation at each vertex
Then

� (2) (y1; y2; x1; x2) =
(�i�)2

2!

Z
d4k1

(2�)4
:::
d4k4

(2�)4
(2�)4 �4 (k1 � k2 + k4 � k5)

i4F (k1) i4F (k2) i4F (k4) i4F (k5) i4F (k1 � k2) e�ik1�y1eik2�x1e�ik4�y2eik5�x2

Z
� (2) (y1; y2; x1; x2) d

4x1d
4x2d

4y1d
4y2e

i(p1y1+p2y2)e�i(q1x1+q2x2)

=) k2 = q1 k5 = q2 p1 = k1 p2 = k4

We see that the external line propagators cancell out and

S�� =
(�i�)2

2!

�
1p
z

�4
(2�)4 �4 (p1 + p2 � q1 � q2) + :::

This is rather simple answer in momentum space.

5 Cross section and Decay rate

Write the S-matrix elements as

Sfi = �fi + i(2�)
4�4(pf � pi)Tfi Tfi : invariant amplitude for i! f

For i 6= f , the transistion probability is

jSfij2 = (2�)4�4(0)[(2�)4�4(pf � pi) jTfij2]

To interprete �4(0), we write

(2�)4�4(pf � pi) =
Z
d4xe�i(pf�pi)x

The integration is over some large but �nite volume V and time interval T.
Then we can interprete �4(0) as

(2�)4�4(0) = V T

and write

jSfij2 = V T [(2�)4�4(pf � pi) jTfij2

The transistion rate (transistion probability per unit time) is then

!fi = (2�)
4�4(pf � pi) jTfij2 V



5.1 Decay rates

For a general decay processes with kinematics,

a(p)! c1(k1) + c2(k2) + ::::+ cn(kn) pf =

nX
l=1

ki pi = p

The number of states in the volume elements d3k1 d3k2:::d3kn in momentum space is

nY
l=1

d3kl
(2�)32!kl

The transition rate, summing over �nal states is

d!
0
= (2�)4�4(p� �nj=1kj) jTfij

2 V
nY
l=1

d3kl
(2�)32!kl

For the invariant normalization of the physical states we�ve been using

< pjp0 >= (2�)3�3(~p� ~p 0
)2!p ) < pjp >= (2�)3�3(0)2!p = 2V !p

which is the number of particle in the initial state.
The decay rate per particle is then

d! =
d!

0

2V !p
= (2�)4�4(p� �nj=1kj) jTfij

2 1

2!p

nY
l=1

d3kl
(2�)32!kl

If there are "m" identical particles in the �nal state, divide this by m!

d! = 1
2!p
jTfij2 d3k1

(2�)32!1
::: d3kn
(2�)32!n

(2�)4�4(p� �nj=1kj)S S =
Y
j

1
(mj)!

5.2 Cross section

For a scattering processes of the form,

a(p1) + b(p2)! c1(k1) + c2(k2) + :::+ cn(kn)

the transition rate is given by, after summing over �nal states,

d!
0
= (2�)4�4(p1 + p2 � �nj=1kj) jTfij

2 V
nY
l=1

d3kl
(2�)32!kl

We normalize this to one particle in the beam and one particle in the target and divide this by the
�ux�relative velocity divided by the volume, to get di¤erential cross section

d� =
1

2!p1V

1

2!p2V
(2�)4�4(p1 + p2 � �nj=1kj) jTfij

2 V

nY
l=1

d3kl
(2�)32!kl

V

j~v1 � ~v2j

Velocity factor can be written as

I = j~v1 � ~v2j =
���� ~p1E1 � ~p2

E2

����



In the C.M. frame ~p1 = �~p2 = ~p p1 = (E1; ~p); p2 = (E2;�~p)

I =
j~pj
E1E2

(E1 + E2)

(p1 � p2)2 = (E1E2 + ~p 2)2 = E21E
2
2 + 2E1E2~p

2 + ~p 4

(p1 � p2)2 �m2
1m

2
2 = (~p 2 +m2

1)(~p
2 +m2

2) + 2E1E2~p
2 + ~p 4 �m2

1m
2
2

= ~p 2[2~p 2 + (m2
1 +m

2
2) + 2E1E2]

= ~p 2(E1 + E2)
2

) I =
1

E1E2

q
(p1 � p2)2 �m2

1m
2
2

d� =
1

I

1

2!p1

1

2!p2
(2�)4�4(p1 + p2 � �nj=1kj) jTfij

2
nY
l=1

d3kl
(2�)32!l

6 Feynman Rules

Since the �nal forms for transition matrix elements Tfi are quite simple,we can use simple rules to sidestep
all those tedious intermediate steps.

Draw all connected Feynman graphs with appropriate external lines.Label each with momenta and
impose momentum conservation for each vertex.

1.For each internal fermion line with momentum p,enter the propagator

iSF (p) =
i

p�� �m+ i"

2.For each internal boson line of spin 0,with momentum q,enter the propagator

i4F (q) =
i

q2 � �2 + i"
3.For each internal photon line with momentum k,enter the propagator

iDF (k)�� =
�ig��
k2 + i"

4.For each internal momentum l not �xed by momentum conservation,enterZ
d4l

(2�)4

5.For each closed fermion loop,enter (-1) .Also they should be factor of (-1) between graphs which di¤er
only by an interchange of two external identical fermion lines.

At each vertex,the factors depend on the explicit form of interactions.

(a)
1

3!
��3 (�i�)

(b)
1

4!
��4 (�i�)

(c) e � A
�

�
�ie�

�
(d)f  5 � (�if5)



6.1 Example in ��3 theory

In ��3 theory, consider scattering processes � (k1) + � (k2) �! � (k3) + � (k4)
To second order in � ,we have following 3 Feynman diagrams for this reaction

We can write down the matrix element for each graph,

T (a) = (�i�)2 i

(k1 � k3)2 � �2
T (b) = (�i�)2 i

(k1 + k2)
2 � �2

T (c) = (�i�)2 i

(k1 � k4)2 � �2

Total amplitude T = T (a) + T (b) + T (c)

Mandelstam variables

s = (k1 + k2)
2 total energy in c.m. frame

t = (k1 � k3)2 momentum transfer(scattering angle)

u = (k1 � k4)2

s+ t+ u = 4�2


