Path Integral method

Ling fong Li

Path integral formalism was originally developed to have close relationship to classical dynamics. For example, the transition amplitude in coordinate space is expressed in term of action S

$$\langle f|i
angle = \int \left[dx
ight] e^{iS/\hbar}$$

From this we can see that as $\hbar \to 0$, the trajectory with smallest action dominates, the action principle. This formalism uses the ordinary functions not the operators. Later in the study of non-Abelian gauge theory, the need for removing unphysical degrees of freedom can be more easily accomodated in the path integral formalism by imposing constraints in the integral.

1 Quantum Mechanics in 1-dimension

In the quantum mechanics, the transition matrix element from initial state $|q,t\rangle$ to final state $\langle q',t'|$, can be written as,

$$\langle q't'|qt\rangle = \langle q|'^{-iH(t-t')}|q\rangle$$

where $|q\rangle's$ are eigenstates of the position operator Q in the Schrödinger picture,

$$Q|q\rangle = q|q\rangle$$

and $|q,t\rangle$ denotes the corresponding state in Heisenberg picture,

$$|q,t\rangle = e^{iHt}|q\rangle$$

In the path integral formalism, this transition matrix element can be written as

$$\langle q't'|qt
angle = N\int [dq]exp\{i\int_t^{t'}d au L(q,\dot{q})\}$$

We now explain how this formula come about and what this formula means. First divide the interval (t', t) into n intervals with spacing,

$$\delta t = \frac{t'-t}{n}$$

and write the transition matrix element as,

$$\langle q'|e^{-iH(t'-t)}|q\rangle = \int dq_1...dq_{n-1}\langle q'|e^{-iH\delta t}|q_{n-1}\rangle\langle q_{n-1}|e^{-iH\delta t}|q_{n-2}\rangle...\langle q_1|e^{-iH\delta t}|q\rangle$$

For δt small enough, we can approximate each of matrix elements as

$$\langle q'|e^{-iH\delta t}|q\rangle = \langle q'|(1-iH(P,Q)\delta t)|q\rangle + O\left(\left(\delta t\right)^2\right) + \dots$$

If we take the Hamiltonian in the simple form,

$$H(P,Q) = \frac{p^2}{2m} + V(Q)$$

then

$$\begin{aligned} \langle q'|H|q \rangle &= \langle q'|\frac{p^2}{2m}|q \rangle + V(\frac{q+q'}{2})\delta(q-q') \\ &= \int \langle q'|\frac{p^2}{2m}|p \rangle \langle p|q \rangle (\frac{dp}{2\pi}) + V(\frac{q+q'}{2}) \int \frac{dp}{2\pi} e^{ip(q'-q)} \\ &= \int \frac{dp}{2\pi} e^{ip(q'-q)} [\frac{p^2}{2m} + V(\frac{q+q'}{2})] \end{aligned}$$

where we have used

$$\langle p|q\rangle = e^{-ipq}$$

which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

$$\langle q'|e^{-iH\delta t}|q\rangle \simeq \int \frac{dp}{2\pi} e^{ip(q'-q)} \{1 - i\delta t[\frac{p^2}{2m} + V(\frac{q+q'}{2})]\} \simeq \int \frac{dp}{2\pi} \exp\left[ip(q'-q)\right] \exp\left[-i\delta t[\frac{p^2}{2m} + V(\frac{q+q'}{2})]\right]$$

The whole transition matrix element can then be written as

$$\langle q'|e^{-iH(t'-t)}|q\rangle \cong \int (\frac{dp_1}{2\pi})\dots(\frac{dp_n}{2\pi}) \int dq_1\dots dq_{n-1} \exp\{i\left[\sum_{i=1}^n p_i(q_i-q_{i-1})-(\delta t)H(p_i,\frac{q_i+q_{i+1}}{2})\right]\}$$

This can be written formally as

$$\begin{split} \langle q'|e^{-iH(t'-t)}|q\rangle &= \int [\frac{dpdq}{2\pi}]exp\{i\int_{t}^{t'}dt[p\dot{q}-H(p,q)]\}\\ &\equiv \lim_{n\to\infty} \int (\frac{dp_{1}}{2\pi})...(\frac{dp_{n}}{2\pi})\int dq_{1}...dq_{n-1}exp\{i\sum_{i=1}\delta t[p_{i}(\frac{q_{i}-q_{i-1}}{\delta t})-H(p_{i},\frac{q_{i}+q_{i+1}}{2})]\} \end{split}$$

In most case, Hamiltonian depends quadractically on p. We can use the formula

$$\int_{-\infty}^{+\infty} \frac{dx}{2\pi} e^{-ax^2 + bx} = \frac{1}{\sqrt{4\pi a}} e^{\frac{b^2}{4a}}$$

to carry out the integration over momentum to get

$$\int \frac{dp_i}{2\pi} \exp[\frac{-i\delta t}{2m} p_i^2 + ip_i(q_i - q_{i-1})] = (\frac{m}{2\pi i \delta t})^{1/2} exp[\frac{im(q_i - q_{i-1})^2}{2\delta t}]$$

Then

$$\langle q'|e^{-iH(t'-t)}|q\rangle = \lim_{n \to \infty} (\frac{m}{2\pi i \delta t})^{n/2} \int \prod_{i=1}^{n-1} dq_i \exp\{i \sum_{i=1}^n \delta t [\frac{m}{2} (\frac{q_i - q_{i-1}}{\delta t})^2 - V]\}$$

or

$$\langle q't'|qt \rangle = \langle q'|e^{-iH(t'-t)}|q \rangle = N \int [dq] \exp\{i \int_t d\tau [\frac{m}{2}\dot{q}^2 - V(q)]\}$$

This is the path integral representation for the probability amplitude from initial state $|q,t\rangle$ to final state $\langle q',t'|$. The combination in the exponential is just the action for this simple case and we get

$$\langle q't'|qt\rangle == N \int [dq] \exp iS$$

2 Green's functions

In order to generalize this formula to case of field theory where the basic entity is the vacuum expectation value of field operators, we consider the time-ordered product of the coordinate operators in Heisenberg picture between ground state $|0\rangle$,

$$G(t_1, t_2) = \langle 0 | T(Q^H(t_1)Q^H(t_2)) | 0 \rangle$$

Inserting complete sets of states, we get

$$G(t_1, t_2) = \int dq dq' \langle 0|q', t' \rangle \langle q', t'| T(Q^H(t_1)Q^H(t_2))|q, t \rangle \langle q, t|0 \rangle$$

The matrix element

$$\langle 0|q,t\rangle = \phi_0(q)e^{-iE_0t} = \phi_0(q,t)$$

is the wavefunction for ground state. Consider the case

$$t' > t_1 > t_2 > t,$$

We can write

$$\langle q',t'|T(Q^{H}(t_{1})Q^{H}(t_{2}))|q,t\rangle = \langle q'|e^{-iH(t'-t_{1})}Q^{s}e^{-iH(t_{1}-t_{2})}Q^{s}e^{-iH(t_{2}-t)}|q\rangle$$

$$= \int \langle q' | e^{-iH(t'-t_1)} | q_1 \rangle q_1 \langle q_1 | e^{-iH(t_1-t_2)} | q_2 \rangle q_2 \langle q_2 | e^{-iH(t_2-t)} | q \rangle dq_1 dq_2$$

=
$$\int [\frac{dpdq}{2\pi}] q_1(t_1) q_2(t_2) exp\{ i \int_t^{t'} d\tau [p\dot{q} - H(p,q)] \}$$

It is not hard to see that for the other time sequence

$$t' > t_2 > t_1 > t,$$

we get the same formula, because the path integral orders the time sequence automatically through the division of time interval into small pieces. The Green's function is then

$$G(t_1, t_2) = \int dq dq' \phi_0(q', t') \phi_0^*(q, t) \int \left[\frac{dp dq}{2\pi}\right] q_1(t_1) q_2(t_2) exp\{i \int_t^{t'} d\tau [p\dot{q} - H(p, q)]\}$$
(1)

We can remove the ground state wavefunction $\phi_0(q,t)$ by the following procedure. Write

$$\langle q',t'|\theta(t_1,t_2)|q,t\rangle = \int dQdQ'\langle q',t'|Q',T'\rangle\langle Q',T'|\theta(t_1,t_2)|Q,T\rangle\langle Q,t|q,t\rangle$$

where

$$\theta(t_1, t_2) = T(Q^H(t_1)Q^H(t_2))$$

Let |n> be the energy eigenstate with energy E_n and wave function ϕ_n , i.e.,

$$H|n\rangle = E_n|n\rangle, \quad \langle q|n\rangle = \phi_n^*(q)$$

Then

$$\langle q',t'|Q',t'\rangle = \langle q'|e^{-iH(t'-T')}|Q'\rangle = \sum_{n} \langle q'|n\rangle e^{-iE_{n}(t'-T')} \langle n|Q'\rangle = \sum_{n} \phi_{n}^{*}(q')\phi_{n}(Q')e^{-iE_{n}(t'-T')} \langle n|Q'\rangle = \sum_{n} \phi_{n}^{*}(q')\phi_{n}(Q')e^{-iE_{n}(t'-T')} \langle n|Q'\rangle$$

To isolate the ground state wavefunction, we take an "unusual limit",

$$\lim_{t' \to -i\infty} \langle q', t' | Q', T' \rangle = \phi_0^*(q') \phi_0(Q') e^{-E_0|t'|} e^{iE_0T'}$$

Similarity,

$$\lim_{t \to i\infty} \langle Q, T | q, t \rangle = \phi_0(q) \phi_0^*(Q) e^{-E_0|t|} e^{-iE_0 T}$$

With these we can write

$$\lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \langle q', t' | \theta(t_1, t_2) | q, t \rangle = \int dQ dQ' \phi_0^*(q') \phi_0(Q') \langle Q', T' | \theta(t_1, t_2) | Q, T \rangle \phi_0^*(Q) \phi_0(q) e^{-E_0 |t'|} e^{iE_0 T'} e^{-iE_0 T} e^{-E_0 |t|} e^{iE_0 T'} e^{-iE_0 T} e^{-E_0 |t|} e^{iE_0 T'} e^{-iE_0 T} e^{-E_0 |t|} e^{iE_0 T'} e^{-iE_0 |t|} e^{iE_0 |t|} e^{iE_0 T'} e^{-iE_0 |t|} e^{iE_0 |t|} e^{i$$

$$=\phi_0^*(q')\phi_0(q)e^{-E_0|t'|}e^{-E_0|t|}G(t_1,t_2)$$

It is easy to see that

$$\lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \langle q', t' | q, t \rangle = \phi_0^*(q') \phi_0(q) e^{-E_0|t'|} e^{-E_0|t|}$$

Finally, the Green function can be written as,

$$G(t_1, t_2) = \lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \left[\frac{\langle q', t' | T(Q^H(t_1)Q^H(t_2)) | q, t \rangle}{\langle q', t' | q, t \rangle} \right]$$
$$= \lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dpdq}{2\pi} \right] q(t_1)q(t_2) \exp\{i \int_t^{t'} d\tau [p\dot{q} - H(p, q)]\}$$

This can generalized to n-point Green's function with the result,

$$G(t_1, t_2, ..., t_n) = \langle 0 | T(q(t_1)q(t_2)...q(t_n)) | 0 \rangle$$

$$= \lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dpdq}{2\pi} \right] q(t_1) q(t_2) \dots q(t_n) \exp\{i \int_t^{t'} d\tau [p\dot{q} - H(p,q)]\}$$

It is very useful to introduce generating functional for these n-point functions

$$W[J] = \lim_{\substack{t' \to -i\infty \\ t \to i\infty}} \frac{1}{\langle q', t' | q, t \rangle} \int \left[\frac{dpdq}{2\pi} \right] \exp\{i \int_{t}^{t'} d\tau [p\dot{q} - H(p,q) + J(\tau)q(\tau)]\}$$

Then

$$G(t_1, t_2, ..., t_n) = (-i)^n \left. \frac{\delta^n}{\delta J(t_1) ... \delta J(t_n)} \right|_{J=0}$$

The unphysical limit, $t' \rightarrow -i\infty, t \rightarrow i\infty$, should be interpreted in term of Eudidean Green's functions defined by

$$S^{(n)}(\tau_1, \tau_2, ..., \tau_n) = i^n G^{(n)}(-i\tau_1, -i\tau_2, ..., -i\tau_n)$$

Generating functional for $S^{(n)}$ is then

$$W_E\left[J\right] = \lim_{\substack{\tau' \to \infty \\ \tau \to -\infty}} \int \left[dq\right] \frac{1}{\langle q', t' | q, t \rangle} \exp\left\{\int_{\tau}^{\tau'} d\tau \left[-\frac{m}{2} \left(\frac{dq}{d\tau}\right)^2 - V(q) + J(\tau) q(\tau)\right]\right\}$$

Since we can adjust the zero point of V(q) such that

$$\frac{m}{2}\left(\frac{dq}{d\tau}\right)^2 + V(q) > 0$$

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant in the path integral which is independent of q will be canceled out in the generation functional.

3 Field Theory

We can extend the treatment for quantum mechanics to field theory of a scalar field $\phi(x)$ with following replacements,

$$\prod_{i=1}^{\infty} \left[dq_i dp_i \right] \longrightarrow \left[d\phi(x) d\pi(x) \right]$$
$$L(q, \dot{q}) \longrightarrow \int \mathcal{L}(\phi, \partial_{\mu} \phi) d^3x \qquad H(p, q) \longrightarrow \int \mathcal{H}(\phi, \pi) d^3x$$

For example, the generating functional for scalar field is of the form

$$W[J] \sim \int [d\phi] [d\pi] \exp\{i \int d^4x [\pi(x)\partial_0\phi - \mathcal{H}(\pi,\phi) + J(x)\phi(x)]\}$$
$$\sim \int [d\phi] \exp\{i \int d^4x [\mathcal{L}(\phi,\partial_\mu\phi) + J(x)\phi(x)]\}$$

Note that the functional derivative is defined by

$$\frac{\delta F\left[\phi\left(x\right)\right]}{\delta\phi\left(y\right)} = \lim_{\varepsilon \to 0} \frac{F\left[\phi\left(x\right) + \varepsilon\delta\left(x - y\right)\right] - F\left[\phi\left(x\right)\right]}{\varepsilon}$$

Then we see that

$$\frac{\delta W[J]}{\delta J(y)} = i \int [d\phi] \phi(y) \exp\{i \int d^4x [\mathcal{L}(\phi, \partial_\mu \phi) + J(x)\phi(x)]\}$$
(2)

and

$$\frac{\delta^2 W[J]}{\delta J(y_1)\,\delta J(y_2)} = (i)^2 \int [d\phi]\,\phi(y_1)\,\phi(y_2)\exp\{i\int d^4x [\mathcal{L}(\phi,\partial_\mu\phi) + J(x)\phi(x)]\}$$

Consider the example of $\lambda \phi^4$ theory

$$\mathcal{L}(\phi) = \mathcal{L}_0(\phi) + \mathcal{L}_1(\phi)$$

$$\mathcal{L}_0(\phi) = \frac{1}{2} (\partial_\lambda \phi)^2 - \frac{\mu^2}{2} \phi^2, \qquad \mathcal{L}_1(\phi) = -\frac{\lambda}{4!} \phi^4$$

For conveience we use Euclidean time to carry the computations. The generating functional

$$W[J] = \int [d\phi] \exp\{-\int d^4x \left[\frac{1}{2}\left(\frac{\partial\phi}{\partial\tau}\right)^2 + \frac{1}{2}\left(\stackrel{\longrightarrow}{\nabla}\phi\right)^2 + \frac{\mu^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 - J\phi\right]\}$$

can be written as

$$W[J] = \left[\exp \int d^4x \mathcal{L}_I\left(\frac{\delta}{\delta J(x)}\right)\right] W_0[J]$$

where

and

$$W_0[J] = \int [d\phi] \exp[-\frac{1}{2} \int d^4x d^4y \phi(x) K(x, y) \phi(y) + \int d^4z J(z) \phi(z)]$$

$$K(x,y) = \delta^4(x-y) \left(-\frac{\partial^2}{\partial \tau^2} - \overrightarrow{\nabla}^2 + \mu^2 \right)$$

We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source J(x). The Gaussian integral for many variables is

$$\int d\phi_1 d\phi_2 \dots d\phi_n \exp\left[-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_k J_k \phi_k\right] \sim \frac{1}{\sqrt{detK}} \exp\left[\frac{1}{2} \sum_{i,j} J_i (K^{-1})_{ij} J_j\right]$$

Apply this to the case of scalar fields,

$$W_0[J] = \exp\left[\frac{1}{2}\int d^4x d^4y J(x) \bigtriangleup(x,y)J(y)\right]$$

where

$$\int d^4y K(x,y) \bigtriangleup (y,z) = \delta^4 (x-z)$$

It is not difficult to see that

$$\Delta(x,y) = \int \frac{d^4k_E}{(2\pi)^4} \frac{e^{ik_E(x-y)}}{k_E^2 + \mu^2}$$

where $k_E = (ik_0, \vec{k})$, the Euclidean momentum Perturbative expansion in power of λ gives

$$W[J] = W_0[J] \{1 + \lambda w_1[J] + \lambda^2 w_2[J] + ...\}$$

where

$$\begin{split} w_1 &= -\frac{1}{4!} W_0^{-1} \left[J \right] \{ \int d^4 x \left[\frac{\delta}{\delta J(x)} \right]^4 \} W_0 \left[J \right] \\ w_2 &= -\frac{1}{2 \left(4! \right)^2} W_0^{-1} \left[J \right] \{ \int d^4 x \left[\frac{\delta}{\delta J(x)} \right]^4 \}^2 W_0 \left[J \right] \end{split}$$

Use the explicit form for $W_0[J]$,

$$\begin{split} W_0\left[J\right] &= 1 + \frac{1}{2} \int d^4x d^4y J(x) \bigtriangleup (x, y) J(y) + \\ &\left(\frac{1}{2}\right)^2 \frac{1}{2!} \int d^4y_1 d^4y_2 d^4y_3 d^4y_4 \left[J(y_1) \bigtriangleup (y_1, y_2) J(y_2) J(y_3) \bigtriangleup (y_3, y_4) J(y_4)\right] + \dots \end{split}$$

we can compute w_1 as follows

$$w_{1} = -\frac{1}{4!} \left[\int \triangle(x, y_{1}) \triangle(x, y_{2}) \triangle(x, y_{3}) \triangle(x, y_{4}) J(y_{1}) J(y_{2}) J(y_{3}) J(y_{4}) + 3! \triangle(x, y_{1}) \triangle(x, y_{2}) J(y_{1}) J(y_{2}) \triangle(x, x) \right]$$

where we have dropped all J independent terms, and all arguments (x_i, y_i) are integrated over. In this computation we have used the identity,

$$\frac{\delta}{\delta J(x)} \int d^4 y_1 J(y_1) f(y_1) = \int \delta^4 (x - y_1) d^4 y_1 f(y_1) = f(x)$$

graphical representation for w_1

The connected Green's function is

$$G^{(n)}(x_1, x_2, ..., x_n) = \frac{\delta^n \ln W[J]}{\delta J(x_1) \delta J(x_2) ... \delta J(x_n)} |_{J=0}$$

Thus replacing y_i by external x_i , we get contributions for 4-point, 2-point functions,

4 Grassmann algebra

For the quantization of fermion fields, using path integral, we need to integrate over anti-commuting c-number functions. This can be realized as elements of Grassmann algebra. We now give a simple introduction to this anticommuting algebra.

In an n-dimensional Grassmann algebra, the n generators $\theta_1, \theta_2, \theta_3, ..., \theta_n$ satisfy the anti-commutation relations,

$$\{\theta_i, \theta_j\} = 0$$
 $i, j = 1, 2, ..., n$

and every element can be expanded in a finite series,

$$P(\theta) = P_0 + P_{i_1}^{(1)}\theta_{i_1} + P_{i_1i_2}^{(2)}\theta_{i_1}\theta_{i_2} + \dots + P_{i_1\dots i_n}^{(n)}\theta_{i_1}\dots\theta_{i_n}$$

Simplest case:n=1

$$\{\theta, \theta\} = 0$$
 or $\theta^2 = 0$ $P(\theta) = P_0 + \theta P_1$

We can define the "differentiation" and "integration" as follows,

$$\frac{d}{d\theta}\theta = \theta \overleftarrow{\frac{d}{d\theta}} = 1 \implies \frac{d}{d\theta} P(\theta) = P_1$$

Integration is defined by translational invariant,

$$\int d\theta P\left(\theta\right) = \int d\theta P\left(\theta + \alpha\right)$$

where α is another Grassmann variable. This implies

$$\int d\theta = 0$$

Normalize the integral such that

$$\int d\theta \theta = 1$$

Then

$$\int d\theta P\left(\theta\right) = P_1 = \frac{d}{d\theta} P\left(\theta\right)$$

Consider a change of variable

$$\theta \to \theta = a + b\theta$$

Since

$$\int d\tilde{\theta} P\left(\tilde{\theta}\right) = \frac{d}{d\tilde{\theta}} P\left(\tilde{\theta}\right) = P_1$$
$$\int d\theta P\left(\tilde{\theta}\right) = \int d\theta \left[P_0 + \tilde{\theta} P_1\right] = \int d\theta \left[P_0 + (a+b\theta) P_1\right] = bP_1$$

we get

$$\int d\widetilde{\theta} P\left(\widetilde{\theta}\right) = \int d\theta \left(\frac{d\widetilde{\theta}}{d\theta}\right)^{-1} P\left(\widetilde{\theta}\left(\theta\right)\right)$$

Thus the "Jacobian" is the inverse of that for c-number integration.

It is easy to generalize to the case of n-dimensional Grassmann algebra,

$$\frac{d}{d\theta_i} \left(\theta_1, \theta_2, \theta_3, ..., \theta_n \right) = \delta_{i_1} \theta_2 ... \theta_n - \delta_{i_2} \theta_1 \theta_3 ... \theta_n + ... + (-1)^{n-1} \delta_{i_n} \theta_1 \theta_2 ... \theta_{n-1}$$

$$\{ d\theta_i, d\theta_j \} = 0$$

$$\int d\theta_i = 0 \qquad \int d\theta_i \theta_j = \delta_{i_j}$$

For a change of variables of the form

$$\theta_i = b_{ij}\theta_j$$

we have

$$\int d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 P\left(\tilde{\theta}\right) = \int d\theta_n \dots d\theta_1 \left[det \frac{d\tilde{\theta}}{d\theta}\right]^{-1} P\left(\tilde{\theta}\left(\theta\right)\right)$$

Proof:

$$\widetilde{\theta_1}\widetilde{\theta_2}...\widetilde{\theta_n} = b_{1i_1}b_{2i_2}...b_{ni_n}\theta_{i_1}...\theta_{i_n}$$

RHS is non-zero only if $i_1, i_2..., i_n$ are all different and we can write

$$\begin{split} \widetilde{\theta}_1 \widetilde{\theta}_2 ... \widetilde{\theta}_n &= b_{1i_1} b_{2i_2} ... b_{ni_n} \epsilon_{i_1, i_2 ..., i_n} \theta_{i_1} ... \theta_{i_n} \\ &= (\det b) \, \theta_1 \theta_2 \theta_3 ... \theta_n \end{split}$$

From the normalization condition,

$$1 = \int d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 \left(\tilde{\theta}_1 \tilde{\theta}_2 \dots \tilde{\theta}_n \right) = (\det b) \int d\tilde{\theta}_n d\tilde{\theta}_{n-1} \dots d\tilde{\theta}_1 \left(\theta_1 \theta_2 \theta_3 \dots \theta_n \right)$$

we see that

$$d\tilde{\theta}_n d\tilde{\theta}_{n-1} ... d\tilde{\theta}_1 = (\det b)^{-1} d\theta_1 ... d\theta_n$$

In field theory, we need to make use of Gaussian integral,

$$G(A) \equiv \int d\theta_n \dots d\theta_1 \exp\left(\frac{1}{2}\left(\theta, A\theta\right)\right) \qquad \text{where } (\theta, A\theta) = \theta_i A_{ij} \theta_j$$

First consider the simple case of n=2, where

$$A = \left(\begin{array}{cc} 0 & A_{12} \\ -A_{12} & 0 \end{array}\right)$$

Then

$$G(A) = \int d\theta_2 d\theta_1 \exp\left(\theta_1 \theta_2 A_{12}\right) \simeq \int d\theta_2 d\theta_1 \left(1 + \theta_1 \theta_2 A_{12}\right) = A_{12} = \sqrt{\det A}$$

The generalization to arbitrary **n** is

$$G(A) = \int d\theta_n \dots d\theta_1 \exp\left(\frac{1}{2}(\theta, A\theta)\right) = \sqrt{\det A}$$
 n even

and for "complex" Grassmann variables

$$\int d\theta_n d\overline{\theta_n} d\theta_{n-1} d\overline{\theta_{n-1}} ... d\theta_1 d\overline{\theta_1} exp\left(\overline{\theta}, A\theta\right) = \det A$$

For the Fermion fields, the generating functional is of the form,

$$W\left[\eta,\overline{\eta}\right] = \int \left[d\psi\left(x\right)\right] \left[d\overline{\psi}\left(x\right)\right] \exp\left\{i\int d^{4}x\left[\mathcal{L}\left(\psi,\overline{\psi}\right) + \overline{\psi}\eta + \overline{\eta}\psi\right]\right\}$$

It is not hard to see that if \mathcal{L} depends on $\psi, \overline{\psi}$ quadratically

$$\mathcal{L} = \left(\overline{\psi}, A\psi\right)$$

then we have

$$W = \int \left[d\psi\left(x\right)\right] \left[d\overline{\psi}\left(x\right)\right] exp\left\{\int d^{4}x\overline{\psi}A\psi\right\} = \det A$$