Path Integral method

Ling fong Li

Path integral formalism was originally developed to have close relationship to classical dynamics. For example, the transition amplitude in coordinate space is expressed in term of action S

$$
\langle f \mid i\rangle=\int[d x] e^{i S / \hbar}
$$

From this we can see that as $\hbar \rightarrow 0$, the trajectory with smallest action dominates, the action principle. This formalism uses the ordinary functions not the operators. Later in the study of non-Abelian gauge theory, the need for removing unphysical degrees of freedom can be more easily accomodated in the path integral formalism by imposing constraints in the integral.

1 Quantum Mechanics in 1-dimension

In the quantum mechanics, the transition matrix element from initial state $|q, t\rangle$ to final state $\left\langle q^{\prime}, t^{\prime}\right|$, can be written as,

$$
\left\langle q^{\prime} t^{\prime} \mid q t\right\rangle=\left\langle\left. q\right|^{\prime-i H\left(t-t^{\prime}\right)} \mid q\right\rangle
$$

where $|q\rangle^{\prime} s$ are eigenstates of the position operator Q in the Schrodinger picture,

$$
Q|q\rangle=q|q\rangle
$$

and $|q, t\rangle$ denotes the corresponding state in Heisenberg picture,

$$
|q, t\rangle=e^{i H t}|q\rangle
$$

In the path integral formalism, this transition matrix element can be written as

$$
\left\langle q^{\prime} t^{\prime} \mid q t\right\rangle=N \int[d q] \exp \left\{i \int_{t}^{t^{\prime}} d \tau L(q, \dot{q})\right\}
$$

We now explain how this formula come about and what this formula means. First divide the interval $(t \prime, t)$ into n intervals with spacing,

$$
\delta t=\frac{t^{\prime}-t}{n}
$$

and write the transition matrix element as,

$$
\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle=\int d q_{1} \ldots d q_{n-1}\left\langle q^{\prime}\right| e^{-i H \delta t}\left|q_{n-1}\right\rangle\left\langle q_{n-1}\right| e^{-i H \delta t}\left|q_{n-2}\right\rangle \ldots\left\langle q_{1}\right| e^{-i H \delta t}|q\rangle
$$

For δt small enough, we can approximate each of matrix elements as

$$
\left\langle q^{\prime}\right| e^{-i H \delta t}|q\rangle=\left\langle q^{\prime}\right|(1-i H(P, Q) \delta t)|q\rangle+O\left((\delta t)^{2}\right)+\ldots
$$

If we take the Hamiltonian in the simple form,

$$
H(P, Q)=\frac{p^{2}}{2 m}+V(Q)
$$

then

$$
\begin{aligned}
\left\langle q^{\prime}\right| H|q\rangle & =\left\langle q^{\prime}\right| \frac{p^{2}}{2 m}|q\rangle+V\left(\frac{q+q^{\prime}}{2}\right) \delta\left(q-q^{\prime}\right) \\
& =\int\left\langle q^{\prime}\right| \frac{p^{2}}{2 m}|p\rangle\langle p \mid q\rangle\left(\frac{d p}{2 \pi}\right)+V\left(\frac{q+q^{\prime}}{2}\right) \int \frac{d p}{2 \pi} e^{i p\left(q^{\prime}-q\right)} \\
& =\int \frac{d p}{2 \pi} e^{i p\left(q^{\prime}-q\right)}\left[\frac{p^{2}}{2 m}+V\left(\frac{q+q^{\prime}}{2}\right)\right]
\end{aligned}
$$

where we have used

$$
\langle p \mid q\rangle=e^{-i p q}
$$

which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

$$
\left\langle q^{\prime}\right| e^{-i H \delta t}|q\rangle \simeq \int \frac{d p}{2 \pi} e^{i p\left(q^{\prime}-q\right)}\left\{1-i \delta t\left[\frac{p^{2}}{2 m}+V\left(\frac{q+q^{\prime}}{2}\right)\right]\right\} \simeq \int \frac{d p}{2 \pi} \exp \left[i p\left(q^{\prime}-q\right)\right] \exp \left[-i \delta t\left[\frac{p^{2}}{2 m}+V\left(\frac{q+q^{\prime}}{2}\right)\right]\right]
$$

The whole transition matrix element can then be written as

$$
\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle \cong \int\left(\frac{d p_{1}}{2 \pi}\right) \ldots\left(\frac{d p_{n}}{2 \pi}\right) \int d q_{1} \ldots d q_{n-1} \exp \left\{i\left[\sum_{i=1}^{n} p_{i}\left(q_{i}-q_{i-1}\right)-(\delta t) H\left(p_{i}, \frac{q_{i}+q_{i+1}}{2}\right)\right]\right\}
$$

This can be written formally as

$$
\begin{gathered}
\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle=\int\left[\frac{d p d q}{2 \pi}\right] \exp \left\{i \int_{t}^{t^{\prime}} d t[p \dot{q}-H(p, q)]\right\} \\
\equiv \lim _{n \rightarrow \infty} \int\left(\frac{d p_{1}}{2 \pi}\right) \ldots\left(\frac{d p_{n}}{2 \pi}\right) \int d q_{1} \ldots d q_{n-1} \exp \left\{i \sum_{i=1} \delta t\left[p_{i}\left(\frac{q_{i}-q_{i-1}}{\delta t}\right)-H\left(p_{i}, \frac{q_{i}+q_{i+1}}{2}\right)\right]\right\}
\end{gathered}
$$

In most case, Hamiltonian depends quadractically on p. We can use the formula

$$
\int_{-\infty}^{+\infty} \frac{d x}{2 \pi} e^{-a x^{2}+b x}=\frac{1}{\sqrt{4 \pi a}} e^{\frac{b^{2}}{4 a}}
$$

to carry out the integration over momentum to get

$$
\int \frac{d p_{i}}{2 \pi} \exp \left[\frac{-i \delta t}{2 m} p_{i}^{2}+i p_{i}\left(q_{i}-q_{i-1}\right)\right]=\left(\frac{m}{2 \pi i \delta t}\right)^{1 / 2} \exp \left[\frac{i m\left(q_{i}-q_{i-1}\right)^{2}}{2 \delta t}\right]
$$

Then

$$
\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle=\lim _{n \rightarrow \infty}\left(\frac{m}{2 \pi i \delta t}\right)^{n / 2} \int \prod_{i=1}^{n-1} d q_{i} \exp \left\{i \sum_{i=1}^{n} \delta t\left[\frac{m}{2}\left(\frac{q_{i}-q_{i-1}}{\delta t}\right)^{2}-V\right]\right\}
$$

or

$$
\left\langle q^{\prime} t^{\prime} \mid q t\right\rangle=\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t\right)}|q\rangle=N \int[d q] \exp \left\{i \int_{t}^{t^{\prime}} d \tau\left[\frac{m}{2} \dot{q}^{2}-V(q)\right]\right\}
$$

This is the path integral representation for the probability amplitude from initial state $|q, t\rangle$ to final state $\left\langle q^{\prime}, t^{\prime}\right|$. The combination in the exponential is just the action for this simple case and we get

$$
\left\langle q^{\prime} t^{\prime} \mid q t\right\rangle==N \int[d q] \exp i S
$$

2 Green's functions

In order to generalize this formula to case of field theory where the basic entity is the vacuum expectation value of field operators, we consider the time-ordered product of the coordinate operators in Heisenberg picture between ground state $|0\rangle$,

$$
G\left(t_{1}, t_{2}\right)=\langle 0| T\left(Q^{H}\left(t_{1}\right) Q^{H}\left(t_{2}\right)\right)|0\rangle
$$

Inserting complete sets of states, we get

$$
G\left(t_{1}, t_{2}\right)=\int d q d q^{\prime}\left\langle 0 \mid q^{\prime}, t^{\prime}\right\rangle\left\langle q^{\prime}, t^{\prime}\right| T\left(Q^{H}\left(t_{1}\right) Q^{H}\left(t_{2}\right)\right)|q, t\rangle\langle q, t \mid 0\rangle
$$

The matrix element

$$
\langle 0 \mid q, t\rangle=\phi_{0}(q) e^{-i E_{0} t}=\phi_{0}(q, t)
$$

is the wavefunction for ground state. Consider the case

$$
t^{\prime}>t_{1}>t_{2}>t
$$

We can write

$$
\left\langle q^{\prime}, t^{\prime}\right| T\left(Q^{H}\left(t_{1}\right) Q^{H}\left(t_{2}\right)\right)|q, t\rangle=\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t_{1}\right)} Q^{s} e^{-i H\left(t_{1}-t_{2}\right)} Q^{s} e^{-i H\left(t_{2}-t\right)}|q\rangle
$$

$$
\begin{gathered}
=\int\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-t_{1}\right)}\left|q_{1}\right\rangle q_{1}\left\langle q_{1}\right| e^{-i H\left(t_{1}-t_{2}\right)}\left|q_{2}\right\rangle q_{2}\left\langle q_{2}\right| e^{-i H\left(t_{2}-t\right)}|q\rangle d q_{1} d q_{2} \\
=\int\left[\frac{d p d q}{2 \pi}\right] q_{1}\left(t_{1}\right) q_{2}\left(t_{2}\right) \exp \left\{i \int_{t}^{t^{\prime}} d \tau[p \dot{q}-H(p, q)]\right\}
\end{gathered}
$$

It is not hard to see that for the other time sequence

$$
t^{\prime}>t_{2}>t_{1}>t
$$

we get the same formula, because the path integral orders the time sequence automatically through the division of time interval into small pieces. The Green's function is then

$$
\begin{equation*}
G\left(t_{1}, t_{2}\right)=\int d q d q^{\prime} \phi_{0}\left(q^{\prime}, t^{\prime}\right) \phi_{0}^{*}(q, t) \int\left[\frac{d p d q}{2 \pi}\right] q_{1}\left(t_{1}\right) q_{2}\left(t_{2}\right) \exp \left\{i \int_{t}^{t^{\prime}} d \tau[p \dot{q}-H(p, q)]\right\} \tag{1}
\end{equation*}
$$

We can remove the ground state wavefunction $\phi_{0}(q, t)$ by the following procedure. Write

$$
\left\langle q^{\prime}, t^{\prime}\right| \theta\left(t_{1}, t_{2}\right)|q, t\rangle=\int d Q d Q^{\prime}\left\langle q^{\prime}, t^{\prime} \mid Q^{\prime}, T^{\prime}\right\rangle\left\langle Q^{\prime}, T^{\prime}\right| \theta\left(t_{1}, t_{2}\right)|Q, T\rangle\langle Q, t \mid q, t\rangle
$$

where

$$
\theta\left(t_{1}, t_{2}\right)=T\left(Q^{H}\left(t_{1}\right) Q^{H}\left(t_{2}\right)\right)
$$

Let $\mid n>$ be the energy eigenstate with energy E_{n} and wave function ϕ_{n}, i.e.,

$$
H\left|n>=E_{n}\right| n>, \quad\langle q \mid n\rangle=\phi_{n}^{*}(q)
$$

Then

$$
\left\langle q^{\prime}, t^{\prime} \mid Q^{\prime}, t^{\prime}\right\rangle=\left\langle q^{\prime}\right| e^{-i H\left(t^{\prime}-T^{\prime}\right)}\left|Q^{\prime}\right\rangle=\sum_{n}\left\langle q^{\prime} \mid n\right\rangle e^{-i E_{n}\left(t^{\prime}-T^{\prime}\right)}\left\langle n \mid Q^{\prime}\right\rangle=\sum_{n} \phi_{n}^{*}\left(q^{\prime}\right) \phi_{n}\left(Q^{\prime}\right) e^{-i E_{n}\left(t^{\prime}-T^{\prime}\right)}
$$

To isolate the ground state wavefunction, we take an "unusual limit",

$$
\lim _{t^{\prime} \rightarrow-i \infty}\left\langle q^{\prime}, t^{\prime} \mid Q^{\prime}, T^{\prime}\right\rangle=\phi_{0}^{*}\left(q^{\prime}\right) \phi_{0}\left(Q^{\prime}\right) e^{-E_{0}\left|t^{\prime}\right|} e^{i E_{0} T^{\prime}}
$$

Similarity,

$$
\lim _{t \rightarrow i \infty}\langle Q, T \mid q, t\rangle=\phi_{0}(q) \phi_{0}^{*}(Q) e^{-E_{0}|t|} e^{-i E_{0} T}
$$

With these we can write

$$
\begin{gathered}
\lim _{\substack{t^{\prime} \rightarrow-i \infty \\
t \rightarrow i \infty}}\left\langle q^{\prime}, t^{\prime}\right| \theta\left(t_{1}, t_{2}\right)|q, t\rangle=\int d Q d Q^{\prime} \phi_{0}^{*}\left(q^{\prime}\right) \phi_{0}\left(Q^{\prime}\right)\left\langle Q^{\prime}, T^{\prime}\right| \theta\left(t_{1}, t_{2}\right)|Q, T\rangle \phi_{0}^{*}(Q) \phi_{0}(q) e^{-E_{0}\left|t^{\prime}\right|} e^{i E_{0} T^{\prime}} e^{-i E_{0} T} e^{-E_{0}|t|} \\
=\phi_{0}^{*}\left(q^{\prime}\right) \phi_{0}(q) e^{-E_{0}\left|t^{\prime}\right|} e^{-E_{0}|t|} G\left(t_{1}, t_{2}\right)
\end{gathered}
$$

It is easy to see that

$$
\lim _{\substack{t^{\prime} \rightarrow-i \infty \\ t \rightarrow i \infty}}\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle=\phi_{0}^{*}\left(q^{\prime}\right) \phi_{0}(q) e^{-E_{0}\left|t^{\prime}\right|} e^{-E_{0}|t|}
$$

Finally, the Green function can be written as,

$$
\begin{gathered}
G\left(t_{1}, t_{2}\right)=\lim _{\substack{t^{\prime} \rightarrow-i \infty \\
t \rightarrow i \infty}}\left[\frac{\left\langle q^{\prime}, t^{\prime}\right| T\left(Q^{H}\left(t_{1}\right) Q^{H}\left(t_{2}\right)\right)|q, t\rangle}{\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle}\right] \\
=\lim _{\substack{t^{\prime} \rightarrow-i \infty \\
t \rightarrow i \infty}} \frac{1}{\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle} \int\left[\frac{d p d q}{2 \pi}\right] q\left(t_{1}\right) q\left(t_{2}\right) \exp \left\{i \int_{t}^{t^{\prime}} d \tau[p \dot{q}-H(p, q)]\right\}
\end{gathered}
$$

This can generalized to n-point Green's function with the result,

$$
\begin{gathered}
G\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\langle 0| T\left(q\left(t_{1}\right) q\left(t_{2}\right) \ldots q\left(t_{n}\right)\right)|0\rangle \\
=\lim _{\substack{t^{\prime} \rightarrow-i \infty \\
t \rightarrow i \infty}} \frac{1}{\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle} \int\left[\frac{d p d q}{2 \pi}\right] q\left(t_{1}\right) q\left(t_{2}\right) \ldots q\left(t_{n}\right) \exp \left\{i \int_{t}^{t^{\prime}} d \tau[p \dot{q}-H(p, q)]\right\}
\end{gathered}
$$

It is very useful to introduce generating functional for these n-point functions

$$
W[J]=\lim _{\substack{t^{\prime} \rightarrow-i \infty \\ t \rightarrow i \infty}} \frac{1}{\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle} \int\left[\frac{d p d q}{2 \pi}\right] \exp \left\{i \int_{t}^{t^{\prime}} d \tau[p \dot{q}-H(p, q)+J(\tau) q(\tau)]\right\}
$$

Then

$$
G\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left.(-i)^{n} \frac{\delta^{n}}{\delta J\left(t_{1}\right) \ldots \delta J\left(t_{n}\right)}\right|_{J=0}
$$

The unphysical limit, $t^{\prime} \rightarrow-i \infty, t \rightarrow i \infty$, should be interpreted in term of Eudidean Green's functions defined by

$$
S^{(n)}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)=i^{n} G^{(n)}\left(-i \tau_{1},-i \tau_{2}, \ldots,-i \tau_{n}\right)
$$

Generating functional for $S^{(n)}$ is then

$$
W_{E}[J]=\lim _{\substack{\tau^{\prime} \rightarrow \infty \\ \tau \rightarrow-\infty}} \int[d q] \frac{1}{\left\langle q^{\prime}, t^{\prime} \mid q, t\right\rangle} \exp \left\{\int_{\tau}^{\tau^{\prime}} d \tau "\left[-\frac{m}{2}\left(\frac{d q}{d \tau "}\right)^{2}-V(q)+J\left(\tau^{\prime \prime}\right) q\left(\tau^{"}\right)\right]\right\}
$$

Since we can adjust the zero point of $V(q)$ such that

$$
\frac{m}{2}\left(\frac{d q}{d \tau}\right)^{2}+V(q)>0
$$

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant in the path integral which is independent of q will be canceled out in the generation functional.

3 Field Theory

We can extend the treatment for quantum mechanics to field theory of a scalar field $\phi(x)$ with following replacements,

$$
\begin{gathered}
\prod_{i=1}^{\infty}\left[d q_{i} d p_{i}\right] \longrightarrow[d \phi(x) d \pi(x)] \\
L(q, \dot{q}) \longrightarrow \int \mathcal{L}\left(\phi, \partial_{\mu} \phi\right) d^{3} x \quad H(p, q) \longrightarrow \int \mathcal{H}(\phi, \pi) d^{3} x
\end{gathered}
$$

For example, the generating functional for scalar field is of the form

$$
\begin{aligned}
W[J] \backsim \int & {[d \phi][d \pi] \exp \left\{i \int d^{4} x\left[\pi(x) \partial_{0} \phi-\mathcal{H}(\pi, \phi)+J(x) \phi(x)\right]\right\} } \\
& \sim \int[d \phi] \exp \left\{i \int d^{4} x\left[\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)+J(x) \phi(x)\right]\right\}
\end{aligned}
$$

Note that the functional derivative is defined by

$$
\frac{\delta F[\phi(x)]}{\delta \phi(y)}=\lim _{\varepsilon \rightarrow 0} \frac{F[\phi(x)+\varepsilon \delta(x-y)]-F[\phi(x)]}{\varepsilon}
$$

Then we see that

$$
\begin{equation*}
\frac{\delta W[J]}{\delta J(y)}=i \int[d \phi] \phi(y) \exp \left\{i \int d^{4} x\left[\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)+J(x) \phi(x)\right]\right\} \tag{2}
\end{equation*}
$$

and

$$
\frac{\delta^{2} W[J]}{\delta J\left(y_{1}\right) \delta J\left(y_{2}\right)}=(i)^{2} \int[d \phi] \phi\left(y_{1}\right) \phi\left(y_{2}\right) \exp \left\{i \int d^{4} x\left[\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)+J(x) \phi(x)\right]\right\}
$$

Consider the example of $\lambda \phi^{4}$ theory

$$
\begin{gathered}
\mathcal{L}(\phi)=\mathcal{L}_{0}(\phi)+\mathcal{L}_{1}(\phi) \\
\mathcal{L}_{0}(\phi)=\frac{1}{2}\left(\partial_{\lambda} \phi\right)^{2}-\frac{\mu^{2}}{2} \phi^{2}, \quad \mathcal{L}_{1}(\phi)=-\frac{\lambda}{4!} \phi^{4}
\end{gathered}
$$

For conveience we use Euclidean time to carry the computations. The generating functional

$$
W[J]=\int[d \phi] \exp \left\{-\int d^{4} x\left[\frac{1}{2}\left(\frac{\partial \phi}{\partial \tau}\right)^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+\frac{\mu^{2}}{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}-J \phi\right]\right\}
$$

can be written as

$$
W[J]=\left[\exp \int d^{4} x \mathcal{L}_{I}\left(\frac{\delta}{\delta J(x)}\right)\right] W_{0}[J]
$$

where

$$
W_{0}[J]=\int[d \phi] \exp \left[-\frac{1}{2} \int d^{4} x d^{4} y \phi(x) K(x, y) \phi(y)+\int d^{4} z J(z) \phi(z)\right]
$$

and

$$
K(x, y)=\delta^{4}(x-y)\left(-\frac{\partial^{2}}{\partial \tau^{2}}-\vec{\nabla}^{2}+\mu^{2}\right)
$$

We have used $\mathrm{Eq}(2)$ to write the interaction term in terms of function derivative with repect to the source $J(x)$. The Gaussian integral for many variables is

$$
\int d \phi_{1} d \phi_{2} \ldots d \phi_{n} \exp \left[-\frac{1}{2} \sum_{i, j} \phi_{i} K_{i j} \phi_{j}+\sum_{k} J_{k} \phi_{k}\right] \sim \frac{1}{\sqrt{\operatorname{det} K}} \exp \left[\frac{1}{2} \sum_{i, j} J_{i}\left(K^{-1}\right)_{i j} J_{j}\right]
$$

Apply this to the case of scalar fields,

$$
W_{0}[J]=\exp \left[\frac{1}{2} \int d^{4} x d^{4} y J(x) \triangle(x, y) J(y)\right]
$$

where

$$
\int d^{4} y K(x, y) \triangle(y, z)=\delta^{4}(x-z)
$$

It is not difficult to see that

$$
\triangle(x, y)=\int \frac{d^{4} k_{E}}{(2 \pi)^{4}} \frac{e^{i k_{E}(x-y)}}{k_{E}^{2}+\mu^{2}}
$$

where $k_{E}=\left(i k_{0}, \vec{k}\right)$,the Euclidean momentum
Perturbative expansion in power of λ gives

$$
W[J]=W_{0}[J]\left\{1+\lambda w_{1}[J]+\lambda^{2} w_{2}[J]+\ldots\right\}
$$

where

$$
\begin{gathered}
w_{1}=-\frac{1}{4!} W_{0}^{-1}[J]\left\{\int d^{4} x\left[\frac{\delta}{\delta J(x)}\right]^{4}\right\} W_{0}[J] \\
w_{2}=-\frac{1}{2(4!)^{2}} W_{0}^{-1}[J]\left\{\int d^{4} x\left[\frac{\delta}{\delta J(x)}\right]^{4}\right\}^{2} W_{0}[J]
\end{gathered}
$$

Use the explicit form for $W_{0}[J]$,

$$
\begin{aligned}
W_{0}[J]= & 1+\frac{1}{2} \int d^{4} x d^{4} y J(x) \triangle(x, y) J(y)+ \\
& \left(\frac{1}{2}\right)^{2} \frac{1}{2!} \int d^{4} y_{1} d^{4} y_{2} d^{4} y_{3} d^{4} y_{4}\left[J\left(y_{1}\right) \triangle\left(y_{1}, y_{2}\right) J\left(y_{2}\right) J\left(y_{3}\right) \triangle\left(y_{3}, y_{4}\right) J\left(y_{4}\right)\right]+\ldots
\end{aligned}
$$

we can compute w_{1} as follows

$w_{1}=-\frac{1}{4!}\left[\int \triangle\left(x, y_{1}\right) \triangle\left(x, y_{2}\right) \triangle\left(x, y_{3}\right) \triangle\left(x, y_{4}\right) J\left(y_{1}\right) J\left(y_{2}\right) J\left(y_{3}\right) J\left(y_{4}\right)+3!\triangle\left(x, y_{1}\right) \triangle\left(x, y_{2}\right) J\left(y_{1}\right) J\left(y_{2}\right) \triangle(x, x)\right]$
where we have dropped all J independent terms, and all arguments $\left(x_{i}, y_{i}\right)$ are integrated over. In this computation we have used the identity,

$$
\frac{\delta}{\delta J(x)} \int d^{4} y_{1} J\left(y_{1}\right) f\left(y_{1}\right)=\int \delta^{4}\left(x-y_{1}\right) d^{4} y_{1} f\left(y_{1}\right)=f(x)
$$

graphical representation for w_{1}
The connected Green's function is

$$
G^{(n)}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\left.\frac{\delta^{n} \ln W[J]}{\delta J\left(x_{1}\right) \delta J\left(x_{2}\right) \ldots \delta J\left(x_{n}\right)}\right|_{J=0}
$$

Thus replacing y_{i} by external x_{i}, we get contributions for 4-point,2-point functions,

4 Grassmann algebra

For the quantization of fermion fields, using path integral, we need to integrate over anti-commuting c-number functions. This can be realized as elements of Grassmann algebra. We now give a simple introduction to this anticommuting algebra.

In an n-dimensional Grassmann algebra, the n generators $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ satisfy the anti-commutation relations,

$$
\left\{\theta_{i}, \theta_{j}\right\}=0 \quad i, j=1,2, \ldots, n
$$

and every element can be expanded in a finite series,

$$
P(\theta)=P_{0}+P_{i_{1}}^{(1)} \theta_{i_{1}}+P_{i_{1} i_{2}}^{(2)} \theta_{i_{1}} \theta_{i_{2}}+\ldots+P_{i_{1} \ldots i_{n}}^{(n)} \theta_{i_{1} \ldots \theta_{i_{n}}}
$$

Simplest case: $=1$

$$
\{\theta, \theta\}=0 \quad \text { or } \quad \theta^{2}=0 \quad P(\theta)=P_{0}+\theta P_{1}
$$

We can define the "differentiation" and "integration" as follows,

$$
\frac{d}{d \theta} \theta=\theta \frac{\overleftarrow{d}}{d \theta}=1 \quad \Longrightarrow \frac{d}{d \theta} P(\theta)=P_{1}
$$

Integration is defined by translational invariant,

$$
\int d \theta P(\theta)=\int d \theta P(\theta+\alpha)
$$

where α is another Grassmann variable. This implies

$$
\int d \theta=0
$$

Normalize the integral such that

$$
\int d \theta \theta=1
$$

Then

$$
\int d \theta P(\theta)=P_{1}=\frac{d}{d \theta} P(\theta)
$$

Consider a change of variable

$$
\theta \rightarrow \widetilde{\theta}=a+b \theta
$$

Since

$$
\begin{gathered}
\int d \widetilde{\theta} P(\widetilde{\theta})=\frac{d}{\widetilde{d \theta}} P(\widetilde{\theta})=P_{1} \\
\int d \theta P(\widetilde{\theta})=\int d \theta\left[P_{0}+\widetilde{\theta} P_{1}\right]=\int d \theta\left[P_{0}+(a+b \theta) P_{1}\right]=b P_{1}
\end{gathered}
$$

we get

$$
\int \widetilde{d} P(\widetilde{\theta})=\int d \theta\left(\frac{d \widetilde{\theta}}{d \theta}\right)^{-1} P(\widetilde{\theta}(\theta))
$$

Thus the "Jacobian" is the inverse of that for c-number integration.
It is easy to generalize to the case of n-dimensional Grassmann algebra,

$$
\begin{gathered}
\frac{d}{d \theta_{i}}\left(\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}\right)=\delta_{i_{1}} \theta_{2} \ldots \theta_{n}-\delta_{i_{2}} \theta_{1} \theta_{3} \ldots \theta_{n}+\ldots+(-1)^{n-1} \delta_{i n} \theta_{1} \theta_{2} \ldots \theta_{n-1} \\
\left\{d \theta_{i}, d \theta_{j}\right\}=0 \\
\int d \theta_{i}=0 \quad \int d \theta_{i} \theta_{j}=\delta_{i j}
\end{gathered}
$$

For a change of variables of the form

$$
\widetilde{\theta_{i}}=b_{i j} \theta_{j}
$$

we have

$$
\int \tilde{d} \widetilde{\theta}_{n} \widetilde{d}_{n-1} \ldots \widetilde{d \theta}_{1} P(\widetilde{\theta})=\int d \theta_{n} \ldots d \theta_{1}\left[\operatorname{det} \frac{\widetilde{d \theta}}{d \theta}\right]^{-1} P(\widetilde{\theta}(\theta))
$$

Proof:

$$
\widetilde{\theta_{1}} \widetilde{\theta_{2}} \ldots \widetilde{\theta_{n}}=b_{1 i_{1}} b_{2 i_{2}} \ldots b_{n i_{n}} \theta_{i_{1}} \ldots \theta_{i_{n}}
$$

RHS is non-zero only if $i_{1}, i_{2} \ldots, i_{n}$ are all different and we can write

$$
\begin{aligned}
\widetilde{\theta}_{1} \widetilde{\theta}_{2} \ldots \widetilde{\theta}_{n} & =b_{1 i_{1}} b_{2 i_{2}} \ldots b_{n i_{n}} \epsilon_{i_{1}, i_{2} \ldots, i_{n}} \theta_{i_{1}} \ldots \theta_{i_{n}} \\
& =(\operatorname{det} b) \theta_{1} \theta_{2} \theta_{3} \ldots \theta_{n}
\end{aligned}
$$

From the normalization condition,

$$
1=\int \widetilde{d \theta_{n}} d \widetilde{\theta}_{n-1} \ldots \widetilde{\theta}_{1}\left(\widetilde{\theta}_{1} \widetilde{\theta}_{2} \ldots \widetilde{\theta}_{n}\right)=(\operatorname{det} b) \int \widetilde{d}_{n} \widetilde{d}_{n-1} \ldots \widetilde{d}_{1}\left(\theta_{1} \theta_{2} \theta_{3} \ldots \theta_{n}\right)
$$

we see that

$$
\widetilde{d}_{n} \widetilde{\theta}_{n-1} \ldots d \widetilde{\theta}_{1}=(\operatorname{det} b)^{-1} d \theta_{1} \ldots d \theta_{n}
$$

In field theory, we need to make use of Gaussian integral,

$$
G(A) \equiv \int d \theta_{n} \ldots d \theta_{1} \exp \left(\frac{1}{2}(\theta, A \theta)\right) \quad \text { where }(\theta, A \theta)=\theta_{i} A_{i j} \theta_{j}
$$

First consider the simple case of $n=2$, where

$$
A=\left(\begin{array}{cc}
0 & A_{12} \\
-A_{12} & 0
\end{array}\right)
$$

Then

$$
G(A)=\int d \theta_{2} d \theta_{1} \exp \left(\theta_{1} \theta_{2} A_{12}\right) \simeq \int d \theta_{2} d \theta_{1}\left(1+\theta_{1} \theta_{2} A_{12}\right)=A_{12}=\sqrt{\operatorname{det} A}
$$

The generalization to arbitrary n is

$$
G(A)=\int d \theta_{n} \ldots d \theta_{1} \exp \left(\frac{1}{2}(\theta, A \theta)\right)=\sqrt{\operatorname{det} A} \quad \text { n even }
$$

and for "complex" Grassmann variables

$$
\int d \theta_{n} d \overline{\theta_{n}} d \theta_{n-1} d \bar{\theta}_{n-1} \ldots d \theta_{1} d \overline{\theta_{1}} \exp (\bar{\theta}, A \theta)=\operatorname{det} A
$$

For the Fermion fields, the generating functional is of the form,

$$
W[\eta, \bar{\eta}]=\int[d \psi(x)][d \bar{\psi}(x)] \exp \left\{i \int d^{4} x[\mathcal{L}(\psi, \bar{\psi})+\bar{\psi} \eta+\bar{\eta} \psi]\right\}
$$

It is not hard to see that if \mathcal{L} depends on $\psi, \bar{\psi}$ quadratically

$$
\mathcal{L}=(\bar{\psi}, A \psi)
$$

then we have

$$
W=\int[d \psi(x)][d \bar{\psi}(x)] \exp \left\{\int d^{4} x \bar{\psi} A \psi\right\}=\operatorname{det} A
$$

