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Path integral formalism was originally developed to have close relationship to classical dynamics. For example,
the transition amplitude in coordinate space is expressed in term of action S

hf jii =
Z
[dx] eiS=~

From this we can see that as ~ ! 0; the trajectory with smallest action dominates, the action principle. This
formalism uses the ordinary functions not the operators. Later in the study of non-Abelian gauge theory, the need
for removing unphysical degrees of freedom can be more easily accomodated in the path integral formalism by
imposing constraints in the integral.

1 Quantum Mechanics in 1-dimension

In the quantum mechanics, the transition matrix element from initial state jq; ti to �nal state hq0; t0j, can be written
as,

hq0t0jqti = hqj0�iH(t�t
0)jqi

where jqi0s are eigenstates of the position operator Q in the Schrodinger picture,

Qjqi = qjqi

and jq; ti denotes the corresponding state in Heisenberg picture,

jq; ti = eiHtjqi

In the path integral formalism,this transition matrix element can be written as

hq0t0jqti = N

Z
[dq]expfi

Z t0

t

d�L(q; _q)g

We now explain how this formula come about and what this formula means. First divide the interval (t0; t) into n
intervals with spacing,

�t =
t0 � t
n

and write the transition matrix element as,

hq0je�iH(t
0�t)jqi =

Z
dq1:::dqn�1hq0je�iH�tjqn�1ihqn�1je�iH�tjqn�2i:::hq1je�iH�tjqi

For �t small enough, we can approximate each of matrix elements as

hq0je�iH�tjqi = hq0j(1� iH(P;Q)�t)jqi+O
�
(�t)

2
�
+ :::

If we take the Hamiltonian in the simple form,

H(P;Q) =
p2

2m
+ V (Q)

then
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2m
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where we have used
hpjqi = e�ipq

which is the momentum eigenfunction in coordinate space. Exponentiation of this in�nitesmal result gives

hq0je�iH�tjqi '
Z

dp

2�
eip(q

0�q)f1� i�t[ p
2

2m
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2
)]g '
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2�
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The whole transition matrix element can then be written as

hq0je�iH(t
0�t)jqi �=

Z
(
dp1
2�
):::(

dpn
2�
)

Z
dq1:::dqn�1 expfi

"
nX
i=1

pi(qi � qi�1)� (�t)H(pi;
qi + qi+1

2
)

#
g

This can be written formally as

hq0je�iH(t
0�t)jqi =

Z
[
dpdq

2�
]expfi

Z t0

t

dt[p _q �H(p; q)]g
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In most case, Hamiltonian depends quadractically on p. We can use the formulaZ +1

�1

dx
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e�ax
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1p
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e
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to carry out the integration over momentum to getZ
dpi
2�

exp[
�i�t
2m

p2i + ipi(qi � qi�1)] = (
m

2�i�t
)1=2exp[
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Then

hq0je�iH(t
0�t)jqi = lim

n!1
(
m

2�i�t
)n=2

Z
n�1
�
i=1

dqi expfi
n

�
i=1
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2
(
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or

hq0t0jqti = hq0je�iH(t
0�t)jqi = N

Z
[dq] expfi

Z t0

t

d� [
m

2
_q2 � V (q)]g

This is the path integral representation for the probability amplitude from initial state jq; ti to �nal state hq0; t0j. The
combination in the exponential is just the action for this simple case and we get

hq0t0jqti == N

Z
[dq] exp iS

2 Green�s functions

In order to generalize this formula to case of �eld theory where the basic entity is the vacuum expectation value
of �eld operators, we consider the time-ordered product of the coordinate operators in Heisenberg picture between
ground state j0i,

G(t1; t2) = h0jT (QH(t1)QH(t2))j0i
Inserting complete sets of states, we get

G(t1; t2) =

Z
dqdq0h0jq0; t0ihq0; t0jT (QH(t1)QH(t2))jq; tihq; tj0i

The matrix element
h0jq; ti = �0(q)e

�iE0t = �0(q; t)

is the wavefunction for ground state. Consider the case

t0 > t1 > t2 > t;

We can write
hq0; t0jT (QH(t1)QH(t2))jq; ti = hq0je�iH(t

0�t1)Qse�iH(t1�t2)Qse�iH(t2�t)jqi



=

Z
hq0je�iH(t

0�t1)jq1iq1hq1je�iH(t1�t2)jq2iq2hq2je�iH(t2�t)jqidq1dq2

=

Z
[
dpdq

2�
]q1(t1)q2(t2)expfi
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t

d� [p _q �H(p; q)]g

It is not hard to see that for the other time sequence

t0 > t2 > t1 > t;

we get the same formula, because the path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green�s function is then

G(t1; t2) =

Z
dqdq0�0(q

0; t0)��0(q; t)

Z
[
dpdq

2�
]q1(t1)q2(t2)expfi

Z t0

t

d� [p _q �H(p; q)]g (1)

We can remove the ground state wavefunction �0(q; t) by the following procedure. Write

hq0; t0j�(t1; t2)jq; ti =
Z
dQdQ0hq0; t0jQ0; T 0ihQ0; T 0j�(t1; t2)jQ;T ihQ; tjq; ti

where
�(t1; t2) = T (QH(t1)Q

H(t2))

Let jn > be the energy eigenstate with energy En and wave function �n; i.e.,

Hjn >= Enjn >; hqjni = ��n(q)

Then
hq0; t0jQ0; t0i = hq0je�iH(t

0�T 0)jQ0i =
X
n

hq0jnie�iEn(t
0�T 0)hnjQ0i =

X
n

��n(q
0)�n(Q
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0�T 0)

To isolate the ground state wavefunction, we take an "unusual limit",

lim
t0!�i1

hq0; t0jQ0; T 0i = ��0(q
0)�0(Q

0)e
�E0jt0j

eiE0T
0

Similarity,
lim
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�
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With these we can write
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It is easy to see that
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Finally, the Green function can be written as,

G(t1; t2) = lim
t0!�i1
t!i1

�
hq0; t0jT (QH(t1)QH(t2))jq; ti

hq0; t0jq; ti

�
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1
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t

d� [p _q �H(p; q)]g

This can generalized to n-point Green�s function with the result,

G(t1; t2; :::; tn) = h0jT (q(t1)q(t2):::q(tn))j0i

= lim
t0!�i1
t!i1

1

hq0; t0jq; ti

Z �
dpdq

2�

�
q(t1)q(t2):::q(tn) expfi

Z t0

t

d� [p _q �H(p; q)]g



It is very useful to introduce generating functional for these n-point functions

W [J ] = lim
t0!�i1
t!i1

1

hq0; t0jq; ti

Z �
dpdq

2�

�
expfi

Z t0

t

d� [p _q �H(p; q) + J(�)q(�)]g

Then

G(t1; t2; :::; tn) = (�i)n
�n

�J(t1):::�J(tn)

����
J=0

The unphysical limit, t0 ! �i1; t! i1 , should be interpreted in term of Eudidean Green�s functions de�ned by

S(n)(�1; �2; :::; �n) = inG(n)(�i�1;�i�2; :::;�i�n)

Generating functional for S(n) is then

WE [J ] = lim
�0!1
�!�1

Z
[dq]

1

hq0; t0jq; ti expf
Z � 0

�

d�"[�m
2

�
dq

d�"

�2
� V (q) + J(�")q(�")]g

Since we can adjust the zero point of V (q) such that

m

2

�
dq

d�

�2
+ V (q) > 0

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant in
the path integral which is independent of q will be canceled out in the generation functional.

3 Field Theory

We can extend the treatment for quantum mechanics to �eld theory of a scalar �eld � (x) with following replacements,

1Q
i=1

[dqidpi] �! [d�(x)d�(x)]

L(q; _q) �!
Z
L(�; @��)d3x H(p; q) �!

Z
H(�; �)d3x

For example, the generating functional for scalar �eld is of the form

W [J ] v
Z
[d�] [d�] expfi

Z
d4x[�(x)@0��H(�; �) + J(x)�(x)]g

v
Z
[d�] expfi

Z
d4x[L(�; @��) + J(x)�(x)]g

Note that the functional derivative is de�ned by

�F [� (x)]

�� (y)
= lim

"!0

F [� (x) + "� (x� y)]� F [� (x)]
"

Then we see that
�W [J ]

�J (y)
= i

Z
[d�]� (y) expfi

Z
d4x[L(�; @��) + J(x)�(x)]g (2)

and
�2W [J ]

�J (y1) �J (y2)
= (i)

2
Z
[d�]� (y1)� (y2) expfi

Z
d4x[L(�; @��) + J(x)�(x)]g

Consider the example of ��4 theory

L(�) = L0(�) + L1(�)

L0(�) =
1

2
(@��)

2 � �2

2
�2; L1(�) = �

�

4!
�4



For conveience we use Euclidean time to carry the computations. The generating functional

W [J ] =

Z
[d�] expf�

Z
d4x[

1

2
(
@�

@�
)2 +

1

2
(
�!5�)2 + �2

2
�2 +

�

4!
�4 � J�]g

can be written as

W [J ] =

�
exp

Z
d4xLI

�
�

�J (x)

��
W0 [J ]

where

W0 [J ] =

Z
[d�] exp[�1

2

Z
d4xd4y�(x)K(x; y)�(y) +

Z
d4zJ(z)�(z)]

and

K(x; y) = �4(x� y)
�
� @2

@�2
��!52 + �2

�
We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source J (x) :
The Gaussian integral for many variables is

Z
d�1d�2:::d�n exp

24�1
2

X
i;j

�iKij�j +
X
k

Jk�k

35 v 1p
detK

exp

241
2

X
i;j

Ji(K
�1)ijJj

35
Apply this to the case of scalar �elds,

W0 [J ] = exp

�
1

2

Z
d4xd4yJ(x)4 (x; y)J(y)

�
where

Z
d4yK(x; y)4 (y; z) = �4 (x� z)

It is not di¢ cult to see that

4(x; y) =
Z

d4kE

(2�)
4

eikE(x�y)

k2E + �
2

where kE = (ik0;
�!
k );the Euclidean momentum

Perturbative expansion in power of � gives

W [J ] =W0 [J ] f1 + �w1 [J ] + �2w2 [J ] + :::g

where

w1 = �
1

4!
W�1
0 [J ] f

Z
d4x

�
�

�J(x)

�4
gW0 [J ]

w2 = �
1

2 (4!)
2W

�1
0 [J ] f

Z
d4x

�
�

�J(x)

�4
g2W0 [J ]

Use the explicit form for W0[J ],

W0 [J ] = 1 +
1

2

Z
d4xd4yJ(x)4 (x; y)J(y) +�

1

2

�2
1

2!

Z
d4y1d

4y2d
4y3d

4y4 [J(y1)4 (y1; y2)J(y2)J(y3)4 (y3; y4)J(y4)] + :::

we can compute w1 as follows



w1 = �
1

4!

�Z
4(x; y1)4 (x; y2)4 (x; y3)4 (x; y4)J(y1)J (y2) J(y3)J(y4) + 3!4 (x; y1)4 (x; y2)J(y1)J (y2)4 (x; x)

�
where we have dropped all J independent terms, and all arguments (xi; yi) are integrated over. In this computation
we have used the identity,

�

�J(x)

Z
d4y1J (y1) f (y1) =

Z
�4 (x� y1) d4y1f (y1) = f (x)

graphical representation for w1
The connected Green�s function is

G(n)(x1; x2; :::xn) =
�n lnW [J ]

�J(x1)�J(x2):::�J(xn)
jJ=0

Thus replacing yi by external xi, we get contributions for 4-point,2-point functions,

4 Grassmann algebra

For the quantization of fermion �elds, using path integral, we need to integrate over anti-commuting c-number
functions.This can be realized as elements of Grassmann algebra. We now give a simple introduction to this anti-
commuting algebra.
In an n-dimensional Grassmann algebra,the n generators �1; �2; �3; :::; �n satisfy the anti-commutation relations,

f�i; �jg = 0 i; j = 1; 2; :::; n

and every element can be expanded in a �nite series,

P (�) = P0 + P
(1)
i1
�i1 + P

(2)
i1i2

�i1�i2 + :::+ P
(n)
i1:::in

�i1 :::�in

Simplest case:n=1

f�; �g = 0 or �2 = 0 P (�) = P0 + �P1

We can de�ne the "di¤erentiation" and "integration" as follows,

d

d�
� = �

 �
d

d�
= 1 =) d

d�
P (�) = P1

Integration is de�ned by translational invariant,Z
d�P (�) =

Z
d�P (� + �)

where � is another Grassmann variable. This impliesZ
d� = 0

Normalize the integral such that Z
d�� = 1



Then Z
d�P (�) = P1 =

d

d�
P (�)

Consider a change of variable

� ! e� = a+ b�

Since Z
de�P �e�� = d

de�P
�e�� = P1Z

d�P
�e�� = Z d�

h
P0 + e�P1i = Z d� [P0 + (a+ b�)P1] = bP1

we get

Z
de�P �e�� = Z d�

 
de�
d�

!�1
P
�e� (�)�

Thus the "Jacobian" is the inverse of that for c-number integration.
It is easy to generalize to the case of n-dimensional Grassmann algebra,

d

d�i
(�1; �2; �3; :::; �n) = �i1�2:::�n � �i2�1�3:::�n + :::+ (�1)

n�1
�in�1�2:::�n�1

fd�i; d�jg = 0Z
d�i = 0

Z
d�i�j = �ij

For a change of variables of the form

e�i = bij�j

we have

Z
de�nde�n�1:::de�1P �e�� = Z d�n:::d�1

"
det

de�
d�

#�1
P
�e� (�)�

Proof: e�1 e�2:::f�n = b1i1b2i2 :::bnin�i1 :::�in

RHS is non-zero only if i1; i2:::; in are all di¤erent and we can write

e�1e�2:::e�n = b1i1b2i2 :::bnin�i1;i2:::;in�i1 :::�in

= (det b) �1�2�3:::�n

From the normalization condition,

1 =

Z
de�nde�n�1:::de�1 �e�1e�2:::e�n� = (det b)Z de�nde�n�1:::de�1 (�1�2�3:::�n)

we see that

de�nde�n�1:::de�1 = (det b)�1 d�1:::d�n
In �eld theory,we need to make use of Gaussian integral,

G (A) �
Z
d�n:::d�1 exp

�
1

2
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�
where (�;A�) = �iAij�j

First consider the simple case of n=2, where
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Then
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The generalization to arbitrary n is
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p
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and for "complex" Grassmann variablesZ
d�nd�nd�n�1d�n�1:::d�1d�1exp

�
�;A�

�
= detA

For the Fermion �elds, the generating functional is of the form,

W [�; �] =

Z
[d (x)]

�
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�
expfi

Z
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�
L
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 ; 
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It is not hard to see that if L depends on  ; quadratically

L =
�
 ;A 

�
then we have
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Z
[d (x)]

�
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�
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Z
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