Path Integral method

Ling fong Li

Path integral formalism was originally developed to have close relationship to classical dynamics. For example,
the transition amplitude in coordinate space is expressed in term of action S
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From this we can see that as i — 0, the trajectory with smallest action dominates, the action principle. This
formalism uses the ordinary functions not the operators. Later in the study of non-Abelian gauge theory, the need
for removing unphysical degrees of freedom can be more easily accomodated in the path integral formalism by
imposing constraints in the integral.

1 Quantum Mechanics in 1-dimension

In the quantum mechanics, the transition matrix element from initial state |q,t) to final state {¢’,¢'|, can be written
as,

(q't'|qt) = (g ~HE)|g)

where |q)’s are eigenstates of the position operator @ in the Schrodinger picture,

Qlg) = qlq)
and |g,t) denotes the corresponding state in Heisenberg picture,
la.t) = e|q)

In the path integral formalism,this transition matrix element can be written as
t/
(q't'lqt) =N / [dglexp{i / drL(g,q)}
t

We now explain how this formula come about and what this formula means. First divide the interval (¢/,t) into n
intervals with spacing,
t'—t
n

ot =

and write the transition matrix element as,

(e 0a) = /dql"'dqnfl<q’|€_iH‘”|qnf1><qnf1\e_iH‘Sthn72>--~<q1Ie"'H‘”Iq>
For 6t small enough, we can approximate each of matrix elements as

(/e |q) = (q'|(1 — iH (P.Q)ét)|a) + O ((31)°) +

If we take the Hamiltonian in the simple form,

p2

H(P.Q) =5 +V(Q)
then
2 /
(d'Hlg) = <q’|§fm|q>+V(qJ;q)5(q,q/)
’ d ' fdp
- /<q/\%lp><plq>(§)+V(‘”Tq)/%ezp<qfq>
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where we have used ,
(plg) = e
which is the momentum eigenfunction in coordinate space. Exponentiation of this infinitesmal result gives

» AP ipia— P q+q dp .. P a+dq
/ iHSt ~ ip(q'—q) . 47 ~ el ! _ i
(q'|e lq) ~ / 2.€ {1 —aot[— + V( Ny = [ o explip(d’ —q)exp | —idt[5— +V( )]
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The whole transition matrix element can then be written as

s /I d d n 1‘"‘ ;
<q’|e H 2S)|Q> g/( 21;1 . p /dQ1 gy, - 1eXp{'L [sz qi — qi— 1) (5t) ( ; (IQM)]}

This can be written formally as

e g = [ eapti [ depi — 1 (p.0))

. d dpn i i+ G
= lim (ﬂ) (= L )/dq1 Ay — 1ea¢p{225tpl %)—H(pi,w)]}

n—oo 2w 2 Pt t 2
In most case, Hamiltonian depends quadractically on p. We can use the formula
/+OO dx ooz 2 4bz _ 1 6%
oo 27T 4ma
to carry out the integration over momentum to get
dp; —10t 2 . 1/2 im(Qi - %’—1)2
or Pl Pt il —ai)) = (505) Penp 5]
Then )
H—iHE —t) \ _ m \n/2 "ﬁ ‘ . % m ¢ — qi-1y2
(q'le l2) = nll—@o(Qmét) /i:ldq’ eXp{Z¢:15t[ 2 ( ot -Vl
or

(dtlgt) = (¢|le" ¥ =D|q) = N [ [dg] exp{i /t df[%f - V(g)}

This is the path integral representation for the probability amplitude from initial state |g,t) to final state (¢’,¢'|. The
combination in the exponential is just the action for this simple case and we get

('t |qt) = N/dq lexpiS

2 Green’s functions

In order to generalize this formula to case of field theory where the basic entity is the vacuum expectation value
of field operators, we consider the time-ordered product of the coordinate operators in Heisenberg picture between
ground state |0),

G(t1,t2) = (0|T(Q™ (t1)Q" (t2))|0)

Inserting complete sets of states, we get

G(t1,t2) = /dqdq’<0\q’,t’)(tz’,t’IT(QH(tl)QH(tz))Iq,t><q,t|0>

The matrix element
(0lg,t) = ¢o(q)e """ = (g, 1)

is the wavefunction for ground state. Consider the case
>t >ty >t

We can write
(@ ¢1TQ (t1)Q (t2))]a. t) = (¢ [T HE —t) Qs iH (hi=t2) @it (t2=1)| )
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It is not hard to see that for the other time sequence
t' >ty >t >t

we get the same formula, because the path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green’s function is then

Gltrota) = [ dadd00(a'.#)030.8) [ 1B ar()s(e)eanti [ drlpi = Hip. ) 1)

We can remove the ground state wavefunction ¢(q,t) by the following procedure. Write

<q/7t/|9(t17t2)|Q7t> :/deQ/<q/7t/‘Q/7T/><Q/’T/w(tlth)leTﬂQat|Q7t>

where
O(t1,t2) = T(Q (t1)Q" (t2))

Let |n > be the energy eigenstate with energy E,, and wave function ¢,,, i.e.,
Hln>=En|n>, (qIn) = ¢,(q)

Then
(@' t1Q 1) = (¢l Q) = Y (d/In)e TN n|Q) = Y0 (d) b (@) E T

To isolate the ground state wavefunction, we take an "unusual limit",

lim <q/) t,|QI, T/> _ ¢8(q/)¢O(Q/)€7EOW‘ eiEoT’
Similarity, .
lim (Q.Tlg, ) = (q)o5(Q)e "= 0T

With these we can write

lim (¢, t'|0(t1,t2)q,t) = / dQdQ'¢3(q")do(Q)Q', T'0(t1, £2)|Q, TV (Q) by (q)e oIt IeiEoT" ¢ =iFT o= ol
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= 65(q))po(q)e 0! e ot Gty , )
It is easy to see that )
lim (q',t'g,t) = ¢5(q)do(g)e™ " le™ ol

t! — —ico

t—i00

Finally, the Green function can be written as,

G(tl, tQ) = lim

t! — —ioco

t—1i00
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= tim e [ | % et exoti [ arlpi - H )

t—i00

[(tJ’, t1T(Q" (1)@ (t2))lg, t>]
(¢ t'|g,t)

This can generalized to n-point Green’s function with the result,

G(t1,ta, s tn) = (0T (q(t1)q(t2)--q(¢n))[0)

. 1 dpdq e .
= tim e [ % atatt)attn) ot [ arlpi - H )

t—ic0



It is very useful to introduce generating functional for these n-point functions

= lim ! dpdqexit/T'— T)q(T
Wil = tim o [ | oot [ drlpi - H0) + T}

t—100

Then
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The unphysical limit, ¢ — —ico,t — ioco , should be interpreted in term of Eudidean Green’s functions defined by

G(t1,ta, .y ty) =

J=0

S(n)(7—177—27 '~~77—n) - inG(n)(_iTl, —iTQ, ceny —iTn)

Generating functional for S(™) is then

7 m 2 » »
Wel= tim [l el [ a0 (45) - V@) + )

Since we can adjust the zero point of V(g) such that

m [ dq 2

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant in
the path integral which is independent of ¢ will be canceled out in the generation functional.

3 Field Theory

We can extend the treatment for quantum mechanics to field theory of a scalar field ¢ (z) with following replacements,

M1 [daudp] — [do(@)dr(a)]

(g 4) — / L0, H(pg) — / H(p,m)dz

For example, the generating functional for scalar field is of the form

W () [ o] drlexpi [ d's{r(@)one -~ H(r.6) + J()o(a))

-~ / (dg] expli / 2 L(6,0,0) + T (2)p(2)])

Note that the functional derivative is defined by

SF[()] _ . Flo() +ed(@—y)] - F[6 ()
0o (y) e—0 €
Then we see that W]
Sy =1 [ e wesnti [ a'el£.0,0)+ @) @
and
Swl s
5T (9) 0 (g2) (@)2/[d¢]¢(iyl)¢(y2)exp{l/d o[L(¢, 0ud) + J(z) ()]}

Consider the example of A¢* theory
L(¢) = Lo(0) + L1(9)

2 A 4

Lo(6) = 5007 ~ g% Li(9) =20



For conveience we use Euclidean time to carry the computations. The generating functional

1 —

Wi = [laolexp(~ [atsl5 (522 + 5T + g + 30" - 70

can be written as

where
Wols] = [ ldslexpl— [ dsdtyoto) k(e otw) + [ atzr200()
and
K(oa) =8 —0) (~ 5z~ 97+ 2)

We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source J ().
The Gaussian integral for many variables is

1 1 1
dp,dgy...dp, exp | —=Y ¢;Kijb: + Y J “ exp | =Y Ji(KY)J;
/ P1dp,...do P[ Q;QS J¢J ; k¢k] VoK p [2; ( )ij J]
Apply this to the case of scalar fields,

Wol] = exp 5 [ ataa'yr(o) 2 .9) 70|

where

[ K@) 2 0.0 =6 @ - 2)
It is not difficult to see that
d4]€E eik’E(gc—y)
A, y) = / Gkg e FTH
(,9) (277)4 k3 + p?

N
where kg = (iko, k ),the Euclidean momentum
Perturbative expansion in power of A gives

W J] = Wo [J] {1 + Awy [J] + Nwg [J] + ...}

where

w = = Wi [ dt [ 5 J‘z@r}vvo 1]

ws = ‘2<41!>2W01 [ dta [ - J‘ix)rﬁwo g

Use the explicit form for Wy[J],

WolJ] = 1+% / drzdyJ(z) A (x,y)J (y) +

(3) 51/ dhmdtvad vadn 17) & (00,9202 0) 2 ()T )] + .

we can compute w; as follows



¥ Y3

Y1 X Y2
¥a Ya

wy = _% [/ Az, y1) A (zyy2) A (z,y3) A (2, ya) T (y1)J (y2) J(ys) T (ya) + 3V A (2, y1) A (2, y2) T (y1) T (y2) A (z, )

where we have dropped all J independent terms, and all arguments (x;,y;) are integrated over. In this computation
we have used the identity,

5=75(x)/d4y1J(y1)f(y1) - /54 (@ =y)d'uf ) = f (@)

graphical representation for w,
The connected Green’s function is

" In W [J]

(n) = =
G\ (1,2, ...Ty) 8J(21)0J (22)...0J () =0

Thus replacing y; by external x;, we get contributions for 4-point,2-point functions,

4 Grassmann algebra

For the quantization of fermion fields, using path integral, we need to integrate over anti-commuting c-number
functions.This can be realized as elements of Grassmann algebra. We now give a simple introduction to this anti-
commuting algebra.

In an n-dimensional Grassmann algebra,the n generators 01, 02, 03, ..., 0,, satisfy the anti-commutation relations,

{91‘,0]‘} =0 i,j = 1,2,...,7?,

and every element can be expanded in a finite series,

P(0)=Py+P10;, + P2 0,60, + ..+ P, 0,,..0

1112 11..0n in

Simplest case:n=1

{6,6=0 or 6°=0 P =P +06P,
We can define the "differentiation" and "integration" as follows,
d .d d
—0=0—=1 —PO)=P
o’ = do = w’O=h

Integration is defined by translational invariant,

/dep () = /dep 0+ )

where « is another Grassmann variable. This implies

/dH:O
/d90:1

Normalize the integral such that



Then

d
PO)=P =—P
[aor0) == 2P )
Consider a change of variable
0—0=a+bl
Since
/d’ép (%) = 4p (0) =p
do
/dep (5) - /d@ [PO +5P1} - /d& [Py + (a + b8) P1] = bP;
we get

.\ -1
SO do -
d0P(0)z/d9 = P®)
/ i Q
Thus the "Jacobian" is the inverse of that for c-number integration.
It is easy to generalize to the case of n-dimensional Grassmann algebra,

d _
—(61,02,03,...,0,) = 6;,05..0, — 8;,0105..0, + ... + (—1)" " 6:,0105...0,_1

de;
{db;,db;} =0
For a change of variables of the form
0; = bi;0;
we have
/d"e' 0, 1...d0, P ("9') - /de ..db, der®] P("é(e))
Proof:

0105...0,, = by;, boi,...bns, 0, .0

in

RHS is non-zero only if i1, 4s..., 1, are all different and we can write

9152...571 = b1i1b2i2-~bnin eihigwinﬂil...ﬂi
= (det b) 019293-~-0n

n

From the normalization condition,

1= / d0,,dby, 1 ...d0, (5152...5") — (detb) / 0,,dBy,1...d01 (616265...0,,)

we see that

d6,d0,,_1...d6, = (detb) " db;...db,

In field theory,we need to make use of Gaussian integral,

G(A) = /d@n...d91 exp (; (9, A0)> where (6, A0) = 0,A,,0,

First consider the simple case of n=2, where



Then
G(A) = /d&gd&l exp (0102412) ~ /d02d91 (14 0102A15) = Ayy = Vdet A
The generalization to arbitrary n is
G(A) = /d@n...dt‘)l exp (; (9,A9)> =+VdetA 1 even
and for "complex" Grassmann variables
/ 00,0076, B, 1...d6,dBrcap (7, AG) = det A
For the Fermion fields, the generating functional is of the form,
Wil = [ [0 @) 45 @) expi [ dte [£ (6.5) +Tn+ 0]}
It is not hard to see that if £ depends on 1,1 quadratically

L= (449)

then we have

W= / (di) (2)] [d0 ()] exp} / gAY} = det A



