Quantum Field Theory

Ling-Fong Li

National Center for Theoretical Science

Schrodinger equation \Rightarrow conservation of particle number.
$H \psi=i \hbar \frac{\partial \psi}{\partial t} \quad \Rightarrow \quad \frac{d}{d t} \int d^{3} x \psi^{\dagger} \psi=0 \rightarrow \int d^{3} x\left(\psi^{\dagger} \psi\right) \quad$ indep of time
if Hamiltonian is hermitian, $H=H^{+}$. Then number of particles is conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

$$
[x, p]=-i \hbar, \quad \Rightarrow \quad \triangle x \Delta p \geqslant \hbar
$$

From

$$
p^{2} c^{2}+m^{2} c^{4}=E^{2}
$$

to give

$$
\triangle E=\frac{p \Delta p}{E} c^{2} \geqslant \frac{p \hbar c^{2}}{E \triangle x} \quad \text { or } \quad \triangle x \geqslant \frac{p c}{E}\left(\frac{\hbar c}{\triangle E}\right)
$$

To avoid new particle creation we require $\triangle \mathrm{E} \leqslant \mathrm{mc}^{2}$. Then we get a lower bound on $\triangle x$

$$
\Delta x \geqslant \frac{p c}{E} \frac{\hbar}{m c}=\left(\frac{v}{c}\right)\left(\frac{\hbar}{m c}\right)
$$

For relativistic particle $\frac{v}{c} \approx 1$, then

$$
\Delta x \geqslant\left(\frac{\hbar}{m c}\right) \quad \text { Compton wavelength }
$$

\Rightarrow Particle can not be confined to a interval smaller than its Compton wavelength

Gauge Theory-Quantum Field Theory with Local Symmetry Gauge principle
All fundamental Interactions are descibed in terms of gauge theories;
(1) Strong Interaction-QCD; gauge theory based on $\operatorname{SU}(3)$ symmetry
(2) Electromagnetic and Weak interactiongauge theory based on $S U(2) \times U(1)$ symmetry
(3) Gravitational interactionEinstein's theory-gauge theory of local coordinate transformation.

Natural unit

$$
h=c=1
$$

In MKS units

$$
h=1.055 \times 10^{-34} \mathrm{~J} \mathrm{sec}, \quad c=2.99 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

In this unit, at the end of the calculation one puts back the factors of h and c depending on the physical quantities in the problem.
For example, the quantity m_{e} can have following different meanings depending on the contexts;
(1) Reciprocal length

$$
m_{e}=\frac{1}{\frac{h}{m_{e} c}}=\frac{1}{3.86 \times 10^{-11} \mathrm{~cm}}
$$

(2) Reciprocal time

$$
m_{e}=\frac{1}{\frac{h}{m_{e} c^{2}}}=\frac{1}{1.29 \times 10^{-21} \mathrm{sec}}
$$

(3) energy

$$
m_{e}=m_{e} c^{2}=0.511 \mathrm{Mev}
$$

(9) momentum

$$
m_{e}=m_{e} c=0.511 \mathrm{Mev} / c
$$

The following conversion relations

$$
h=6.58 \times 10^{-22} \mathrm{Mev}-\mathrm{sec} \quad h c=1.973 \times 10^{-11} \mathrm{Mev}-\mathrm{cm}
$$

are quite useful in getting the physical quantities in the right units.
Example: Thomson cross section
$\sigma=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=\frac{8 \pi \alpha^{2}(h c)^{2}}{3 m_{e}^{2} c^{4}}=\left(\frac{1}{137}\right)^{2} \times \frac{\left(1.973 \times 10^{-11} \mathrm{Mev}-c m\right)^{2}}{(0.5 \mathrm{Mev})^{2}} \times\left(\frac{8 \pi}{3}\right)$

Useful convertion factor
$1 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}, \quad 1 \mathrm{Gev}=1.6 \times 10^{-10} \mathrm{~J} \quad$ or $\quad 1 \mathrm{~J}=\frac{1}{1.6} \times 10^{10} \mathrm{Gev}$

Review of Special Relativity

Basic principles of special relativity :
(1) The speed of light : same in all inertial frames.
(3) Physical laws: same forms in all inertial frames.

Lorentz transformation-relate coordinates in different inertial frame

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2}}} \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\frac{t-v x}{\sqrt{1-v^{2}}}
$$

\Rightarrow

$$
t^{2}-x^{2}-y^{2}-z^{2}=t^{\prime 2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}
$$

Proper time $\tau^{2}=t^{2}-\vec{r}^{2}$ invariant under Lorentz transfomation. Particle moves from $\overrightarrow{r_{1}}\left(t_{1}\right)$ to $\overrightarrow{r_{2}}\left(t_{2}\right)$. The speed is

$$
|\vec{v}|=\frac{1}{\left|t_{2}-t_{1}\right|} \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

For $|\vec{v}|=1$,

$$
\left(t_{1}-t_{2}\right)^{2}=\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|^{2}
$$

this is invariant under Lorentz transformation $\quad \Rightarrow \quad$ speed of light same in all inertial frames.
Another form of the Lorentz transformation
$x^{\prime}=\cosh \omega x-\sinh \omega t, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\sinh \omega x-\cosh \omega t$
where

$$
\tanh \omega=v
$$

For infinitesmal interval $(d t, d x, d y, d z)$, proper time is

$$
(d \tau)^{2}=(d t)^{2}-(d x)^{2}-(d y)^{2}-(d z)^{2}
$$

Minkowski space,

$$
x^{\mu}=(t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right), \quad 4-\text { vector }
$$

Lorentz invariant product can be written as

$$
x^{2}=\left(x_{0}\right)^{2}-\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}=x_{\mu} x_{\nu} g_{\mu v}
$$

where

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Define another 4-vector

$$
x_{\mu}=g_{\mu v} x^{v}=\left(t,-x^{1},-x^{2},-x^{3}\right)=(t,-\vec{r})
$$

so that

$$
x^{2}=x^{\mu} x_{\mu}
$$

For infinitesmal coordinates

$$
(d x)^{2}=\left(d x^{\mu}\right)\left(d x_{\mu}\right)=d x^{\mu} d x^{v} g_{\mu \nu}=\left(d x^{0}\right)^{2}-(d \vec{x})^{2}
$$

Write the Lorentz transformation as

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}
$$

For example for Lorentz transformation in the x-direction, we have

$$
\Lambda_{v}^{\mu}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{1-\beta^{2}}} & \frac{-\beta}{\sqrt{1-\beta^{2}}} & 0 & 0 \\
\frac{-\beta}{\sqrt{1-\beta^{2}}} & \frac{1}{\sqrt{1-\beta^{2}}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Write

$$
x^{\prime 2}=x^{\prime \mu} x^{\prime v} g_{\mu v}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} g_{\mu v} x^{\alpha} x^{\beta}
$$

then $x^{2}=x^{\prime 2}$ implies

$$
\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} g_{\mu \nu}=g_{\alpha \beta}
$$

and is called pseudo-orthogonality relation.

Energy and Momentum

Start from

$$
d x^{\mu}=\left(d x^{0}, d x^{1}, d x^{2}, d x^{3}\right)
$$

Proper time is Lorentz invariant and has the form,

$$
(d \tau)^{2}=d x^{\mu} d x_{\mu}=(d t)^{2}-\left(\frac{d \vec{x}}{d t}\right)^{2}(d t)^{2}=\left(1-\vec{v}^{2}\right)(d t)^{2}
$$

4 - velocity,

$$
u^{\mu}=\frac{d x^{\mu}}{d \tau}=\left(\frac{d x^{0}}{d \tau}, \frac{d \vec{x}}{d \tau}\right)
$$

there is a constraint

$$
u^{\mu} u_{\mu}=\frac{d x^{\mu}}{d \tau} \frac{d x_{\mu}}{d \tau}=1
$$

Note that

$$
\vec{u}=\frac{d \vec{x}}{d \tau}=\frac{d \vec{x}}{d t}\left(\frac{d t}{d \tau}\right)=\frac{1}{\sqrt{1-v^{2}}} \vec{v} \approx \vec{v}, \quad \text { for } v \ll 1
$$

4 - velocity $\quad \Longrightarrow \quad 4$ - momentum

$$
p^{\mu}=m u^{\mu}=\left(\frac{m}{\sqrt{1-v^{2}}}, \frac{m \vec{v}}{\sqrt{1-v^{2}}}\right)
$$

For $\quad v \ll 1$,

$$
\begin{gathered}
p^{0}=\frac{m}{\sqrt{1-v^{2}}}=m\left(1+\frac{1}{2} v^{2}+\ldots\right)=m+\frac{m}{2} v^{2}+\ldots, \\
\vec{p}=m \vec{v} \frac{1}{\sqrt{1-v^{2}}}=m \vec{v}+\ldots \quad \text { momentum } \\
p^{\mu}=(E, \vec{p})
\end{gathered}
$$

Note that

$$
p^{2}=E^{2}-\vec{p}^{2}=\frac{m^{2}}{1-v^{2}}\left[1-v^{2}\right]=m^{2}
$$

Tensor analysis
Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in Minkowski space.
Basically, tensors are

$$
\text { tensors } \sim \text { product of vectors }
$$

2 different types of vectors,

$$
x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}, \quad x_{\mu}^{\prime}=\Lambda_{\mu}^{v} x_{v}
$$

multiply these vectors to get $2 n d$ rank tensors,

$$
T^{\prime \mu v}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} T^{\alpha \beta}, \quad T_{\mu \nu}^{\prime}=\Lambda_{\mu}^{\alpha} \Lambda_{v}^{\beta} T_{\alpha \beta}, \quad T_{v}^{\prime \mu}=\Lambda_{\alpha}^{\mu} \Lambda_{v}^{\beta} T_{\beta}^{\alpha}
$$

In general,

$$
T_{v_{1} \cdots v_{m}}^{\prime \mu_{1} \cdots \mu_{n}}=\Lambda_{\alpha_{1}}^{\mu_{1}} \cdots \Lambda_{\alpha_{n}}^{\mu_{n}} \Lambda_{v_{1}}^{\beta_{1}} \cdots \Lambda_{v_{m}}^{\beta_{m}} T_{\beta_{1} \cdots \beta_{m}}^{\alpha_{1} \cdots \alpha_{n}}
$$

transformation of tensor components is linear and homogeneous.

Tensor operations; operation which preserves the tensor property
(1) Multiplication by a constant, $(c T)$ has the same tensor properties as T
(2) Addition of tensor of same rank
(3) Multiplication of two tensors
(9) Contraction of tensor indices. For example, $T_{\mu}^{\mu \alpha \beta \gamma}$ is a tensor of rank 3 while $T_{v}^{\mu \alpha \beta \gamma}$ is a tensor or rank 5. This follows from the psudo-orthogonality relation
(6) Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose $T^{\mu \nu}$ is a second rank tensor,

$$
T^{\prime \mu v}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} T^{\alpha \beta}
$$

interchanging the indices

$$
T^{\prime v \mu}=\Lambda_{\alpha}^{v} \Lambda_{\beta}^{\mu} T^{\alpha \beta}=\Lambda_{\beta}^{v} \Lambda_{\alpha}^{\mu} T^{\beta \alpha}
$$

Then

$$
T^{\prime \mu v}+T^{\prime v \mu}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v}\left(T^{\alpha \beta}+T^{\beta \alpha}\right)
$$

symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor transforms into antisymmetic one.
(0) $g_{\mu v}$, and $\varepsilon^{\alpha \beta \gamma \delta}$ have the property

$$
\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} g_{\mu \nu}=g_{\alpha \beta}, \quad \varepsilon^{\alpha \beta \gamma \delta} \operatorname{det}(\Lambda)=\Lambda_{\mu}^{\alpha} \Lambda_{v}^{\beta} \Lambda_{\rho}^{\gamma} \Lambda_{\sigma}^{\delta} \varepsilon^{\mu \nu \rho \sigma}
$$

$g_{\mu \nu}$, and $\varepsilon^{\alpha \beta \gamma \delta}$ transform in the same way as tensors if $\operatorname{det}(\Lambda)=1$.
Example: $M^{\mu \nu}=x^{\mu} p^{\nu}-x^{v} p^{\mu}, \quad F^{\mu v}=\partial^{\mu} A^{v}-\partial^{\nu} A^{\mu} \quad$ second rank antisymmetric tensor.

Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial frame. Suppose

$$
f^{\mu}=m a^{\mu}
$$

Define

$$
t^{\mu}=f^{\mu}-m a^{\mu}
$$

then t^{μ} vanish in this inertial frame. From

$$
t^{\prime \mu}=f^{\mu^{\prime}}-m a^{\prime \mu}=0
$$

we get

$$
f^{\mu^{\prime}}=m a^{\prime \mu}
$$

Thus physical laws in tensor form are same in all inertial frames .

Action principle: actual trajectory of a partilce minimizes the action Particle mechanics
A particle moves from x_{1} at t_{1} to x_{2} at t_{2}. Write the action as

$$
\begin{gathered}
S=\int_{t_{1}}^{t_{2}} L(x, \dot{x}) d t \quad L: \text { Lagrangian } \\
\delta S=0
\end{gathered}
$$

For the least action, make a small change $x(t)$,

$$
x(t) \rightarrow x^{\prime}(t)=x(t)+\delta x(t)
$$

with end points fixed

$$
\text { i.e. } \quad \delta x\left(t_{1}\right)=\delta x\left(t_{2}\right)=0 \quad \text { initial conditions }
$$

Then

$$
\delta S=\int_{t_{1}}^{t_{2}}\left[\frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \delta(\dot{x})\right] d t
$$

Note that

$$
\delta \dot{x}=\dot{x}^{\prime}(t)-\dot{x}(t)=\frac{d}{d t}[\delta(x)]
$$

Integrate by parts and used the initial conditions

$$
\delta S=\int_{t_{1}}^{t_{2}}\left[\frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \frac{d}{d t}(\delta x)\right] d t=\int_{t_{1}}^{t_{2}}\left[\frac{\partial L}{\partial x}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)\right] \delta x d t
$$

For S to be minimum, we require

$$
\frac{\delta S}{\delta x}=0
$$

$$
\text { i.e. } \frac{\partial L}{\partial x}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=0 \quad \text { Euler-Lagrange equation }
$$

Conjugate momentum is

$$
p \equiv \frac{\partial L}{\partial \dot{x}}
$$

Hamiltonian is ,

$$
H(p, q)=p \dot{x}-L(x, \dot{x})
$$

Consider the simple case

$$
m \frac{d^{2} x}{d t^{2}}=-\frac{\partial V}{\partial x}
$$

Suppose

$$
L=\frac{m}{2}\left(\frac{d x}{d t}\right)^{2}-V(x)
$$

then

$$
\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right), \quad \Rightarrow-\frac{\partial V}{\partial x}=m \frac{d^{2} x}{d t^{2}}
$$

Hamiltonian

$$
H=p \dot{x}-L=\frac{m}{2}(\dot{x})^{2}+V(x) \quad \text { where } \quad p=\frac{\partial L}{\partial \dot{x}}=m \dot{x}
$$

is just the total energy.
Generalization

$$
\begin{gathered}
x(t) \rightarrow q_{i}(t), \quad i=1,2, \ldots, n \\
S=\int_{t_{1}}^{t_{2}} L\left(q_{i}, \dot{q}_{i}\right) d t
\end{gathered}
$$

Euler-Lagrange equations

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0 \quad i=1,2, \ldots, n \\
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, H=\Sigma p_{i} \dot{q}_{i}-L
\end{gathered}
$$

Example: harmonic oscillator in 3-dimensions
Lagrangian

$$
L=T-V=\frac{m}{2}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{3}^{2}\right)-\frac{m w^{2}}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

and

$$
\frac{\partial L}{\partial x_{i}}=-m w^{2} x_{i} \quad \frac{\partial L}{\partial \dot{x}_{i}}=m \dot{x}_{i}
$$

Euler-Langarange equation

$$
m \ddot{x}_{i}=-m w^{2} x_{i}
$$

same as Newton's second law.

Field Theory

Field theory \sim limiting case where number of degrees of freedom is infinite. $q_{i}(t) \rightarrow \phi(\vec{x}, t)$.
Action

$$
S=\int L\left(\phi, \partial_{\mu} \phi\right) d^{3} x d t \quad L: \text { Lagrangian density }
$$

Variation of action

$$
\delta S=\int\left[\frac{\partial L}{\partial \phi} \delta \phi+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)\right] d x^{4}=\int\left[\frac{\partial L}{\partial \phi}-\partial_{\mu} \frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\right] \delta \phi d x^{4}
$$

Use $\delta\left(\partial_{\mu} \phi\right)=\partial_{\mu}(\delta \phi)$ and do the integration by part. then $\delta S=0$ implies

$$
\Longrightarrow \frac{\partial L}{\partial \phi}=\partial_{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\right) \quad \text { Euler-Lagrange equation }
$$

Conjugate momentum density

$$
\pi(\vec{x}, t)=\frac{\partial L}{\partial\left(\partial_{0} \phi\right)}
$$

and Hamiltonian density

$$
H=\pi \dot{\phi}-L
$$

Generalization to more than one field

$$
\phi(\vec{x}, t) \rightarrow \phi_{i}(\vec{x}, t), \quad i=1,2, \ldots, n
$$

Equations of motion are

$$
\frac{\partial L}{\partial \phi_{i}}=\partial_{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \phi_{i}\right)}\right) \quad i=1,2, \ldots, n
$$

and conjugate momentum

$$
\pi_{i}(\vec{x}, t)=\frac{\partial L}{\partial\left(\partial_{0} \phi_{i}\right)}
$$

Hamiltonian density is

$$
H=\sum_{i} \pi_{i} \dot{\phi}_{i}-L
$$

Symmetry and Noether's Theorem

Continuous symmetry \Longrightarrow conservation law, e.g. invariance under time translation

$$
t \rightarrow t+a, \quad a \quad \text { is arbitrary constant }
$$

gives energy conservation. Newton's equation for a force derived from a potential $V(\vec{x}, t)$ is,

$$
m \frac{d^{2} \vec{x}}{d t^{2}}=-\vec{\nabla} V(\vec{x}, t)
$$

Suppose $\mathrm{V}(\vec{x}, t)=\mathrm{V}(\vec{x})$ invariant under time translation. Then

$$
m \frac{d \vec{x}}{d t} \cdot\left(\frac{d^{2} \vec{x}}{d t^{2}}\right)=-\left(\frac{d \vec{x}}{d t}\right) \cdot \vec{\nabla} V=-\frac{d}{d t}[V(\vec{x})]
$$

Or

$$
\frac{d}{d t}\left[\frac{1}{2} m\left(\frac{d \vec{x}}{d t}\right)^{2}+V(\vec{x})\right]=0, \quad \text { energy conservation }
$$

Similarity, invariance under spatial translation

$$
\vec{x} \rightarrow \vec{x}+\vec{a}
$$

gives momentum conservation and invariance under rotations gives angular momentum conservation. Noether's theorem : unified treatment of symmetries in the Lagrangian formalism.

Particle mechanics

Action in classical mech

$$
S=\int L\left(q_{i}, \dot{q}_{i}\right) d t
$$

Suppose S is invariant under a continuous symmetry transformation,

$$
q_{i} \rightarrow q_{i}^{\prime}=f_{i j}(\alpha) q_{j}, \quad \text { with } \quad f_{i j}(0)=\delta_{i j}
$$

For $\alpha \ll 1$ then

$$
q_{i} \rightarrow q_{i}^{\prime} \simeq q_{i}+\alpha f_{i j}^{\prime}(0) q_{j}=q_{i}+\delta q_{i} \quad \text { with } \quad \delta q_{i}=\alpha f_{i j}^{\prime}(0) q_{\underline{j}}
$$

The change of S

$$
\delta S=\int\left[\frac{\partial L}{\partial q_{i}} \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i}\right] d t \quad \text { where } \quad \delta \dot{q}_{i} \rightarrow \frac{d}{d t}\left(\delta q_{i}\right)
$$

Using the equation of motion,

$$
\frac{\partial L}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)
$$

we can write $\delta \mathrm{S}$ as

$$
\delta S=\int\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{d}{d t}\left(\delta q_{i}\right)\right] d t=\int\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\right)\right] d t
$$

Thus $\delta S=0 \Rightarrow$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\right)=0 \quad \text { or } \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \alpha f_{i j}^{\prime}(0) q_{j}\right)=0
$$

This can be written as

$$
\text { or } \quad \frac{d A}{d t}=0, \quad A=\frac{\partial L}{\partial \dot{q}_{i}} \alpha f_{i j}^{\prime}(0) q_{j}
$$

A is the conserved charge.

Example: rotational symmetry in 3-dimension action

$$
S=\int L\left(x_{i}, \dot{x}_{i}\right) d t
$$

Suppose S is invariant under rotation,

$$
x_{i} \rightarrow x_{i}^{\prime}=R_{i j} x_{j}, \quad R R^{T}=R^{T} R=1 \quad \text { or } \quad R_{i j} R_{i k}=\delta_{j k}
$$

For infinitesmal rotations

$$
R_{i j}=\delta_{i j}+\varepsilon_{i j} \quad\left|\varepsilon_{i j}\right| \ll 1
$$

Orthogonality requires,
$\left(\delta_{i j}+\varepsilon_{i j}\right)\left(\delta_{i k}+\varepsilon_{i k}\right)=\delta_{j k} \Longrightarrow \varepsilon_{j k}+\varepsilon_{k j}=0 \quad i, e, \quad \varepsilon_{j k} \quad$ is antisymmetric
We can compute the conserved charges as

$$
J=\frac{\partial L}{\partial \dot{x}} \varepsilon_{i j} x_{j}=\varepsilon_{i j} p_{i} x_{j}
$$

If we write $\varepsilon_{i j}=-\varepsilon_{i j k} \theta_{k}$

$$
J=-\theta_{k} \varepsilon_{i j k} p_{i} x_{j}=-\theta_{k} J_{k} \quad J_{k}=\varepsilon_{i j k} x_{i} p_{j}
$$

J_{k} k-th component of angular momentum.

Field Theory

Start from the action

$$
S=\int L\left(\phi, \partial_{\mu} \phi\right) d^{4} x
$$

Symmetry transformation,

$$
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)
$$

which includes the change of coordinates,

$$
x^{\mu} \rightarrow x^{\prime \mu} \neq x^{\mu}
$$

Infinitesmal transformation

$$
\delta \phi=\phi^{\prime}\left(x^{\prime}\right)-\phi(x), \quad \delta x^{\prime \mu}=x^{\prime \mu}-x^{\mu}
$$

need to include the change in the volume element

$$
d^{4} x^{\prime}=J d^{4} x \quad \text { where } \quad J=\left|\frac{\partial\left(x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, x_{3}\right)}\right|
$$

J :Jacobian for the coordinate transformation. For infinitesmal transformation,

$$
J=\left|\frac{\partial x^{\prime \mu}}{\partial x^{v}}\right| \approx\left|g_{v}^{\mu}+\frac{\partial\left(\delta x^{\mu}\right)}{\partial x^{v}}\right| \approx 1+\partial_{\mu}\left(\delta x^{\mu}\right)
$$

we have used the relation

$$
\operatorname{det}(1+\varepsilon) \approx 1+\operatorname{Tr}(\varepsilon) \quad \text { for } \quad|\varepsilon| \ll 1
$$

Then

$$
d^{4} x^{\prime}=d^{4} x\left(1+\partial_{\mu}\left(\delta x^{\mu}\right)\right)
$$

change in the action is

$$
\delta S=\int\left[\frac{\partial L}{\partial \phi} \delta \phi+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)+L \partial_{\mu}\left(x^{\mu}\right)\right] d x^{4}
$$

Define the change of ϕ for fixed x^{μ},

$$
\begin{gathered}
\bar{\delta} \phi(x)=\phi^{\prime}(x)-\phi(x)=\phi^{\prime}(x)-\phi^{\prime}\left(x^{\prime}\right)+\phi^{\prime}\left(x^{\prime}\right)-\phi(x)=-\partial^{\mu} \phi^{\prime} \delta x_{\mu}+\delta \phi \\
\text { or } \delta \phi=\bar{\delta} \phi+\left(\partial_{\mu} \phi\right) \delta x^{\mu}
\end{gathered}
$$

Similarly,

$$
\delta\left(\partial_{\mu} \phi\right)=\bar{\delta}\left(\partial_{\mu} \phi\right)+\partial_{v}\left(\partial_{\mu} \phi\right) \delta x^{v}
$$

Operator $\bar{\delta}$ commutes with the derivative operator ∂_{μ},

$$
\bar{\delta}\left(\partial_{\mu} \phi\right)=\partial_{\mu}(\bar{\delta} \phi)
$$

Then
$\delta S=\int\left[\frac{\partial L}{\partial \phi}\left(\bar{\delta} \phi+\left(\partial_{\mu} \phi\right) \delta x^{\mu}\right)+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\left(\bar{\delta}\left(\partial_{\mu} \phi\right)+\partial_{\nu}\left(\partial_{\mu} \phi\right) \delta x^{\nu}\right)+L \partial_{\mu}\left(\delta x^{\mu}\right)\right] a$
Use equation of motion

$$
\frac{\partial L}{\partial \phi}=\partial^{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\right)
$$

$$
\left.\frac{\partial L}{\partial \phi} \bar{\delta} \phi+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\right) \bar{\delta}\left(\partial_{\mu} \phi\right)=\partial^{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \bar{\delta} \phi+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu}(\bar{\delta} \phi)=\partial^{\mu}\left[\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \bar{\delta} \phi\right]\right.
$$

Combine other terms as

$$
\begin{aligned}
{\left[\frac{\partial L}{\partial \phi}\left(\partial_{\nu} \phi\right)+\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \partial_{v}\left(\partial_{\mu} \phi\right)\right] \delta x^{v}+L \partial_{v}\left(\delta x^{v}\right) } & =\left(\partial_{v} L\right) \delta x^{v}+L \partial_{v}\left(\delta x^{v}\right) \\
& =\partial_{v}\left(L \delta x^{v}\right)
\end{aligned}
$$

Then

$$
\delta S=\int d x^{4} \partial_{\mu}\left[\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \bar{\delta} \phi+L \delta x^{\mu}\right]
$$

and if $\delta \mathrm{S}=0$ under the symmetry ransformation, then

$$
\partial^{\mu} J_{\mu}=\partial^{\mu}\left[\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \bar{\delta} \phi+L \delta x^{\mu}\right]=0 \quad \text { current conservation }
$$

Simple case: space-time translation

Here the coordinate transformation is,

$$
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+a^{\mu} \Longrightarrow \phi^{\prime}(x+a)=\phi(x)
$$

then

$$
\bar{\delta} \phi=-a^{\mu} \partial_{\mu} \phi
$$

and the conservation laws take the form

$$
\partial^{\mu}\left[\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}\left(-a^{v} \partial_{\nu} \phi\right)+L a^{\mu}\right]=-\partial^{\mu}\left(T_{\mu v} a^{v}\right)=0
$$

where

$$
T_{\mu \nu}=\frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi-g_{\mu \nu} L \quad \text { energy momentum tensor }
$$

In particular,

$$
T_{0 i}=\frac{\partial L}{\partial\left(\partial_{0} \phi\right)} \partial_{i} \phi
$$

and

$$
P_{i}=\int d x^{3} T_{0 i} \text { momentum of the fields }
$$

