Quantum Field Theory

Ling-Fong Li

National Center for Theoretical Science

æ

イロト イヨト イヨト イヨト

Schrodinger equation \Rightarrow conservation of particle number.

$$H\psi = i\hbar \frac{\partial \psi}{\partial t} \qquad \Rightarrow \qquad \frac{d}{dt} \int d^3 x \psi^{\dagger} \psi = 0 \rightarrow \int d^3 x (\psi^{\dagger} \psi) \quad \text{indep of time}$$

if Hamiltonian is hermitian, $H = H^{\dagger}$. Then number of particles is conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

$$[x, p] = -i\hbar, \qquad \Rightarrow \qquad \triangle x \triangle p \geqslant \hbar$$

From

$$p^2c^2+m^2c^4=E^2$$

to give

$$\triangle E = \frac{p \triangle p}{E} c^2 \ge \frac{p \hbar c^2}{E \triangle x} \quad \text{or} \quad \triangle x \ge \frac{pc}{E} (\frac{\hbar c}{\triangle E})$$

• • = • • = •

To avoid new particle creation we require $\triangle E \leqslant mc^2$. Then we get a lower bound on $\triangle x$

$$\Delta x \ge \frac{pc}{E} \frac{h}{mc} = (\frac{v}{c})(\frac{h}{mc})$$

For relativistic particle $rac{v}{c}pprox$ 1, then

$$riangle x \geqslant (rac{\hbar}{mc})$$
 Compton wavelength

 $\Rightarrow~$ Particle can not be confined to a interval smaller than its Compton wavelength

注▶ ★ 注▶ -

Gauge Theory–Quantum Field Theory with Local Symmetry Gauge principle

All fundamental Interactions are descibed in terms of gauge theories;

- Strong Interaction-QCD; gauge theory based on SU(3) symmetry
- Electromagnetic and Weak interactiongauge theory based on SU(2)× U(1) symmetry

Gravitational interaction-Einstein's theory-gauge theory of local coordinate transformation.

Natural unit

$$\hbar = c = 1$$

In MKS units

$$h = 1.055 imes 10^{-34} J \, {
m sec}, \quad c = 2.99 imes 10^8 \, m/sec$$

In this unit, at the end of the calculation one puts back the factors of h and c depending on the physical quantities in the problem. For example, the quantity m_e can have following different meanings depending on the contexts;

Reciprocal length

$$m_e = rac{1}{rac{\hbar}{m_e c}} = rac{1}{3.86 imes 10^{-11} cm}$$

$$m_{e} = rac{1}{rac{\hbar}{m_{e}c^{2}}} = rac{1}{1.29 imes 10^{-21} sec}$$

$$m_e = m_e c^2 = 0.511 Mev$$

e momentum

$$m_e = m_e c = 0.511 Mev/c$$

æ

メロト メポト メヨト メヨト

The following conversion relations

$$\hbar = 6.58 imes 10^{-22}$$
 Mev $-$ sec $\hbar c = 1.973 imes 10^{-11}$ Mev $-$ cm

are quite useful in getting the physical quantities in the right units. Example: Thomson cross section

$$\sigma = \frac{8\pi\alpha^2}{3m_e^2} = \frac{8\pi\alpha^2(\hbar c)^2}{3m_e^2c^4} = (\frac{1}{137})^2 \times \frac{(1.973 \times 10^{-11} Mev - cm)^2}{(0.5 Mev)^2} \times (\frac{8\pi}{3}) \simeq \frac{1}{3} + \frac{1}{$$

Useful convertion factor

$$1ev = 1.6 \times 10^{-19} J$$
, $1Gev = 1.6 \times 10^{-10} J$ or $1J = \frac{1}{1.6} \times 10^{10} Gev$

1

Review of Special Relativity

Basic principles of special relativity :

- The speed of light : same in all inertial frames.
- Physical laws: same forms in all inertial frames.

Lorentz transformation-relate coordinates in different inertial frame

$$x' = rac{x - vt}{\sqrt{1 - v^2}}$$
 $y' = y$, $z' = z$, $t' = rac{t - vx}{\sqrt{1 - v^2}}$

$$t^{2} - x^{2} - y^{2} - z^{2} = t'^{2} - x'^{2} - y'^{2} - z'^{2}$$

Proper time $\tau^2 = t^2 - \overrightarrow{r^2}^2$ invariant under Lorentz transfomation. Particle moves from $\overrightarrow{r_1}(t_1)$ to $\overrightarrow{r_2}(t_2)$. The speed is

$$|\overrightarrow{v}| = rac{1}{|t_2 - t_1|} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

For $|\overrightarrow{v}|=1$, $(t_1-t_2)^2=|\overrightarrow{r_1}-\overrightarrow{r_2}|^2$

this is invariant under Lorentz transformation \Rightarrow speed of light same in all inertial frames.

Another form of the Lorentz transformation

$$x' = \cosh \omega x - \sinh \omega t$$
, $y' = y$, $z' = z$, $t' = \sinh \omega x - \cosh \omega t$

where

$$anh\,\omega=v$$

For infinitesmal interval (dt, dx, dy, dz), proper time is

$$(d\tau)^2 = (dt)^2 - (dx)^2 - (dy)^2 - (dz)^2$$

通 ト イヨ ト イヨ ト

Minkowski space,

$$x^{\mu} = (t, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}), \qquad 4 - vector$$

Lorentz invariant product can be written as

$$x^{2} = (x_{0})^{2} - (x_{1})^{2} - (x_{2})^{2} - (x_{3})^{2} = x_{\mu}x_{\nu}g_{\mu\nu}$$

where

$$g_{\mu
u}=\left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight)$$

Define another 4-vector

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (t, -x^1, -x^2, -x^3) = (t, -\overrightarrow{r})$$

æ

글 > - + 글 >

so that

$$x^2 = x^{\mu}x_{\mu}$$

For infinitesmal coordinates

$$(dx)^2 = (dx^{\mu})(dx_{\mu}) = dx^{\mu}dx^{\nu}g_{\mu\nu} = (dx^0)^2 - (d\overrightarrow{x})^2$$

Write the Lorentz transformation as

$$x^\mu
ightarrow x'^\mu = \Lambda^\mu_
u x^
u$$

For example for Lorentz transformation in the x-direction, we have

$$\Lambda^{\mu}_{\nu} = \left(\begin{array}{cccc} \frac{1}{\sqrt{1-\beta^2}} & \frac{-\beta}{\sqrt{1-\beta^2}} & 0 & 0\\ \frac{-\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array}\right)$$

2

◆臣▶ ◆臣▶ -

Write

$$x'^2 = x'^\mu x'^
u g_{\mu
u} = \Lambda^\mu_lpha \Lambda^
u_eta \; g_{\mu
u} x^lpha x^eta$$

then $x^2 = x'^2$ implies

$$\Lambda^{\mu}_{lpha}\Lambda^{
u}_{eta}\ {\it g}_{\mu
u}={\it g}_{lphaeta}$$

and is called **pseudo-orthogonality** relation.

æ

イロト イヨト イヨト イヨト

Energy and Momentum Start from

$$dx^{\mu} = (dx^0, dx^1, dx^2, dx^3)$$

Proper time is Lorentz invariant and has the form,

$$(d au)^2 = dx^\mu dx_\mu = (dt)^2 - (rac{d\,ec{x}}{dt})^2 (dt)^2 = (1 - ec{v}^2)(dt)^2$$

4 - velocity,

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = (\frac{dx^{0}}{d\tau}, \frac{d\overrightarrow{x}}{d\tau})$$

there is a constraint

$$u^{\mu}u_{\mu}=\frac{dx^{\mu}}{d\tau}\frac{dx_{\mu}}{d\tau}=1$$

Note that

$$\overrightarrow{u} = \frac{d\,\overrightarrow{x}}{d\tau} = \frac{d\,\overrightarrow{x}}{dt}(\frac{dt}{d\tau}) = \frac{1}{\sqrt{1-v^2}}\,\overrightarrow{v} \approx \,\overrightarrow{v}\,, \qquad \text{for } v \ll 1$$

3

 $4 - velocity \implies 4 - momentum$

$$p^{\mu} = mu^{\mu} = \left(\frac{m}{\sqrt{1-v^2}}, \frac{m\overrightarrow{v}}{\sqrt{1-v^2}}\right)$$

For $v \ll 1$,

$$p^{0} = \frac{m}{\sqrt{1-v^{2}}} = m(1+\frac{1}{2}v^{2}+...) = m+\frac{m}{2}v^{2}+...,$$
 energy

$$\overrightarrow{p} = m \overrightarrow{v} \frac{1}{\sqrt{1-v^2}} = m \overrightarrow{v} + \dots$$
 momentum

$$p^{\mu} = (E, \overrightarrow{p})$$

Note that

$$p^{2} = E^{2} - \overrightarrow{p}^{2} = \frac{m^{2}}{1 - v^{2}}[1 - v^{2}] = m^{2}$$

3

ヘロト 人間 ト くほ ト くほ トー

Tensor analysis

Physical laws take the same forms in all inertial frames, if we write them in terms of tensors in Minkowski space.

Basically, tensors are

tensors \sim product of vectors

2 different types of vectors,

$$x^{\prime\mu}=\Lambda^{\mu}_{\
u}x^{
u}$$
, $x^{\prime}_{\mu}=\Lambda^{
u}_{\mu}x_{
u}$

multiply these vectors to get 2nd rank tensors,

$$T'^{\mu
u} = \Lambda^{\mu}_{\ lpha} \Lambda^{
u}_{\ eta} T^{lphaeta}$$
, $T'_{\mu
u} = \Lambda^{lpha}_{\ \mu} \Lambda^{\ eta}_{\
u} T_{lphaeta}$, $T'^{\mu}_{\
u} = \Lambda^{\mu}_{\ lpha} \Lambda^{\ eta}_{\
u} T_{lphaeta}$,

In general,

$$T_{\nu_1\cdots\nu_m}^{\prime\mu_1\cdots\mu_n} = \Lambda_{\alpha_1}^{\mu_1}\cdots\Lambda_{\alpha_n}^{\mu_n}\Lambda_{\nu_1}^{\beta_1}\cdots\Lambda_{\nu_m}^{\beta_m}T_{\beta_1\cdots\beta_m}^{\alpha_1\cdots\alpha_n}$$

transformation of tensor components is linear and homogeneous.

Tensor operations; operation which preserves the tensor property

- Multiplication by a constant, (cT) has the same tensor properties as
- Addition of tensor of same rank
- Multiplication of two tensors
- Contraction of tensor indices. For example, $T^{\mu\alpha\beta\gamma}_{\mu}$ is a tensor of rank 3 while $T^{\mu\alpha\beta\gamma}_{\nu}$ is a tensor or rank 5. This follows from the psudo-orthogonality relation
- Symmetrization or anti-symmetrization of indices. This can be seen as follows. Suppose $T^{\mu\nu}$ is a second rank tensor,

$$T^{\prime\mu
u} = \Lambda^{\mu}_{\ lpha}\Lambda^{
u}_{\ eta}T^{lphaeta}$$

interchanging the indices

$$T^{\prime\nu\mu} = \Lambda^{\nu}_{\ \alpha}\Lambda^{\mu}_{\ \beta}T^{\alpha\beta} = \Lambda^{\nu}_{\ \beta}\Lambda^{\mu}_{\ \alpha}T^{\beta\alpha}$$

Then

$$T^{\prime\mu\nu} + T^{\prime\nu\mu} = \Lambda^{\mu}_{\ lpha} \Lambda^{
u}_{\ eta} \left(T^{lphaeta} + T^{etalpha}
ight)$$

symmetric tensor transforms into symmetric tensor. Similarly, the anti-symmetric tensor transforms into antisymmetic one.

6 $g_{\mu\nu}$, and $\varepsilon^{\alpha\beta\gamma\delta}$ have the property

$$\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta} \ g_{\mu
u} = g_{lphaeta}, \qquad arepsilon^{lphaeta\gamma\delta} \det{(\Lambda)} = \Lambda^{lpha}_{\mu}\Lambda^{eta}_{
u}\Lambda^{\gamma}_{
ho}\Lambda^{\delta}_{\sigma}arepsilon^{\mu
u
ho\sigma}$$

 $g_{\mu
u}$, and $arepsilon^{lphaeta\gamma\delta}$ transform in the same way as tensors if det $(\Lambda)=1.$

Example: $M^{\mu\nu} = x^{\mu}p^{\nu} - x^{\nu}p^{\mu}$, $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ second rank antisymmetric tensor.

Note that if all components of a tensor vanish in one inertial frame they vanish in all inertial frame. Suppose

$$f^{\mu}=ma^{\mu}$$

Define

$$t^\mu=f^\mu-ma^\mu$$

then t^{μ} vanish in this inertial frame. From

$$t'^{\mu}=f^{\mu'}-\mathit{ma}'^{\mu}=\mathsf{0}$$

we get

$$f^{\mu'}=ma'^{\mu}$$

Thus physical laws in tensor form are same in all inertial frames .

(B)

Action principle: actual trajectory of a partilce minimizes the action <u>Particle mechanics</u>

A particle moves from x_1 at t_1 to x_2 at t_2 . Write the action as

$$S = \int_{t_1}^{t_2} L(x, \dot{x}) dt$$
 L : Lagrangian

 $\delta S = 0$

For the least action, make a small change x(t),

$$x(t) \rightarrow x'(t) = x(t) + \delta x(t)$$

with end points fixed

i.e. $\delta x(t_1) = \delta x(t_2) = 0$ initial conditions

Then

$$\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta(\dot{x}) \right] dt$$

> < 프 > < 프 >

Note that

$$\delta \dot{x} = \dot{x'}(t) - \dot{x}(t) = \frac{d}{dt}[\delta(x)]$$

Integrate by parts and used the initial conditions

$$\delta S = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \frac{d}{dt} (\delta x) \right] dt = \int_{t_1}^{t_2} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \delta x \, dt$$

For S to be minimum, we require

$$\frac{\delta S}{\delta x} = 0,$$

i.e.
$$\frac{\partial L}{\partial x} - \frac{d}{dt} (\frac{\partial L}{\partial \dot{x}}) = 0$$
 Euler-Lagrange equation

Conjugate momentum is

$$p \equiv \frac{\partial L}{\partial \dot{x}}$$

~ .

Hamiltonian is ,

$$H(p,q) = p\dot{x} - L(x,\dot{x})$$

(Institute)

(B)

Consider the simple case

$$m\frac{d^2x}{dt^2} = -\frac{\partial V}{\partial x}$$

Suppose

$$L = \frac{m}{2} (\frac{dx}{dt})^2 - V(x)$$

then

$$\frac{\partial L}{\partial x} = \frac{d}{dt} (\frac{\partial L}{\partial \dot{x}}), \qquad \Rightarrow -\frac{\partial V}{\partial x} = m \frac{d^2 x}{dt^2}$$

Hamiltonian

$$H = p\dot{x} - L = \frac{m}{2}(\dot{x})^2 + V(x)$$
 where $p = \frac{\partial L}{\partial \dot{x}} = m\dot{x}$

is just the total energy. Generalization

$$x(t)
ightarrow q_i(t), \quad i = 1, 2, ..., n$$

 $S = \int_{t_1}^{t_2} L(q_i, \dot{q}_i) dt$

æ

Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = 0 \quad i = 1, 2, ..., n$$
$$p_{i} = \frac{\partial L}{\partial \dot{q}_{i}}, H = \Sigma p_{i} \dot{q}_{i} - L$$

Example: harmonic oscillator in 3-dimensions Lagrangian

$$L = T - V = \frac{m}{2}(\dot{x_1}^2 + \dot{x_2}^2 + \dot{x_3}^2) - \frac{mw^2}{2}(x_1^2 + x_2^2 + x_3^2)$$

and

$$\frac{\partial L}{\partial x_i} = -mw^2 x_i \quad \frac{\partial L}{\partial \dot{x}_i} = m\dot{x}_i$$

Euler-Langarange equation

$$m\ddot{x}_i = -mw^2x_i$$

same as Newton's second law.

(Institute)

æ

ト * 注 ト * 注 ト · ·

Field Theory

Field theory \sim limiting case where number of degrees of freedom is infinite. $q_i(t) \rightarrow \phi(\overrightarrow{x}, t)$. Action

$$S=\int L(\phi,\partial_\mu\phi)\,d^3xdt$$
 L:Lagrangian density

Variation of action

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)\right] dx^{4} = \int \left[\frac{\partial L}{\partial \phi} - \partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} \phi)}\right] \delta \phi \, dx^{4}$$

Use $\delta(\partial_\mu\phi)=\partial_\mu(\delta\phi)$ and do the integration by part. then $\delta S=0$ implies

$$\Longrightarrow \frac{\partial L}{\partial \phi} = \partial_{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)})$$

Euler-Lagrange equation

Conjugate momentum density

$$\pi(\overrightarrow{x},t) = \frac{\partial L}{\partial(\partial_0 \phi)}$$

and Hamiltonian density

$$H=\pi\dot{\phi}-L$$

Generalization to more than one field

$$\phi(\overrightarrow{x},t) \rightarrow \phi_i(\overrightarrow{x},t), \qquad i=1,2,...,n$$

Equations of motion are

$$\frac{\partial L}{\partial \phi_i} = \partial_{\mu} \left(\frac{\partial L}{\partial (\partial_{\mu} \phi_i)} \right) \quad i = 1, 2, ..., n$$

and conjugate momentum

$$\pi_i(\overrightarrow{x},t)=\frac{\partial L}{\partial(\partial_0\phi_i)}$$

Hamiltonian density is

$$H=\sum_i\pi_i\dot{\phi}_i-L$$

▶ ▲ 문 ▶ ▲ 문 ▶

Symmetry and Noether's Theorem

Continuous symmetry \implies conservation law, e.g. invariance under time translation

$$t
ightarrow t + a$$
, a is arbitrary constant

gives energy conservation. Newton's equation for a force derived from a potential $V(\vec{x}, t)$ is,

$$m\frac{d^2\overrightarrow{x}}{dt^2} = -\overrightarrow{\nabla}V(\overrightarrow{x},t)$$

Suppose $V(\overrightarrow{x},t)=V(\overrightarrow{x})$ invariant under time translation. Then

$$m\frac{d\overrightarrow{x}}{dt}\cdot\left(\frac{d^{2}\overrightarrow{x}}{dt^{2}}\right)=-\left(\frac{d\overrightarrow{x}}{dt}\right)\cdot\overrightarrow{\nabla}V=-\frac{d}{dt}[V(\overrightarrow{x})]$$

Or

$$\frac{d}{dt}[\frac{1}{2}m(\frac{d\overrightarrow{x}}{dt})^2 + V(\overrightarrow{x})] = 0, \qquad \text{energy conservation}$$

Note 1

(本語) (本語) (本語) (二語

Similarity, invariance under spatial translation

$$\overrightarrow{x} \rightarrow \overrightarrow{x} + \overrightarrow{a}$$

gives momentum conservation and invariance under rotations gives angular momentum conservation. Noether's theorem : unified treatment of symmetries in the Lagrangian formalism.

Particle mechanics

Action in classical mech

$${\cal S} = \int {\cal L}({m q}_i, {m \dot q}_i) \, dt$$

Suppose S is invariant under a continuous symmetry transformation,

$$q_i
ightarrow q_i' = f_{ij}(lpha) q_j, \qquad ext{with} \quad f_{ij}(0) = \delta_{ij}$$

For $\alpha \ll 1$ then

$$q_i
ightarrow q_i' \simeq q_i + lpha f_{ij}'(0) q_j = q_i + \delta q_i \qquad \qquad ext{with} \quad \delta q_i = lpha f_{ij}'(0) q_j = 0$$

26 / 35

The change of S

$$\delta S = \int [rac{\partial L}{\partial q_i} \delta q_i + rac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i] dt$$
 where $\delta \dot{q}_i o rac{d}{dt} (\delta q_i)$

Using the equation of motion,

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

we can write δS as

$$\delta S = \int \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i}\right) \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \frac{d}{dt} \left(\delta q_i\right)\right] dt = \int \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i\right)\right] dt$$

Thus $\delta S = 0 \Rightarrow$

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{i}}\delta q_{i}) = 0 \quad \text{or} \quad \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{i}}\alpha f_{ij}'(0)q_{j}) = 0$$

э

(B)

This can be written as

or
$$rac{dA}{dt}=0,$$
 $A=rac{\partial L}{\partial \dot{q_i}}lpha f_{ij}'(0)q_j$

A is the conserved charge.

æ

メロト メポト メヨト メヨト

Example: rotational symmetry in 3-dimension action

$$S = \int L(x_i, \dot{x}_i) dt$$

Suppose S is invariant under rotation,

$$x_i
ightarrow x_i' = R_{ij} x_j, \qquad RR^T = R^T R = 1 \quad or \quad R_{ij} R_{ik} = \delta_{jk}$$

For infinitesmal rotations

$${{\it R}_{ij}}=\delta_{ij}+arepsilon_{ij}$$
 $|arepsilon_{ij}|\ll 1$

Orthogonality requires,

 $(\delta_{ij} + \varepsilon_{ij})(\delta_{ik} + \varepsilon_{ik}) = \delta_{jk} \Longrightarrow \varepsilon_{jk} + \varepsilon_{kj} = 0 \quad i, e, \quad \varepsilon_{jk} \quad \text{is antisymmetric}$

We can compute the conserved charges as

$$J = \frac{\partial L}{\partial \dot{x}} \varepsilon_{ij} x_j = \varepsilon_{ij} p_i x_j$$

個人 くほん くほん … ほ

If we write $\varepsilon_{ij} = -\varepsilon_{ijk}\theta_k$

$$J = -\theta_k \varepsilon_{ijk} p_i x_j = -\theta_k J_k \qquad \qquad J_k = \varepsilon_{ijk} x_i p_j$$

 J_k k-th component of angular momentum.

3

イロト イヨト イヨト イヨト

Field Theory Start from the action

$$S=\int L(\phi,\partial_{\mu}\phi)\,d^4x$$

Symmetry transformation,

$$\phi(x)
ightarrow \phi'(x')$$
,

which includes the change of coordinates,

$$x^{\mu} \rightarrow x'^{\mu} \neq x^{\mu}$$

Infinitesmal transformation

$$\delta \phi = \phi'\left(x'
ight) - \phi\left(x
ight)$$
 , $\delta x'^{\mu} = x'^{\mu} - x^{\mu}$

• • = • • = •

need to include the change in the volume element

$$d^4x' = Jd^4x$$
 where $J = \left| \frac{\partial(x'_0, x'_1, x'_2, x'_3)}{\partial(x_0, x_1, x_2, x_3)} \right|$

 \boldsymbol{J} :Jacobian for the coordinate transformation. For infinitesmal transformation,

$$J = |rac{\partial x'^{\mu}}{\partial x^{
u}}| pprox |g^{\mu}_{
u} + rac{\partial (\delta x^{\mu})}{\partial x^{
u}}| pprox 1 + \partial_{\mu}(\delta x^{\mu})$$

we have used the relation

$$det(1+\varepsilon)\approx 1+\mathit{Tr}(\varepsilon) \qquad \quad \textit{for} \quad |\varepsilon|\ll 1$$

Then

$$d^4x' = d^4x(1 + \partial_\mu(\delta x^\mu))$$

change in the action is

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi) + L \partial_{\mu} (x^{\mu})\right] dx^{4}$$

(Institute)

Define the change of ϕ for fixed x^{μ} ,

$$\overline{\delta}\phi(x) = \phi'(x) - \phi(x) = \phi'(x) - \phi'(x') + \phi'(x') - \phi(x) = -\partial^{\mu}\phi'\delta x_{\mu} + \delta\phi$$

or $\delta\phi = \overline{\delta}\phi + (\partial_{\mu}\phi)\delta x^{\mu}$

Similarly,

$$\delta(\partial_{\mu}\phi) = \overline{\delta}(\partial_{\mu}\phi) + \partial_{\nu}(\partial_{\mu}\phi)\delta x^{\nu}$$

Operator $\overline{\delta}$ commutes with the derivative operator ∂_{μ} ,

$$\overline{\delta}(\partial_{\mu}\phi) = \partial_{\mu}(\overline{\delta}\phi)$$

Then

$$\delta S = \int \left[\frac{\partial L}{\partial \phi} (\bar{\delta}\phi + (\partial_{\mu}\phi)\delta x^{\mu}) + \frac{\partial L}{\partial(\partial_{\mu}\phi)} (\bar{\delta}(\partial_{\mu}\phi) + \partial_{\nu}(\partial_{\mu}\phi)\delta x^{\nu}) + L\partial_{\mu}(\delta x^{\mu})\right] dx$$

Use equation of motion

$$\frac{\partial L}{\partial \phi} = \partial^{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)})$$

we get

$$\frac{\partial L}{\partial \phi} \overline{\delta} \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)}) \overline{\delta} (\partial_{\mu} \phi) = \partial^{\mu} (\frac{\partial L}{\partial (\partial_{\mu} \phi)} \overline{\delta} \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu} (\overline{\delta} \phi) = \partial^{\mu} [\frac{\partial L}{\partial (\partial_{\mu} \phi)} \overline{\delta} \phi]$$

Combine other terms as

$$\begin{bmatrix} \frac{\partial L}{\partial \phi} (\partial_{\nu} \phi) + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\nu} (\partial_{\mu} \phi) \end{bmatrix} \delta x^{\nu} + L \partial_{\nu} (\delta x^{\nu}) = (\partial_{\nu} L) \delta x^{\nu} + L \partial_{\nu} (\delta x^{\nu}) \\ = \partial_{\nu} (L \delta x^{\nu})$$

Then

$$\delta S = \int dx^4 \partial_\mu [rac{\partial L}{\partial (\partial_\mu \phi)} \overline{\delta} \phi + L \delta x^\mu]$$

and if $\delta S=0$ under the symmetry ransformation, then

$$\partial^{\mu}J_{\mu} = \partial^{\mu}[rac{\partial L}{\partial(\partial_{\mu}\phi)}\overline{\delta}\phi + L\delta x^{\mu}] = 0$$
 current conservation

Simple case: space-time translation

(Institute)

< Ξ > < Ξ >

34 / 35

Here the coordinate transformation is,

$$x^{\mu}
ightarrow x'^{\mu} = x^{\mu} + a^{\mu} \Longrightarrow \phi'(x+a) = \phi(x)$$

then

$$\overline{\delta}\phi = -a^\mu \partial_\mu \phi$$

and the conservation laws take the form

$$\partial^{\mu}[rac{\partial L}{\partial(\partial_{\mu}\phi)}(-a^{\nu}\partial_{\nu}\phi)+La^{\mu}]=-\partial^{\mu}(T_{\mu\nu}a^{\nu})=0$$

where

$$\mathcal{T}_{\mu
u}=rac{\partial L}{\partial(\partial_\mu\phi)}\partial_
u\phi-g_{\mu
u}L$$
 energy momentum tensor

In particular,

$$T_{0i} = \frac{\partial L}{\partial (\partial_0 \phi)} \partial_i \phi$$

and

$$P_i = \int dx^3 T_{0i}$$
 momentum of the fields

æ

E ► < E ►