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Schrodinger equation ) conservation of particle number.

Hψ = i�h
∂ψ

∂t
) d

dt

Z
d3xψ†ψ = 0!

Z
d3x(ψ†ψ) indep of time

if Hamiltonian is hermitian, H = H†. Then number of particles is
conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

[x , p] = �i�h, ) 4x4p > �h

From
p2c2 +m2c4 = E 2

to give

4E = p4p
E
c2 > p�hc2

E4x or 4x > pc
E
(
�hc
4E )
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To avoid new particle creation we require 4E6mc2. Then we get a lower
bound on 4x

4x > pc
E
�h
mc

= (
v
c
)(
�h
mc
)

For relativistic particle
v
c
� 1, then

4x > ( �h
mc
) Compton wavelength

) Particle can not be con�ned to a interval smaller than its Compton
wavelength
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Gauge Theory�Quantum Field Theory with Local Symmetry
Gauge principle
All fundamental Interactions are descibed in terms of gauge theories;

1 Strong Interaction-QCD;
gauge theory based on SU(3) symmetry

2 Electromagnetic and Weak interaction-
gauge theory based on SU(2)� U(1) symmetry

3 Gravitational interaction-
Einstein�s theory-gauge theory of local coordinate transformation.
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Natural unit
�h = c = 1

In MKS units

�h = 1.055� 10�34J sec, c = 2.99� 108m/sec

In this unit, at the end of the calculation one puts back the factors of �h
and c depending on the physical quantities in the problem.
For example, the quantity me can have following di¤erent meanings
depending on the contexts;

1 Reciprocal length

me =
1
�h
me c

=
1

3.86� 10�11cm
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2 Reciprocal time

me =
1
�h

me c2
=

1
1.29� 10�21sec

3 energy
me = mec2 = 0.511Mev

4 momentum
me = mec = 0.511Mev/c
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The following conversion relations

�h = 6.58� 10�22Mev � sec �hc = 1.973� 10�11Mev � cm

are quite useful in getting the physical quantities in the right units.
Example: Thomson cross section

σ =
8πα2

3m2e
=
8πα2(�hc)2

3m2ec4
= (

1
137

)2� (1.973� 10
�11Mev � cm)2

(0.5Mev)2
� (8π

3
) ' 6.95� 10�25cm2

Useful convertion factor

1ev = 1.6� 10�19J, 1Gev = 1.6� 10�10J or 1J =
1
1.6
� 1010Gev
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Review of Special Relativity
Basic principles of special relativity :

1 The speed of light : same in all inertial frames.
2 Physical laws: same forms in all inertial frames.

Lorentz transformation�relate coordinates in di¤erent inertial frame

x 0 =
x � vtp
1� v2

y 0 = y , z 0 = z , t 0 =
t � vxp
1� v2

)
t2 � x2 � y2 � z2 = t 02 � x 02 � y 02 � z 02

Proper time τ2 = t2 ��!r 2 invariant under Lorentz transfomation.
Particle moves from

!
r1(t1) to

!
r2(t2) .The speed is

j�!v j = 1
jt2 � t1j

q
(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2
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For j�!v j = 1,
(t1 � t2)2 = j�!r1 ��!r2 j2

this is invariant under Lorentz transformation ) speed of light
same in all inertial frames.
Another form of the Lorentz transformation

x 0 = coshω x � sinhω t, y 0 = y , z 0 = z , t 0 = sinhω x � coshω t

where
tanhω = v

For in�nitesmal interval (dt, dx , dy , dz), proper time is

(dτ)2 = (dt)2 � (dx)2 � (dy)2 � (dz)2
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Minkowski space,

xµ = (t, x , y , z) = (x0, x1, x2, x3), 4� vector

Lorentz invariant product can be written as

x2 = (x0)2 � (x1)2 � (x2)2 � (x3)2 = xµxνgµν

where

gµν =

0BB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1CCA
De�ne another 4-vector

xµ = gµνxν = (t,�x1,�x2,�x3) = (t,��!r )
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so that
x2 = xµxµ

For in�nitesmal coordinates

(dx)2 = (dxµ)(dxµ) = dxµdxνgµν = (dx0)2 � (d�!x )2

Write the Lorentz transformation as

xµ ! x 0µ = Λµ
νx

ν

For example for Lorentz transformation in the x�direction, we have

Λµ
ν =

0BBBB@
1p
1�β2

�βp
1�β2

0 0
�βp
1�β2

1p
1�β2

0 0

0 0 1 0
0 0 0 1

1CCCCA
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Write
x 02 = x 0µx 0νgµν = Λµ

αΛν
β gµνxαx β

then x2 = x 02 implies
Λµ

αΛν
β gµν = gαβ

and is called pseudo-orthogonality relation.
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Energy and Momentum
Start from

dxµ = (dx0, dx1, dx2, dx3)

Proper time is Lorentz invariant and has the form,

(dτ)2 = dxµdxµ = (dt)2 � (
d�!x
dt
)2(dt)2 = (1�!

v
2
)(dt)2

4� velocity ,
uµ =

dxµ

dτ
= (

dx0

dτ
,
d�!x
dτ

)

there is a constraint

uµuµ =
dxµ

dτ

dxµ

dτ
= 1

Note that

�!u = d�!x
dτ

=
d�!x
dt
(
dt
dτ
) =

1p
1� v2

�!v � �!v , for v � 1
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4� velocity =) 4�momentum

pµ = muµ = (
mp
1� v2

,
m�!vp
1� v2

)

For v � 1,

p0 =
mp
1� v2

= m(1+
1
2
v2 + ...) = m+

m
2
v2 + ..., energy

�!p = m�!v 1p
1� v2

= m�!v + ... momentum

pµ = (E ,�!p )

Note that

p2 = E 2 ��!p 2 = m2

1� v2 [1� v
2] = m2
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Tensor analysis
Physical laws take the same forms in all inertial frames, if we write them in
terms of tensors in Minkowski space.
Basically, tensors are

tensors � product of vectors

2 di¤erent types of vectors,

x 0µ = Λµ
νx

ν, x 0µ = Λ ν
µ xν

multiply these vectors to get 2nd rank tensors,

T 0µν = Λµ
αΛν

βT
αβ, T 0µν = Λ α

µ Λ β
ν Tαβ, T 0µν = Λµ

αΛ β
ν T

α
β

In general,

T 0µ1 ���µnν1 ���νm = Λµ1
α1 � � �Λ

µn
αnΛ

β1
ν1 � � �Λ

βm
νm T

α1 ���αn
β1 ���βm

transformation of tensor components is linear and homogeneous.
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Tensor operations; operation which preserves the tensor property

1 Multiplication by a constant, (cT ) has the same tensor properties as
T

2 Addition of tensor of same rank
3 Multiplication of two tensors

4 Contraction of tensor indices. For example,T µαβγ
µ is a tensor of rank 3

while T µαβγ
ν is a tensor or rank 5. This follows from the

psudo-orthogonality relation
5 Symmetrization or anti-symmetrization of indices. This can be seen
as follows. Suppose T µν is a second rank tensor,

T 0µν = Λµ
αΛν

βT
αβ

interchanging the indices

T 0νµ = Λν
αΛµ

βT
αβ = Λν

βΛµ
αT

βα
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Then
T 0µν + T 0νµ = Λµ

αΛν
β

�
T αβ + T βα

�
symmetric tensor transforms into symmetric tensor. Similarly, the
anti-symmetric tensor transforms into antisymmetic one.

6 gµν, and εαβγδ have the property

Λµ
αΛν

β gµν = gαβ, εαβγδ det (Λ) = Λα
µΛβ

ν Λγ
ρ Λδ

σεµνρσ

gµν, and εαβγδ transform in the same way as tensors if det (Λ) = 1.

Example: Mµν = xµpν � xνpµ, F µν = ∂µAν � ∂νAµ second rank
antisymmetric tensor.
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Note that if all components of a tensor vanish in one inertial frame they
vanish in all inertial frame. Suppose

f µ = maµ

De�ne
tµ = f µ �maµ

then tµ vanish in this inertial frame. From

t 0µ = f µ0 �ma0µ = 0

we get
f µ0 = ma0µ

Thus physical laws in tensor form are same in all inertial frames .
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Action principle: actual trajectory of a partilce minimizes the action
Particle mechanics
A particle moves from x1 at t1 to x2 at t2. Write the action as

S =
Z t2

t1
L(x , ẋ) dt L : Lagrangian

δS = 0

For the least action, make a small change x(t),

x(t)! x 0(t) = x(t) + δx(t)

with end points �xed

i .e. δx(t1) = δx(t2) = 0 initial conditions

Then

δS =
Z t2

t1
[
∂L
∂x

δx +
∂L
∂ẋ

δ(ẋ)] dt
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Note that

δẋ = ẋ 0(t)� ẋ(t) = d
dt
[δ(x)]

Integrate by parts and used the initial conditions

δS =
Z t2

t1
[
∂L
∂x

δx +
∂L
∂ẋ
d
dt
(δx)] dt =

Z t2

t1
[
∂L
∂x
� d
dt
(

∂L
∂ẋ
)]δx dt

For S to be minimum, we require

δS
δx
= 0,

i .e.
∂L
∂x
� d
dt
(

∂L
∂ẋ
) = 0 Euler-Lagrange equation

Conjugate momentum is

p � ∂L
∂ẋ

Hamiltonian is ,
H(p, q) = pẋ � L(x , ẋ)
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Consider the simple case

m
d2x
dt2

= �∂V
∂x

Suppose

L =
m
2
(
dx
dt
)2 � V (x)

then
∂L
∂x
=
d
dt
(

∂L
∂ẋ
), ) �∂V

∂x
= m

d2x
dt2

Hamiltonian

H = pẋ � L = m
2
(ẋ)2 + V (x) where p =

∂L
∂ẋ
= mẋ

is just the total energy.
Generalization

x(t)! qi (t), i = 1, 2, ..., n

S =
Z t2

t1
L(qi , q̇i ) dt
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Euler-Lagrange equations

d
dt
(

∂L
∂q̇i
)� ∂L

∂qi
= 0 i = 1, 2, ..., n

pi =
∂L
∂q̇i
,H = Σpi q̇i � L

Example: harmonic oscillator in 3-dimensions
Lagrangian

L = T � V = m
2
(ẋ12 + ẋ22 + ẋ32)�

mw2

2
(x21 + x

2
2 + x

2
3 )

and
∂L
∂xi

= �mw2xi
∂L
∂ẋi

= mẋi

Euler-Langarange equation

m
..
x i = �mw2xi

same as Newton�s second law.
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Field Theory
Field theory � limiting case where number of degrees of freedom is
in�nite. qi (t)! φ(�!x , t).
Action

S =
Z
L(φ, ∂µφ) d3xdt L : Lagrangian density

Variation of action

δS =
Z
[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)] dx4 =

Z
[
∂L
∂φ
� ∂µ

∂L
∂(∂µφ)

]δφ dx4

Use δ(∂µφ) = ∂µ(δφ) and do the integration by part. then δS = 0 implies

=) ∂L
∂φ
= ∂µ(

∂L
∂(∂µφ)

) Euler-Lagrange equation

Conjugate momentum density

π(�!x , t) = ∂L
∂(∂0φ)
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and Hamiltonian density
H = πφ̇� L

Generalization to more than one �eld

φ(�!x , t)! φi (
�!x , t), i = 1, 2, ..., n

Equations of motion are

∂L
∂φi

= ∂µ(
∂L

∂(∂µφi )
) i = 1, 2, ..., n

and conjugate momentum

πi (
�!x , t) = ∂L

∂(∂0φi )

Hamiltonian density is
H = ∑

i
πi φ̇i � L

(Institute) Note 1 24 / 35



Symmetry and Noether�s Theorem
Continuous symmetry =) conservation law, e.g. invariance under time
translation

t ! t + a, a is arbitrary constant

gives energy conservation. Newton�s equation for a force derived from a
potential V (�!x , t) is,

m
d2�!x
dt2

= ��!rV (�!x , t)

Suppose V(�!x ,t)=V(�!x ) invariant under time translation. Then

m
d�!x
dt

�
�
d2�!x
dt2

�
= �

�
d�!x
dt

�
� �!rV = � d

dt
[V (�!x )]

Or
d
dt
[
1
2
m(
d�!x
dt
)2 + V (�!x )] = 0, energy conservation

(Institute) Note 1 25 / 35



Similarity, invariance under spatial translation

�!x ! �!x +�!a

gives momentum conservation and invariance under rotations gives angular
momentum conservation. Noether�s theorem : uni�ed treatment of
symmetries in the Lagrangian formalism.

Particle mechanics
Action in classical mech

S =
Z
L(qi , q̇i ) dt

Suppose S is invariant under a continuous symmetry transformation,

qi ! q0i = fij (α)qj , with fij (0) = δij

For α � 1 then

qi ! q0i ' qi + αf 0ij (0)qj = qi + δqi with δqi = αf 0ij (0)qj
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The change of S

δS =
Z
[

∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i ] dt where δq̇i !
d
dt
(δqi )

Using the equation of motion,

∂L
∂qi

=
d
dt
(

∂L
∂q̇i
)

we can write δS as

δS =
Z
[
d
dt
(

∂L
∂q̇i
)δqi +

∂L
∂q̇i

d
dt
(δqi )] dt =

Z
[
d
dt
(

∂L
∂q̇i

δqi )] dt

Thus δS = 0 )

d
dt
(

∂L
∂q̇i

δqi ) = 0 or
d
dt
(

∂L
∂q̇i

αf 0ij (0)qj ) = 0
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This can be written as

or
dA
dt
= 0, A =

∂L
∂q̇i

αf 0ij (0)qj

A is the conserved charge.
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Example: rotational symmetry in 3-dimension
action

S =
Z
L(xi , ẋi ) dt

Suppose S is invariant under rotation,

xi ! x 0i = Rijxj , RRT = RTR = 1 or RijRik = δjk

For in�nitesmal rotations

Rij = δij + εij jεij j � 1

Orthogonality requires,

(δij + εij )(δik + εik ) = δjk =) εjk + εkj = 0 i , e, εjk is antisymmetric

We can compute the conserved charges as

J =
∂L
∂ẋ

εijxj = εijpixj
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If we write εij = �εijk θk

J = �θk εijkpixj = �θkJk Jk = εijkxipj

Jk k-th component of angular momentum.
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Field Theory
Start from the action

S =
Z
L(φ, ∂µφ) d4x

Symmetry transformation,

φ(x)! φ0(x 0),

which includes the change of coordinates,

xµ ! x 0µ 6= xµ

In�nitesmal transformation

δφ = φ0
�
x 0
�
� φ (x) , δx 0µ = x 0µ � xµ
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need to include the change in the volume element

d4x 0 = Jd4x where J =

����∂(x 00, x 01, x 02, x 03)∂(x0, x1, x2, x3)

����
J :Jacobian for the coordinate transformation. For in�nitesmal
transformation,

J = j∂x
0µ

∂xν
j � jgµ

ν +
∂(δxµ)

∂xν
j � 1+ ∂µ(δxµ)

we have used the relation

det(1+ ε) � 1+ Tr(ε) for jεj � 1

Then
d4x 0 = d4x(1+ ∂µ(δxµ))

change in the action is

δS =
Z
[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) + L∂µ(xµ)] dx4
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De�ne the change of φ for �xed xµ,

δφ(x) = φ0(x)�φ(x) = φ0(x)�φ0(x 0)+φ0(x 0)�φ(x) = �∂µφ0δxµ+ δφ

or δφ = δφ+ (∂µφ)δxµ

Similarly,
δ(∂µφ) = δ(∂µφ) + ∂ν(∂µφ)δxν

Operator δ commutes with the derivative operator ∂µ,

δ(∂µφ) = ∂µ(δφ)

Then

δS =
Z
[
∂L
∂φ
(δφ+(∂µφ)δxµ)+

∂L
∂(∂µφ)

(δ(∂µφ)+ ∂ν(∂µφ)δxν)+L∂µ(δxµ)] dx4

Use equation of motion

∂L
∂φ
= ∂µ(

∂L
∂(∂µφ)

)
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we get

∂L
∂φ

δφ+
∂L

∂(∂µφ)
)δ(∂µφ) = ∂µ(

∂L
∂(∂µφ)

δφ+
∂L

∂(∂µφ)
∂µ(δφ) = ∂µ[

∂L
∂(∂µφ)

δφ]

Combine other terms as

[
∂L
∂φ
(∂νφ) +

∂L
∂(∂µφ)

∂ν(∂µφ)]δxν + L∂ν(δxν) = (∂νL)δxν + L∂ν(δxν)

= ∂ν(Lδxν)

Then

δS =
Z
dx4∂µ[

∂L
∂(∂µφ)

δφ+ Lδxµ]

and if δS=0 under the symmetry ransformation, then

∂µJµ = ∂µ[
∂L

∂(∂µφ)
δφ+ Lδxµ] = 0 current conservation

Simple case: space-time translation
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Here the coordinate transformation is,

xµ ! x 0µ = xµ + aµ =) φ0(x + a) = φ(x)

then
δφ = �aµ∂µφ

and the conservation laws take the form

∂µ[
∂L

∂(∂µφ)
(�aν∂νφ) + Laµ] = �∂µ(Tµνaν) = 0

where

Tµν =
∂L

∂(∂µφ)
∂νφ� gµνL energy momentum tensor

In particular,

T0i =
∂L

∂(∂0φ)
∂iφ

and
Pi =

Z
dx3T0i momentum of the �elds
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