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Schrodinger equation = conservation of particle number.
P d [ 3 .+ 30ty -
Hyp =i 'hat = a/dx1p¢20—>/dx(lp¢) indep of time

if Hamiltonian is hermitian, H = H. Then number of particles is
conserved and no particle creation or annihilation.

Canonical commutation relation gives uncertainty relation,

[x,p] = —ih, = AxAp>h

From
p’c? + m’ct = E?
to give
pAp , _ phc? pc, hc
AE = > Ax 2 —(——
ECSZEax @ 2 ERE
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To avoid new particle creation we require AE<mc?. Then we get a lower
bound on Ax
ch v., h
Dxz = (D))

E mc c’‘mc

e . 4
For relativistic particle — = 1, then
c

Ax = (—) Compton wavelength
mc

= Particle can not be confined to a interval smaller than its Compton
wavelength
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Gauge Theory—Quantum Field Theory with Local Symmetry
Gauge principle
All fundamental Interactions are descibed in terms of gauge theories;

@ Strong Interaction-QCD;
gauge theory based on SU(3) symmetry

@ Electromagnetic and Weak interaction-
gauge theory based on SU(2)x U(1) symmetry

© Gravitational interaction-
Einstein's theory-gauge theory of local coordinate transformation.
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Natural unit

In MKS units
h=1.055x10"*Jsec, ¢ =2.99 x 10®°m/sec

In this unit, at the end of the calculation one puts back the factors of h
and c¢ depending on the physical quantities in the problem.

For example, the quantity m. can have following different meanings
depending on the contexts;

© Reciprocal length

1 1
ms —m —/—— —
€ h 3.86 x 10~ 11cm
mecC
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© Reciprocal time

© energy

@ momentum

(Institute)
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m. = =
¢ _h, 1.29 x 10~ 2lsec
Mmec

me = moc® = 0.511Mev

me = mec = 0.511Mev/c
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The following conversion relations

h = 6.58 x 1072’ Mev — sec e =1.973 x 107 M Mev — ¢

are quite useful in getting the physical quantities in the right units.
Example: Thomson cross section

m

;e 8ma®  8ma?(hc)? (i)z . (1973 % 10~ Mev — cm)? y (81) X
- 3m?2  3m2ct 137 (0.5Mev)? 377

Useful convertion factor

lev = 1.6 x 10719, 1Gev =16x10"1%) or 1J= 1716 x 100 Gev
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Review of Special Relativity

Basic principles of special relativity :

@ The speed of light : same in all inertial frames.

@ Physical laws: same forms in all inertial frames.
Lorentz transformation—relate coordinates in different inertial frame

' X — vt / ' , t— vx

X = —F— =Yy, z =z, t = —
V1—v2 =y V1—v2

2

R Y B N SN S B

. —_ . . .
Proper time T2 = t2 — 7’2 invariant under Lorentz transfomation.

Particle moves from ri (t1) to r(ty) .The speed is

v 2 _ 2
V1= gV =2+ 1=+ (- 2)
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For | V| =1, o
(h—t)’=|n -7

this is invariant under Lorentz transformation = speed of light
same in all inertial frames.
Another form of the Lorentz transformation

x' =coshw x—sinhwt, y =y =2z  =sinhwx—coshwt

where
tanhw = v

For infinitesmal interval (dt, dx, dy, dz), proper time is

(d7)? = (dt)* — (dx)* — (dy)® — (dz)”
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Minkowski space,
xt=(t,x,y,z)= (xo,xl,x2,x3), 4 — vector

Lorentz invariant product can be written as

X = (%)= (x)? = (x)?— () = XuXv v

where
1 0 0 0
o -1 0 o
=10 0 -1 0
0 0 0 -1

Define another 4-vector

Xu = gux' = (t, —x', —x*, =x%) = (t, = T)
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so that
2y m
X =X XH

For infinitesmal coordinates
(dx)? = (dx")(dx,) = dx"dx’guy = (dx°)? — (d'X")?
Write the Lorentz transformation as

xt — X" = ADxY

For example for Lorentz transformation in the x—direction, we have

- - 00
—B 1

Aﬂ = 1-p2 1-p2 00
0 0 10
0 0 01
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Write
x? = XXV gy = AZAE gwx”‘xﬁ

then x?> = x'? implies
AZAE Euv = 8up

and is called pseudo-orthogonality relation.
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Energy and Momentum
Start from

dx = (dx, dx!, dx?, dx?)
Proper time is Lorentz invariant and has the form,

(d7)? = dxtdx, = (dt)? — (ddt V2(dt)? = (1—v7)(dt)?

4 — velocity,

p_ dxt dx® dxX
u =(—,—/—)
dt ~ Vdt' dt
there is a constraint
” dx# dX‘u
uru, = =
B dt dt
Note that
N
1
T—dx dx  dt VeV, forv<i1

ar - a el T Vi—v2?

(Institute) Note 1

13 /35



4 — velocity == 4 — momentum

P = mul = ( m mv )
V1—v2' {1 -2
For v<«1,
1
p0:\/1n_17‘/2:m(1+2v2+...):m—l—g’v2—|—..., energy
? = m7# =mv + momentum
p'=(E,P)
Note that )
2 2 —0 m 2 2
p- = E° — = [1—v]=m
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Tensor analysis

Physical laws take the same forms in all inertial frames, if we write them in

terms of tensors in Minkowski space.
Basically, tensors are

tensors ~ product of vectors
2 different types of vectors,
/ /
X = AR X X :A;xy

multiply these vectors to get 2nd rank tensors,

T = NAYS T, T, = APAS T, T = AWASTE

In general,

Thohn = Al A AL AL T

transformation of tensor components is linear and homogeneous.
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Tensor operations; operation which preserves the tensor property

o

2]
o

Multiplication by a constant, (cT) has the same tensor properties as
T

Addition of tensor of same rank
Multiplication of two tensors
Contraction of tensor indices. For example,Tﬁam is a tensor of rank 3

while TVWm is a tensor or rank 5. This follows from the
psudo-orthogonality relation

Symmetrization or anti-symmetrization of indices. This can be seen
as follows. Suppose TH' is a second rank tensor,

T = AN T
interchanging the indices

TV = AN TP = AN TP
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Then
T'm + TV — Alfovﬁ (Tocﬁ + -,-ﬁtx)

symmetric tensor transforms into symmetric tensor. Similarly, the
anti-symmetric tensor transforms into antisymmetic one.

@ guv, and &7 have the property
NINY g = gup. €10 det (A) = ALATAT AP

guv, and &% transform in the same way as tensors if det (A) = 1.

Example: MM = xHp¥ — xVpH, FH = gl AV — g¥ A¥ second rank
antisymmetric tensor.
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Note that if all components of a tensor vanish in one inertial frame they
vanish in all inertial frame. Suppose

i = ma!

Define
tV e f]'l — may

then t# vanish in this inertial frame. From

!/
th = f" —ma" =0

we get
I = mat

Thus physical laws in tensor form are same in all inertial frames .
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Action prlnC|p|e: actual trajectory of a partilce minimizes the action
Particle mechanics
A particle moves from x; at t; to xp at tp. Write the action as

to
S = L(x,x)dt L : Lagrangian
t1
0§=0
For the least action, make a small change x(t),
x(t) = X'(t) = x(t) + ox(t)

with end points fixed

i.e. Ox(t1) =0x(t) =0 initial conditions
Then b 3L 51
2
0§ = [aX5x+a—(5( x)] dt
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Note that
d

Ox = x'(t) — x(t) = =0
x = ¥(2) — x(t) = £ [600)
Integrate by parts and used the initial conditions

2 oL JL d 2 oL d oL
os= [ [axéx+axdt((5x)]dt—/t1 5 — (5ot

For S to be minimum, we require

S
a0
L L
i.e. gx - c(ljt(gx) =0 Euler-Lagrange equation
Conjugate momentum is
_ oL
P=ax

Hamiltonian is ,
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Consider the simple case

dx_ v
dt2  9x
Suppose
. om dx .,
L= 5(&) - V(x)
then

L_doL 0V d
ox  dt'ox’ ox  de
Hamiltonian

aL
9%

H:pX—L:m(X)2+V(x) where p=— = mx

2

is just the total energy.
Generalization
x(t) = qi(t), i=1,2,..,n

[%]
52/ L(q;, q;) dt
t1
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Euler-Lagrange equations

d, dL JaL
—(z—)—=—=0 i=12.,
dt(aq,) aq,' ! "
oL )
pi =3 H=2pigi—L
qi
Example: harmonic oscillator in 3-dimensions
Lagrangian
2
m mw
L=T-V= E(x'12 + %% 4 %3%) — T(xlz—i—xzz +x3)
and
oL 5 oL .
- = —MmMw X; - = mx;
aX,' Xi
Euler-Langarange equation
mx; = —mwzx,-

same as Newton's second law.
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Field Theory
Field theory ~ limiting case where number of degrees of freedom is

infinite. q;(t) — ¢(X, t).
Action

S = /L((p,ayqb) d3xdt L : Lagrangian density

Variation of action

5S = / 3550 o ) 5(3,)] dx4:/[g4€—8ya(g:¢)]54)dx4

Use 0(9,¢) = 9,(6¢) and do the integration by part. then 6S = 0 implies
JL JL

= — = dy( ) Euler-Lagrange equation
ap " 0(9up)
Conjugate momentum density
oL
(X, t) =
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and Hamiltonian density
H=rmn$p—L

Generalization to more than one field
P(X,t) — ¢,(X, 1), i=1,2,...n

Equations of motion are

oL oL
— =0dy(==——) i=12,..,n
A IC )
and conjugate momentum
JaL
TT; 7,1’ =
50 = 50
Hamiltonian density is
H=) mi¢, —L
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Symmetry and Noether’s Theorem
Continuous symmetry = conservation law, e.g. invariance under time
translation

t—t+4+a, a isarbitrary constant

gives energy conservation. Newton's equation for a force derived from a
. — .
potential V (X', t) is,
d>x

= _VV(X.1t)

m——— =
dt?

Suppose V(X',t)=V(X’) invariant under time translation. Then
dx [(d*°% dx\ = d,.,  —
e <dt2) == (m) VY= V]

1
di[ m(dd)t() + V(X)) =0, energy conservation
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Similarity, invariance under spatial translation
— — —
X — X + a

gives momentum conservation and invariance under rotations gives angular
momentum conservation. Noether's theorem : unified treatment of
symmetries in the Lagrangian formalism.

Particle mechanics
Action in classical mech

S= /L(q/',d/)dt
Suppose S is invariant under a continuous symmetry transformation,
g — q; = fi(a)g;,  with £;(0) =4
For « < 1 then

9 — q; ~ qi +afj(0)q; = g + 6 with dg; = af;(0)q;
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The change of S

5S = /[E?:(Sqi + ;qL(Sq,] dt where 6q; — %(‘&Ii)

Using the equation of motion,

oL _d oL
dg;  dt 9g;
we can write 4S as
d BL aL d d , oL
05 = / 105600 T 5 q¢ ol dt = /[dt(aq,(s i)l dt

Thus 65 =0 =

d L d oL
E(aT;,-‘sq’)_o or a(aiqi(xfij(o)qj)_o
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This can be written as

A L
d_0 A:a

or E = U, aq,

af;(0)q;

A is the conserved charge.
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Example: rotational symmetry in 3-dimension
action

S— /L(x,-,x,-)dt
Suppose S is invariant under rotation,
xi—x=Rjx, RRT=RTR=1 or RjRx=2ju
For infinitesmal rotations
Rj =djj+e¢j lejl <1
Orthogonality requires,
(0jj+eij)(Oi+ewx) =0 = € +ey =0 i e g is antisymmetric
We can compute the conserved charges as

oL
J= &Sijxj = &jjpiX;j

(Institute) Note 1 29 /35



If we write gj = —e,-jk(?k
J = —Okejkpix; = —0kJx Ik = €jjkXxipj

Jk k-th component of angular momentum.
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Field Theory
Start from the action

S= /L<(P'aﬂ4)) d*x

Symmetry transformation,

P(x) = ¢'(x'),

which includes the change of coordinates,
xt — XM £ Xt
Infinitesmal transformation

dp=¢ (X)—¢(x), XM = XM — Xt
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need to include the change in the volume element

d*x = Jd*x where J = ‘a(XO,X{XéXé)

d(x0, X1, X2, X3)

J :Jacobian for the coordinate transformation. For infinitesmal
transformation,

ax'H u o 0(oxH) "
Ry |~ gy +W| ~ 149, (0x")

we have used the relation

J=|

det(1+¢) ~ 1+ Tr(e) for |e| <1

Then
d*x' = d*x(149,(6x"))

change in the action is

55 = / SSop+ )(ay<p)+LaH(xﬂ)] o
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Define the change of ¢ for fixed x¥,
0p(x) = ¢'(x) = p(x) = ¢'(x) = ¢’ (x') + ¢’ (x) = Pp(x) = —0"¢'dx, + ¢

or 8p =56+ (9.p)ox"

Similarly, B
0(0u¢p) = 6(0up) + 0y (9,p)Ox"

Operator & commutes with the derivative operator 9y,

3(9up) = 0u(59)

Then
oL -
05 = / (0 + (9ugp)ox") + 9(0,9) (0(9up) + 0y (9, P)dx") + Ly (6x)] c
Use equation of motion
oL JaL
Er ay(a(ayqb))




we get

olL— oL oL - oL - oL -

—0 o(0 = o¥ 0 d,(00) = o 0
d¢ ¢+ d(a ‘P)) 20,4) (a(ay‘l’) ¢+a(au¢> 1(09) [a(au‘l’) d
Combine other terms as

oL oL
99 30,90

0y (0u)]0x" + L9, (6x") = (9yL)dx" + Loy (dx")
= dy(Léx")

Then

55 = / A9, [ = 2B + Lox]

oL
(a ¢)
and if 65=0 under the symmetry ransformation, then

oL
()

Simple case: space-time translation

o', = o [ ¢+ Lox'] =0 current conservation
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Here the coordinate transformation is,

xt— XM =xt+ ' = ¢'(x+a) = p(x)

then B
op = —al'o,¢
and the conservation laws take the form
oL
8“[ (—a"dv¢p) + La¥'] = —o¥(T,wa") =0
9(9u¢)
where
T = La — L energy momentum tensor
w = a(aycp) v Euv gy
In particular,
oL
To; = ——0;
= 3009) 'Y
and

P = /dx3 To; momentum of the fields
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