Quantum Field Theory

Ling-Fong Li

National Center for Theoretical Science

Klein Gordon Equation

Classically,

$$
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r})
$$

Quantization: $E \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}$ and act on ψ

$$
i \frac{\partial \psi}{\partial t}=\left[-\frac{1}{2 m} \nabla^{2}+V(\vec{r})\right] \psi \quad \text { Schrodinger equation }
$$

Not good for relativistic system because x and time t are not on equal footing. For relativistic case, use

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

$$
\begin{equation*}
\left(\nabla^{2}+m^{2}\right) \psi=-\partial_{0}^{2} \psi \tag{1}
\end{equation*}
$$

Or

$$
\left(\square+m^{2}\right) \psi=0, \text { where } \quad \square=\partial_{0}^{2}-\nabla^{2}=\partial^{\mu} \partial_{\mu}=\partial^{2}
$$

This is known as Klein-Gordon equation.

Probablity interpretation

Klein-Gordon equation

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \psi=0
$$

complex conjugate,

$$
\left(\partial_{0}^{2}-\nabla^{2}+m^{2}\right) \psi^{*}=0
$$

gives the continuity equation,

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0
$$

where

$$
\rho=i\left(\psi \partial_{0} \psi^{*}-\psi \partial_{0} \psi^{*}\right), \quad \vec{j}=\left(\psi \vec{\nabla} \psi^{*}-\psi^{*} \vec{\nabla} \psi\right)
$$

Then
$\frac{d P}{d t}=\int_{V} \frac{\partial \rho}{\partial t} d^{3} x=-\int_{V} \vec{\nabla} \cdot \vec{j} d^{3} x=-\oint_{S} \vec{j} \cdot \overrightarrow{d s}=0 \quad$ if $\vec{j}=0, \quad$ on S
P is conserved, probability ? But P is not positive For example,

$$
\text { if } \psi^{\sim} e^{i E t} \phi(x), \quad \text { then } \quad \rho=-2 E|\phi(x)|^{2} \leq 0
$$

if we take the probabilty density to be $\rho=\psi \psi^{*}$ then it is not conserved,

$$
\frac{d}{d t} \int \psi \psi^{*} d^{3} x \neq 0
$$

Solutions to Klein-Gordon Equation

$$
\left(\square+m^{2}\right) \psi(x)=\left(-\nabla^{2}+\partial_{0}^{2}+m^{2}\right) \psi(x)=0
$$

plain wave solution,

$$
\phi(x)=e^{-i p x} \quad \text { if } \quad p_{0}^{2}-P^{2}-m^{2}=0 \quad \text { or } \quad p_{0}= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

(1) Positive energy solution: $P_{0}=\omega_{p}=\sqrt{\vec{p}^{2}+m^{2}}, \quad \vec{p}$ arbitrary

$$
\phi^{(+)}(x)=\exp \left(-i \omega_{p} t+i \vec{p} \cdot \vec{x}\right)
$$

(2) Negative energy solution: $P_{0}=-\omega_{p}=-\sqrt{\vec{p}^{2}+m^{2}}$

$$
\phi^{(-)}(x)=\exp \left(i \omega_{p} t-i \vec{p} \cdot \vec{x}\right)
$$

general solution is,

$$
\phi(x)=\int \frac{d^{3} k}{\sqrt{(2 \pi)^{3} 2 \omega_{k}}}\left[a(k) e^{-i k x}+a(k)^{+} e^{i k x}\right] \quad, \quad k x=\omega_{k} t-\vec{k} \cdot \vec{x}
$$

Dirac Equation

Dirac(1928) want first order in time derivative and first order in spatial coordinates. He assume an Ansatz

$$
\begin{equation*}
E=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\alpha_{3} p_{3}+\beta m=\vec{\alpha} \cdot \vec{p}+\beta m \tag{2}
\end{equation*}
$$

where α_{i}, β are assumed to be matrices. Then

$$
E^{2}=\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\beta^{2} p^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m
$$

To get energy momentum relation, we require

$$
\begin{align*}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =2 \delta_{i j} \tag{3}\\
\alpha_{i} \beta+\beta \alpha_{i} & =0 \tag{4}\\
\beta^{2} & =1 \tag{5}
\end{align*}
$$

From $\mathrm{Eq}(3)$ we get

$$
\begin{equation*}
\alpha_{i}^{2}=1 \tag{6}
\end{equation*}
$$

Togather with $\mathrm{Eq}(5) \alpha_{i}, \beta$ all have eigenvalues ± 1. s

$$
\alpha_{1} \alpha_{2}=-\alpha_{2} \alpha_{1} \Longrightarrow \alpha_{2}=-\alpha_{1} \alpha_{2} \alpha_{1}
$$

Taking the trace

$$
\operatorname{Tr} \alpha_{2}=-\operatorname{Tr}\left(\alpha_{1} \alpha_{2} \alpha_{1}\right)=-\operatorname{Tr}\left(\alpha_{2} \alpha_{1}^{2}\right)=-\operatorname{Tr}\left(\alpha_{2}\right)
$$

Thus

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha_{i}\right)=0 \tag{7}
\end{equation*}
$$

Similarly,

$$
\operatorname{Tr}(\beta)=0
$$

α_{i}, β even dimension. Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are all traceless and anti-commuting. But we need 4 such matrices.
α_{i}, β all have to be 4×4 matrices. Bjoken and Drell choice

$$
\alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Dirac equation ; $E \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}$

$$
(-i \vec{\alpha} \cdot \nabla+\beta m) \psi=i \frac{\partial \psi}{\partial t}
$$

For conveient, define a new set of matrices

$$
\gamma^{0}=\beta, \quad \gamma^{i}=\beta \alpha_{i}
$$

and in Bjorken and Drell notation,

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \tag{8}\\
0 & -1
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

Dirac equation

$$
\left(-i \gamma^{i} \partial_{i}-i \gamma^{0} \partial_{0}+m\right) \psi=0, \quad \text { or } \quad\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \psi=0
$$

Dirac equation in covariant form. Note that the anti-commutations are

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}
$$

Probability interpretation

From Dirac equation

$$
\left.-i \frac{\partial \psi^{+}}{\partial t}=(\{-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi\}\right)^{\dagger}
$$

and

$$
i\left(\frac{\partial \psi^{\dagger}}{\partial t} \psi+\psi^{\dagger} \frac{\partial \psi}{\partial t}\right)=\psi^{\dagger}(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi-\{(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi\}^{\dagger} \psi
$$

Integrate over space, we get

$$
\begin{aligned}
i \frac{d}{d t} \int d^{3} x\left(\psi^{\dagger} \psi\right) & =\int\left\{-i \psi^{\dagger}(\vec{\alpha} \cdot \vec{\nabla}) \psi-i\{(\vec{\alpha} \cdot \vec{\nabla}) \psi\}^{\dagger} \psi\right\} d^{3} x \\
& =-i \int \vec{\nabla} \psi^{\dagger}(\vec{\alpha} \cdot \vec{\nabla}) \psi d^{3} x=0
\end{aligned}
$$

The probability $\int d^{3} x\left(\psi^{\dagger} \psi\right)$ is conserved and positive.

Solution to Dirac equation

plane wave solution

$$
\psi(x)=e^{-i p x}\binom{u}{1}
$$

u and I are 2 components column vector. Then

$$
(\not \phi-m)\binom{u}{l}=0 \quad \text { where } \quad \not p=\gamma^{\mu} p_{\mu}
$$

In Bjorken-Drell representation,

$$
\left(\begin{array}{cc}
m & \vec{\sigma} \cdot \vec{p} \\
\vec{\sigma} \cdot \vec{p} & -m
\end{array}\right)\binom{u}{l}=p_{0}\binom{u}{l}
$$

Or

$$
\left\{\begin{array}{c}
\left(p_{0}-m\right) u-(\vec{\sigma} \cdot \vec{p}) I=0 \tag{9}\\
-(\vec{\sigma} \cdot \vec{p}) u+\left(p_{0}+m\right) I=0
\end{array}\right.
$$

Homogeneous linear equations, non-trivial solution exists if

$$
\begin{aligned}
& \left|\begin{array}{cc}
p_{0}-m & \vec{\sigma} \cdot \vec{p} \\
\vec{\sigma} \cdot \vec{p} & p_{0}+m
\end{array}\right|=0 \\
& p_{0}^{2}=\vec{p}^{2}+m^{2} \quad \text { or } \quad p_{0}= \pm \sqrt{\vec{p}^{2}+m^{2}}
\end{aligned}
$$

(1) $p_{0}=E=\sqrt{\vec{p}^{2}+m^{2}}$,

$$
I=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u
$$

solution,

$$
\psi=e^{-i p x}\binom{u}{l}=e^{-i p x} N\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi
$$

χ arbitrary 2 components vector, and N is normalization constant .
(2) Negative energy solution $p_{0}=-E=-\sqrt{\vec{p}^{2}+m^{2}}$, solution,

$$
\psi=e^{-i p x} N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{E+m}}{1} \chi
$$

The standard notation for these 4-component column vector, spinors are,
$u(p . s)=N\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{s} \quad v(p, s)=e^{-i p x} N\binom{\frac{-\vec{\sigma} \cdot \vec{p}}{E+m}}{1} \chi_{s} \quad N=\sqrt{E+}$
Dirac conjugate
Dirac equation in momentum space

$$
(\not p-m) \psi(p)=0
$$

is not hermitian. In the Hermitian conjugate

$$
\psi^{\dagger}(p)\left(\not p^{\dagger}-m\right)=0
$$

$\gamma_{\mu}^{\prime} s$ are not hermitian,

$$
\gamma_{0}^{\dagger}=\gamma_{0} \quad \gamma_{i}^{\dagger}=-\gamma_{i}
$$

But we can write

$$
\gamma_{\mu}^{\dagger}=\gamma_{0} \gamma_{\mu} \gamma_{0}
$$

Then

$$
\psi^{\dagger}(p)\left(\gamma_{0} \gamma_{\mu} \gamma_{0} p^{\mu}-m\right)=0 \quad \text { or } \quad \psi^{\dagger}(p) \gamma_{0}\left(\gamma_{\mu} p^{\mu}-m\right)=0
$$

Or

$$
\bar{\psi}(\not \not-m)=0 \quad \text { where } \quad \bar{\psi}=\psi^{\dagger} \gamma_{0} \quad \text { Dirac conjugate }
$$

Dirac equation under Lorentz transformation

Dirac equation is not invariant under Lorentz transformation. How Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

behaves under Lorentz transformation

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}
$$

In the new coordinate system, the Dirac equation is of the form

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}\left(x^{\prime}\right)=0 \tag{10}
\end{equation*}
$$

Assume

$$
\psi^{\prime}\left(x^{\prime}\right)=S \psi(x)
$$

Invert the Lorentz transformation

$$
x^{\gamma}=\Lambda_{\mu}^{\gamma} x^{\prime \mu} \quad \Longrightarrow \quad \frac{\partial}{\partial x^{\prime \mu}}=\frac{\partial}{\partial x^{\gamma}} \frac{\partial x^{\gamma}}{\partial x^{\prime \mu}}=\Lambda_{\mu}^{\gamma} \frac{\partial}{\partial x^{\gamma}}
$$

Then $\mathrm{Eq}(10)$ becomes

$$
\left(i \gamma^{\mu} \Lambda_{\mu}^{\alpha} \partial_{\alpha}-m\right) S \psi(x)=0 \quad \text { or } \quad\left(i\left(S^{-1} \gamma^{\mu} S\right) \Lambda_{\mu}^{\alpha} \partial_{\alpha}-m\right) \psi(x)=0
$$

equivalent to the original Dirac equation, if

$$
\begin{equation*}
\left(S^{-1} \gamma^{\mu} S\right) \Lambda_{\mu}^{\alpha}=\gamma^{\alpha} \quad \text { or } \quad\left(S^{-1} \gamma^{\mu} S\right)=\Lambda_{\alpha}^{\mu} \gamma^{\alpha} \tag{11}
\end{equation*}
$$

infinitesimal transformation

$$
\Lambda_{v}^{\mu}=g_{v}^{\mu}+\epsilon_{v}^{\mu}+O\left(\epsilon^{2}\right) \quad \text { with } \quad\left|\epsilon_{v}^{\mu}\right| \ll 1
$$

Pseudo-othogonality implies

$$
g_{\mu v}\left(g_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu}\right)\left(g_{\beta}^{v}+\epsilon_{\beta}^{v}\right)=g_{\alpha \beta}
$$

Or

$$
\epsilon_{\alpha \beta}+\epsilon_{\beta \alpha}=0, \quad \Longrightarrow \quad \epsilon_{\alpha \beta} \text { antisymmetric }
$$

Write $S=1-\frac{i}{4} \sigma_{\mu v} \epsilon^{\mu v}+O\left(\epsilon^{2}\right)$ then $S^{-1}=1+\frac{i}{4} \sigma_{\mu v} \epsilon^{\mu \nu} \quad \sigma_{\mu v}: 4 \times 4$ matrices. Then Eq(11) yields,

$$
\left(1+\frac{i}{4} \sigma_{\alpha \beta} \epsilon^{\alpha \beta}\right) \gamma^{\mu}\left(1-\frac{i}{4} \sigma_{\alpha \beta} \epsilon^{\alpha \beta}\right)=\left(g_{\alpha}^{\mu}+\epsilon_{\alpha}^{\mu}\right) \gamma^{\alpha}
$$

Or

$$
\epsilon^{\alpha \beta} \frac{i}{4}\left[\sigma_{\alpha \beta}, \gamma^{\mu}\right]=\epsilon_{\alpha}^{\mu} \gamma^{\alpha}=\frac{1}{2} \epsilon^{\alpha \beta}\left(g_{\alpha}^{\mu} \gamma_{\beta}-g_{\beta}^{\mu} \gamma_{\alpha}\right)
$$

coefficient of $\varepsilon^{\alpha \beta}$

$$
\begin{equation*}
\left[\sigma_{\alpha \beta}, \gamma_{\mu}\right]=2 i\left(g_{\beta \mu} \gamma_{\alpha}-g_{\alpha \mu} \gamma_{\beta}\right) \tag{12}
\end{equation*}
$$

Solution

$$
\sigma_{\alpha \beta}=\frac{i}{2}\left[\gamma_{\alpha}, \gamma_{\beta}\right]
$$

satisfy Eq(12). Finite Lorentz transformation,

$$
\begin{align*}
\psi^{\prime}\left(x^{\prime}\right) & =S \psi(x), \quad \text { with } \quad S=\exp \left[-\frac{i}{4} \sigma_{\mu \nu} \epsilon^{\mu v}\right] \tag{13}\\
\sigma_{\mu \nu}^{\dagger} & =\gamma_{0} \sigma_{\mu \nu} \gamma_{0} \quad \text { and } \quad S^{\dagger}=\gamma^{0} S^{-1} \gamma^{0}
\end{align*}
$$

S is not unitary. From $\psi^{\prime}\left(x^{\prime}\right)=S \psi$ we get

$$
\psi^{\dagger^{\prime}}\left(x^{\prime}\right)=\psi^{\dagger} S^{\dagger}=\psi^{\dagger} \gamma^{0} S^{-1} \gamma^{0}, \quad \text { or } \quad \bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1}
$$

$\bar{\psi}$ Dirac conjugate

Fermion bilinears

The fermion bi-linears $\bar{\psi}_{\alpha}(x) \psi_{\beta}(x)$ has simple transformation. For example,

$$
\bar{\psi}^{\prime}\left(x^{\prime}\right) \psi^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1} S \psi(x)=\bar{\psi}(x) \psi(x)
$$

$\bar{\psi}(x) \psi(x)$ is Lorentz invariant. Similarly, .

$$
\begin{array}{ll}
\bar{\psi} \gamma_{\mu} \psi & \text { 4-vector } \\
\bar{\psi} \gamma_{\mu} \gamma_{5} \psi & \text { axial vector } \\
\bar{\psi} \sigma_{\mu v} \psi & \text { 2nd rank antisymmetric ensor } \\
\bar{\psi} \gamma_{5} \psi & \text { pseudo scalar }
\end{array}
$$

where $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$

Hole Theory (Dirac 19)

To solve the problem with negative energy states, Dirac proposed that the vaccum is the one in which $E<0$ states are all filled and $E>0$ states are empty. Then Pauli exclusion principle will prevent an electron from moving into $\mathrm{E}<0$ states. In this picture hole in the negative sea, i.e. absence of an electron with charge $-|e|$ with negative energy $-|E|$ is equivalent to a presence of a particle with energy $|E|$ and charge $+|e|$. This new particle is called "positron" and sometime also called anti - particle. This correspondence of particle and anti-particle is called charge conjugation.

