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Klein Gordon Equation
Classically,

E =
!
p
2

2m
+ V (~r)

Quantization : E ! i ∂
∂t ,

!
p ! �i

!
r and act on ψ

i
∂ψ

∂t
= [� 1

2m
r2 + V (~r)]ψ Schrodinger equation

Not good for relativistic system because x and time t are not on equal
footing. For relativistic case, use

E 2 =~p2 +m2

=)
(r2 +m2)ψ = �∂20ψ (1)

Or
(�+m2)ψ = 0, where � = ∂20 �r2 = ∂µ∂µ = ∂2
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This is known as Klein-Gordon equation.
Probablity interpretation
Klein-Gordon equation

(∂20 �r2 +m2)ψ = 0

complex conjugate,
(∂20 �r2 +m2)ψ� = 0

gives the continuity equation,

∂ρ

∂t
+
!
r �

!
j = 0

where
ρ = i(ψ∂0ψ

� � ψ∂0ψ
�), ~j = (ψ

!
rψ� � ψ

!
�rψ)

Then

dP
dt
=
Z
V

∂ρ

∂t
d3x = �

Z
V

!
r�

!
j d3x = �

I
S

!
j �

!
ds = 0 if

!
j = 0, on S
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P is conserved, probability ? But P is not positive For example,

if ψ~e iEtφ (x) , then ρ = �2E jφ (x)j2 � 0

if we take the probabilty density to be ρ = ψψ� then it is not conserved,

d
dt

Z
ψψ�d3x 6= 0
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Solutions to Klein-Gordon Equation

(�+m2)ψ(x) = (�r2 + ∂20 +m
2)ψ(x) = 0

plain wave solution,

φ(x) = e�ipx if p20 � P2 �m2 = 0 or p0 = �
p
~p2 +m2

1 Positive energy solution: P0 = ωp =
p
~p2 +m2, ~p arbitrary

φ(+)(x) = exp
�
�iωpt + i

!
p �!x

�
2 Negative energy solution: P0 = �ωp = �

p
~p2 +m2

φ(�)(x) = exp
�
iωpt � i

!
p �!x

�
general solution is ,

φ(x) =
Z d3kp

(2π)32ωk
[a(k)e�ikx + a(k)+e ikx ] , kx = ωk t�~k �~x
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Dirac Equation
Dirac(1928) want �rst order in time derivative and �rst order in spatial
coordinates. He assume an Ansatz

E = α1p1 + α2p2 + α3p3 + βm =~α �~p + βm (2)

where αi , β are assumed to be matrices. Then

E 2 =
1
2
(αiαj + αjαi )pipj + β2p2 + (αi β+ βαi )m

To get energy momentum relation, we require

αiαj + αjαi = 2δij (3)

αi β+ βαi = 0 (4)

β2 = 1 (5)

(Institute) Note 1 6 / 19



From Eq( 3) we get
α2i = 1 (6)

Togather with Eq(5) αi , β all have eigenvalues �1. s

α1α2 = �α2α1 =) α2 = �α1α2α1

Taking the trace

Trα2 = �Tr (α1α2α1) = �Tr
�
α2α

2
1

�
= �Tr (α2)

Thus
Tr (αi ) = 0 (7)

Similarly,
Tr (β) = 0

αi , β even dimension. Pauli matrices σ1, σ2, σ3 are all traceless and
anti-commuting. But we need 4 such matrices.
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αi , β all have to be 4� 4 matrices. Bjoken and Drell choice

αi =

�
0 σi
σi 0

�
, β =

�
1 0
0 1

�

Dirac equation ; E ! i
∂

∂t
, ~p ! �i

!
r

(�i~α � r+ βm)ψ = i
∂ψ

∂t

For conveient, de�ne a new set of matrices

γ0 = β, γi = βαi

and in Bjorken and Drell notation,

γ0 =

�
1 0
0 �1

�
γi =

�
0 σi
�σi 0

�
(8)
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Dirac equation

(�iγi∂i � iγ0∂0 +m)ψ = 0, or (�iγµ∂µ +m)ψ = 0

Dirac equation in covariant form. Note that the anti-commutations are

fγµ,γνg = 2gµν
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Probability interpretation
From Dirac equation

�i ∂ψ†

∂t
= (f�i~α �

!
r+ βm)ψg)†

and

i(
∂ψ†

∂t
ψ+ ψ† ∂ψ

∂t
) = ψ†(�i~α �

!
r+ βm)ψ� f(�i~α �

!
r+ βm)ψg†ψ

Integrate over space, we get

i
d
dt

Z
d3x(ψ†ψ) =

Z
f�iψ†(~α �

!
r)ψ� if(~α �

!
r)ψg†ψgd3x

= �i
Z !
rψ†(~α �

!
r)ψd3x = 0

The probability
R
d3x(ψ†ψ) is conserved and

positive.
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Solution to Dirac equation
plane wave solution

ψ(x) = e�ipx
�
u
l

�
u and l are 2 components column vector. Then

( /p �m)
�
u
l

�
= 0 where /p = γµpµ

In Bjorken-Drell representation,�
m ~σ �~p
~σ �~p �m

��
u
l

�
= p0

�
u
l

�
Or �

(p0 �m)u � (~σ �~p)l = 0
�(~σ �~p)u + (p0 +m)l = 0

(9)
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Homogeneous linear equations, non-trivial solution exists if���� p0 �m ~σ �~p
~σ �~p p0 +m

���� = 0
=)

p20 =~p
2 +m2 or p0 = �

p
~p2 +m2

1 p0 = E =
p
~p2 +m2,

l =
~σ �~p
E +m

u

solution,

ψ = e�ipx
�
u
l

�
= e�ipxN

�
1
~σ�~p
E+m

�
χ

χ arbitrary 2 components vector, and N is normalization constant .
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2 Negative energy solution p0 = �E = �
p
~p2 +m2,

solution,

ψ = e�ipxN
� �~σ�~p

E+m
1

�
χ

The standard notation for these 4-component column vector, spinors
are,

u(p.s) = N
�

1
~σ�~p
E+m

�
χs v(p, s) = e�ipxN

� �~σ�~p
E+m
1

�
χs N =

p
E +m

Dirac conjugate
Dirac equation in momentum space

( /p �m)ψ(p) = 0

is not hermitian. In the Hermitian conjugate

ψ†(p)( /p† �m) = 0
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γ0µs are not hermitian,

γ†
0 = γ0 γ†

i = �γi

But we can write
γ†

µ = γ0γµγ0

Then

ψ†(p)(γ0γµγ0p
µ �m) = 0 or ψ†(p)γ0(γµp

µ �m) = 0

Or
ψ̄( /p �m) = 0 where ψ̄ = ψ†γ0 Dirac conjugate
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Dirac equation under Lorentz transformation
Dirac equation is not invariant under Lorentz transformation. How Dirac
equation

(iγµ∂µ �m)ψ(x) = 0

behaves under Lorentz transformation

xµ ! x
0µ = Λµ

νx
ν

In the new coordinate system, the Dirac equation is of the form

(iγµ∂
0
µ �m)ψ

0
(x

0
) = 0 (10)

Assume
ψ
0
(x

0
) = Sψ(x)

Invert the Lorentz transformation

xγ = Λγ
µx

0µ =) ∂

∂x 0µ
=

∂

∂xγ

∂xγ

∂x 0µ
= Λγ

µ
∂

∂xγ
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Then Eq(10) becomes

(iγµΛα
µ∂α �m)Sψ(x) = 0 or (i(S�1γµS)Λα

µ∂α �m)ψ(x) = 0

equivalent to the original Dirac equation, if

(S�1γµS)Λα
µ = γα or (S�1γµS) = Λµ

αγα (11)

in�nitesimal transformation

Λµ
ν = g

µ
ν + ε

µ
ν +O(ε

2) with
��εµ

ν

�� << 1
Pseudo-othogonality implies

gµν(g
µ
α + ε

µ
α)(g

ν
β + εν

β) = gαβ
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Or
εαβ + εβα = 0, =) εαβ antisymmetric

Write S = 1� i
4σµνεµν +O(ε2) then S�1 = 1+ i

4σµνεµν σµν : 4� 4
matrices. Then Eq(11) yields,

(1+
i
4

σαβεαβ)γµ(1� i
4

σαβεαβ) = (gµ
α + ε

µ
α)γ

α

Or

εαβ i
4
[σαβ,γ

µ] = ε
µ
αγα =

1
2

εαβ(gµ
α γβ � g

µ
β γα)

coe¢ cient of εαβ

[σαβ,γµ] = 2i(gβµγα � gαµγβ) (12)

Solution

σαβ =
i
2
[γα,γβ]
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satisfy Eq(12). Finite Lorentz transformation,

ψ
0
(x

0
) = Sψ(x), with S = exp[� i

4
σµνεµν] (13)

σ†
µν = γ0σµνγ0 and S† = γ0S�1γ0

S is not unitary. From ψ
0
(x

0
) = Sψ we get

ψ†0(x
0
) = ψ†S† = ψ†γ0S�1γ0, or ψ̄0(x

0
) =

_
ψ(x)S�1

_
ψ Dirac conjugate
Fermion bilinears
The fermion bi-linears ψ̄α(x)ψβ (x) has simple transformation. For
example,

ψ̄0(x 0)ψ0(x 0) = ψ̄(x)S�1Sψ(x) = ψ̄(x)ψ (x)
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ψ̄(x)ψ (x) is Lorentz invariant. Similarly, .

ψ̄γµψ 4-vector
ψ̄γµγ5ψ axial vector
ψ̄σµνψ 2nd rank antisymmetric ensor
ψ̄γ5ψ pseudo scalar

where γ5 = iγ
0γ1γ2γ3

Hole Theory ( Dirac 19 )
To solve the problem with negative energy states, Dirac proposed that the
vaccum is the one in which E < 0 states are all �lled and E > 0 states are
empty. Then Pauli exclusion principle will prevent an electron from moving
into E<0 states. In this picture hole in the negative sea, i.e. absence of an
electron with charge � jej with negative energy � jE j is equivalent to a
presence of a particle with energy jE j and charge + jej . This new particle
is called "positron" and sometime also called anti � particle. This
correspondence of particle and anti-particle is called charge conjugation.
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