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Interaction Theory
As an illustration, take electromagnetic interaction. Lagrangian density is

£=F 09" (13— An) 9 () = m () () = 7 FuuF"”

Equations of motion

(,‘7143’1 _ m) P(x) = eAy non-linear coupled equations
WF" = epy'y
Quantization
Write L= Lo + Lint
. 1 "
L= P9 —m)p— g FuF"
L = —epy'ypA,

where Lg,free field part, while L;,; interaction.
Conjugate momenta

oL Lt
— =i, (x
For electromagnetic fields, choose the gauge
- —
V-A=0, Radiaiton Gauge
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then

o
= 2(00A7)

- — _F%i _ i

From equation of motion
9, F% = ep'y = —V2AY = epty
Thus A% can be expressed in terms of other field,

[ et dX (1)
e/d 471\ 76/

- _
x—x\ X — x|

Commutation relation
— —
= 040’ (7 — x’) {p, (X, 1), Vs (x’

} ,)}:...:0
A ()] =y (-4

[0 (%, 0.9, 0] = e/#jxﬁ‘[w*(ir)w(ﬁ.r).wu(?,r)}
e ()
S AT R Y
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Hamiltonian
H:/d3xH:/d3x{tp* (@ (=i V —eA) +pm| g+ 5 ! > (E2+B2))

No A in the interaction. If we write

— - = — — — BX
E =E +E; where E; = —V A ,Etifw

Then

1 3 (P2, F2) _ L 3—’2/3—’2 B2
E'/dx(E +B )_E./dXE’ + @x (E? + B?)
The longitudinal part is

%/d3x32 /d3 xd3y l _>) (_, y.t) Coulomb interaction
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Perturbation Theory

Can't solve the classical equations of motion. Without the classical solutions no
mode expansion to introduce a and a' The only approximation we know how to do
in field theory is the perturbation theory.

We will now set up the framework for the perturbation.

Physical states

@ In high energy physics,we study the scattering processes.

@ assume interactions all short-range, far away from interaction region, particles
propagate as free particles.

Choose the physical states to be eigensates of energy momentum operators,

Pul¥) = pu[¥)
Satisfy requirements;

@ eigenvalues py all in forward light cone,

P> =pup' =0, po=0

(Institute) Slide_ 04 5/

41



@ non-degenerate Lorentz invariant ground state |0 > with zero energy ,
PPy =0, = Pl0)=0

© There exists stable single particle states | p;) with p,-2 = m,-2 for each stable
particle.

@ vaccum and one particle states form discrete spectrum in p#

assume interactions do not violently the spectrum of states. there is no room to
describe bound states
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In-fields and in-states—asymptotic conditions
Consider

_1 2 My A
L= (9u9)” = X AR
Equation of motion

O+18) 0= ()= 59"

conjugate momenta

oL

n(x):m

= BOKP
Commutation relations
[T(x, 1), ¢y, )] = =i (x=y) [l ), m(y. )] =[p(x,1).¢(y,t)] =0
At t = —oo , ¢, (x) creates free particle propagating with physical mass .
(O+1) ¢ (x) =0

we allow physical mass p to be different from p .
Assume that ¢, (x) transforms same way as ¢ (x) . In particular,

[P §i ()] = —idu;, (x)

¢., (x) creates one particle state from vacuum.
Expand ¢, (x) in terms of free solution of Klein-Gordon equation,

0 () = [ @k [an () ) +ah () )] i) = e
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Invert this expansion
" >
ain (k) = i/ B3xFE (x) 9 ¢, (x)
We also have

[p", ain (k)] = —k"aj, (k> ’ [pl" a,f,, (k)] = kMaITn <k)

States are defined by

kv, in) = \/ (270)° 2wieal, (k) [0)

|k1, ko, ...kn|in) = {Hy/(2n)32wkia}‘"(k;)} |0)

With normalization

(ka, inlky, in) = (271) 2wy 63 (k-{ - k-;)

(P11 P2y s Pmyin|ki, ko, ...kn|in) =0

unless m=n and (p1, p2, ..., pm) conicides with (ki, k2, ...kn)
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Relation between ¢, (x) and ¢ (x)
The field equations for these fields

O+m)¢(x)=ix)
Or _
@O+) ¢ () =i () +6°p(x) =j(x) 6> =’ —uj

(DJFF"Q) P (x) =0

Formally relate ¢ (x) to ¢, (x) by Green's function,

Vag, () = 9 () = [ d' Bt (x=y.12) 5 1)
where
(Ox +y2) Aver (x —y,ptz) =0 (x—y), D (x —y,;/tz) =0 for xo<yo
This suggests that as xo — —o0, ¢ (x) — y/z¢;, (x) . It turns out that this is not correct.
Correct asymptotic condition (Lehmann, Symanzik, and Zimmermann)
Let |a), |B) be any two normalizable states, ¢’ (t) is defined

¢f(t>zf/'d3xfk*(7,t)§0'¢(7,r) with  (O+p2) f =0

fi (X', t) is an arbitrary normalizable solution to Klein-Gordon equation. Then
The correct asymptotic condition is

Jim_(@lo (£)18) = VZ(algl, () 1) with ¢, (&) =i [ &5 (%.0) %, (%)
this is a weak convergence relation.
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Out fields and out states

Similar procedure applies to ¢,

(D +V§) Poue (x) =0

Gour () = [ @K [30us (K) i (x) + abye ()£ (x)],

[p", abue (k)] = —K"ad,; (K)

Asymptotic condition

. f _ 13

lim (al¢” (1) 1B) = V2{al#h, () |B)

S-matrix

Scattering processes: start n non-interacting particles. They interact when close to each other. After
interaction, m particles seperate

initial state

[P1, P2, ey Py in) = |a, in)

final state
[PL1 P2y -y Py 0U) = | B, 0UL)
S-matrix
Spa = (B, out]a, in)
Introduce S-operator which will take an in — state and turn it into out — state,
(B,out| = (B,in|S  (B,out|S™! = (B, in|
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then the S — matrix element can be written as a matrix element of S—operator between 2 in — states,

Sga = (B, out|a, in) = (B, in|S|a, in)
Properties of S-matrix

@ stability of vacuum |Sp| =1
(0,in|S = (0, out| = e~'?(0, in|

@ Stability of one-particle state
{p.in|S|p, in) = (p,out|p,in) =1 - |p,in) = |p, out)

e 1
(pfn (X) = S¢out <X> ST

@ VUnitarity SST =Sts =1

(w,in|S = (&, out|, = St

a,in) = |a, out)

e S is translational and Lorentz invariance

U(Ab)SUL (A b)=S
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LSZ reduction
set up the framework to compute Sg,.
Consider

Spap = (B, outla, p, in)

Using creation operator for the in — state,

Spap = (B.out|a,p,in) = (2m)? 2w, (B, out|a}, (p) |a, in)
= (270)* 2w, (B, out|aly, (p) |a, in) + (B, out| [a}, (p) — alue (p)] |, in)]

W 48~ prutla in) 4B out] [ 650, () 5 9, () = e (]|

Here (B — p, out| is state (B, out| by removing a particle with momentum p and N = {/(27)° 2w,
Use the symptotic conditions

(@l () 1B) = = Jim (@I ()1B), (@lpaus () 18) = 7 lim (el () 1)
and the identity
(Jim, = im ) [ e () 5 (0 = | ' [es () B () — s () g2 )]

we get
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[ @5t ()30 101 (0 = 90 (0] = [ d*x 336 (x) 6 (x) = £, (x) B ()]
- / d*xf, (x) (O+p2) ¢ (x)
we get the reduction formula,
(B, outla, p,in) = N(B — p, out|a, in) + ﬁ / e Pxd*x (O+ p?) (B, out|gp (x) |a, in)
To remove a particle with momentum p’ from B
(B, outl|¢ (x) [a, in) = (yp, out|¢ (x) |a, in) = N, out|acu (p") ¢ (x) |a, in)

= [{7, out|g (x) ain (P') |, in) = (7, out|(acue (p") ¢ (x) = ¢ (x) ain (p') |2, in}]

= (7, 0utl (<) [a = s in) = [ &y (7,00t (@oy (¥)9 () = @ (<) 93, (V) ) 30 5 ()

= (r.outlp () a—pin)
[y (Jim i) routl (T (0 )9 )l inh 37 1)

Yo—®

same procedure as before
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(B.out|¢p (x)|a,iny = {{v,out|p(x)|a—p,in)}
+\#ﬁ / d*y (v, out|T (¢ (y) ¢ (x)) |, in) (‘D‘y +y2) oo

in"

remove all particles from and "out" state

n

i m+n m . —
(p1, .- Pn,oUL|qL, oo, Qi) = <\—E) ]_[H/d“x,'d“yje”"fx" (DX +y2)
i=1j=1"

(OIT (9 (1) ¢ (ym) @ (1) b (xm)) 0) (5 + 12 ) €79

for all p; # qi
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In and Out fields for Fermions
generalization to fermions.

in-field
l[Jm /d3p2 in (P, 5) Ups (x ) — d;n (p.s) Vs (X)}
where
Ups (x) = %u (p,s)e P Vs (x) = %v (p,s)eP>
(2m)® 2E, (27)* 2E,
Inversion
bu(ps) = [dxUL (09,0 du(pis) = [dxpl, (x) Vs ()
bh(p.s) =[xl (U () dh(pis) = [ RVEL (09, ()

Reduction formula for fermions

0 remove electron from in-state

(B. out|a: ps, in) = —\/;'72 / d*x (B, out [y (x) |, in) (~170, — m) yu (p,5) e
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@ remove positron(anti-particle) from in-state
— i X (= N Tgia N .
(B.outl: s, in) = —— [ x5 (7,5) (179, — m) (B, ouely () . )

e remove electron from out-state

(B; p's’, out|a, in) = 7ﬁ /d4xu7 (0. ) e?' ™ (i7", — m)w(ﬁ, out|tpg (x) |, in)

@ remove positron from out-state

[ " P
(B;P'S, out|a, in) = ﬁ / d*x(B, out|§, (x) |a, in) (—iy"0, — m)kﬁv (B/5)e P
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U matrix
For perturbation theory find the relation between interacting fields ¢ (x), 77 (x) and the free fields ¢, (x),
Tin (x) . Assume
(X ) =U"" ()¢, (X, ) U(t), (X 1) = U () i (X, 1) U (1)
In-fields satisfy ,
A0y, (x) =i [Hin (@i Tin)  §30] 90 7Tin (x) = i [Hin (¢, 7Tin) , TTin] (1)

where Hj, (¢;,, Tjn) is free field Hamiltonian with mass .
Time evolution of ¢ (x), 7w (x) is governed by full Hamiltonian,

dop (x) =i[H (¢, 7). 9], 97 (x) = i[H (¢, ), 7]
Then we find

U . o, _
0 = (S0 0 11 @) 0] = 0,5 U7

Using Eq(1), we simplify

U .
[g U™t 4 iH (¢, TTin) s ‘Pin] =0

where H; (¢, 7Tin) = H (¢;,, TTin) — Hin (¢;,, TTin) contains interaction. Similarly,
[E)U

Eu*1 + iH; (¢ TTin) n] =0

U
This means WU’1 + iH; commutes with all operators, take this to be zero.Thus
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For convenience, define
Ut t)=U() U () time evolution operator
Eq(2) becomes,

’,aU (t,t)

5~ H (U (t,t')  with U(t,t)=1

convert this to integral equation
t
Ut th)=1—i // dtiHy (t1) U (t, t)
Jt!

which includes the initial condition. Iterate this equation assuming H; is "small",

ot ) t t
Ut t) = 17,/1, dtlH,(t1)+(7:)2/tI dtlH/(tl)/tl dtaHy (82) + ...

t it rth—1
+(7i)”// dty /, dtg.u// dtoHy (t1) Hy (£2) o Hy (t) + .
t t t
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The second term can be written as

t rt:
U = (i [ [ det (o) Hi ()
t t

(=) /tf dty /t; dtsHy (1) Hy (t2)

t t
(=i)? /t dtl/t dtoHy (t2) Hy (11)
2
where we have interchange the order of integration. Renaming t; and t, ,we get

t t
U = (—iy? / dtl/ dtaHy (82) Hy (t1)
J ty

We can use time-ordered product to combine these two equivalent expression so that the t, integration goes
from t’ to t

N2 e ¢
U@ — %/ﬂ dty /H dts T (Hy (t2) Hi (11))

We can generalize these steps to higher terms in U so that
This can be written as

Ut t') = 1+i%/jdn /t,tdtz.../jdtnT(H,(tl)H,(tz)...H/(t,,))

= 7 (e |1 [ et (9] )
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Perturbation Expansion of Vaccum expectation value
From LSZ reduction, scattering matrix element, S — matrix of the form,

T (%2, x0) = (0| T (9 () @ O2) - (xa))[0)

Using U matrix, write this in terms of ¢,

o= (O[T (U () @y, () U (t1, 82) 9y, (x2) U (12, 83) .U (-1, 80) 5, () U () [0)
= (O[T (UM () U(t,tr) ¢y, (1) oetpyy (xa) U (1, 8") U (£)) |0)

Let t > t1...t, > t/,then we can pull U (t) and U (t') out of the time-ordered product, and combine U’s and

¢ in

OIUT (1) TU (£, t1) ¢y, (x1) by (xa) U (20, £)) U (') [0)

= (OU (1) T(9y, (x1) s, (x0) exp {,,-/; H, (t”)dt"])U(t’) |0)

_a
I

Theorem: |0) is an eigenstate of U(—t) as t — oo

Proof: Consider a matrix element of the type {p,a, in|U(—t)|0). Use the method the same as reduction

formula

il
/
o

(p,, in|U(~1)|0) = iN/d3xfp* (%, —t") 3 @, in|U(—t)p (%, —t') U(=t')U(~1)[0)

Eid
Carrying out the operation dj and taking the limit t = t/,,we get
Then
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(p.a,in|U(=8)[0) = N{(a,in|U(=t)aim (p)|0)
i /d3xf; (X, —t') (&, in|Up + UpU~U|0)}

0

Then we get the result (p,a, in|U(—t)|0) =0 as t — oo for all in-states.This means
U(-1)]0) = A_]0) A_  some phase as t — oo

This completes the proof.
Similarly we can show that

U(t)]0) = A4|0) A4 some phase as t — o
These phases can be written as
ot
ANy =[0I T exp(=i [ Hi(¢) de')[0))

Now we have vacuum expectation value T (x1, x2, ..., X,) completely in terms of Oins

T (X1, X2, ey Xn)

0107007 (93, 00) () () sl [ Hy (¢ ) ) U(0)1)

= AT (0,000 () oy () sl [ () ) ) 0}

or

(Institute) Slide_ 04

21/

41



(T (X1, X200 Xn) = (o|T (‘P;,. () 93y 02) - (o) exp(—1 [ 7, i (1) 0 ) ’
e (OIT (exp(=i [, Hi (¢)) ")) [0)

For computation we need to expand the exponential of H,

, to write
5 I % dyiedym (O T (9, (60) - (xa) H (1) Mo (32) i (ym))[0)
T (X1, X2, ey Xn) m=0 =
2 2 dyredym O] T(Hy (1) Hi (v2) - Hi (ym))|0)

(Institute)
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Wick’s theorem

To compute product of free fields ¢, between vacuum, convert to normal ordering . Results are summarized

below;

T (@i () iy ) = 20y, (1) @iy () -
+ [(0l¢p;, (x1) @;, (x2) 0) = @5, (x3) P (xa) -9y, (Xn) : +permutations)

U0l (x1) @iy (x2) [0) (019, (x3) iy (xa) [0) = Py (X6) -, (xn) : +permutations]...

+{ [(Olg;, (x1) ¢, (X2)|0>(0| ¢ (x3) P (X4)\0> (01, (xn-1) ¢, (xn) [0) + permutations]  neven
0l¢,, (x1) ¢, (x2) [0)...01p;, (Xn—2) s, (xa-1) [0)¢;, (xn) + permutations] n odd

This can be proved by induction.
Illustrate this for n=2. Difference between T() and :() :is a c-number,

T (¢ (1) i (x2)) =2 ¢y, (x1) @y, (x2) = + (¢ — number)
take matrix element between vacuum state,

O[T (¢, (x1) i (x2))[0) = (¢ — number)

Then
T(¢in (Xl) (an (X2)) = (an (Xl) ¢/‘n (XZ) : +<0| T((P,‘,, (Xl) 4)fn (X2>)|0>

Most useful application of Wick's theorem
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O[T (¢;y (1) sy (xa))I0) = 0 nodd
OIT (¢, (1) sy (xa))[0) = 3= [OIT (¢, (x1) @, (x2))[0){0I T (¢, (x3) ¢y, (x4))[0)..] 1 even

permu
Notation

$in (x1) P (X‘z) = (0T (¢, 1) #;5 (x2))|0)  Contraction

Example:

18

(01T (g, (1) g (ma) = &% (wr) = 6%, () 2)[0)

= I‘.0|T|L¢t'u {.1’.‘1" Pin {.‘Z‘gJI D@ Y1) @y {yl" Pin {".y‘l" SO \2) O {yz" Pin {"JZJ :,'|0:'
|
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Feynman Propagators
From Wick's theorem most important quantity is vacuum expecation of two free fields, called Feynman
propagator.

d4k e—ik~(x—y)

©IT (9 x) i WDIO) = "AF(X*%VZ):"/Wm

d*k
I =ik (x=Y) i Ar (k
1 e 1
/ o F (k)
o
k? —u? + ie

with iAp (k) =

For complex scalar field
d*k eik(x-y)
" _ 2\ _ -
(1T @y 0) 05, IO} =57 (=) =i [ 2 i

Fermion field

QITWT )P WNIO) = iSe(x—y,m)y
) 1 .
- i/ &P i xmy) (7" P+ ), :/ P ipt)js, P
(2n)* P2 —m?+ie (2n)" p
photon field
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T(A Ain iDtr . d*k e by
T (AL OO = D (x =) =i [ e e
ik (k1) (km +kw7;,) K21,
T e R knP—k (k)R

where 77, = (1,0,0,0)

It can be shown that in QED only term contributes is "

—guw" as a consequence of the gauge invariance.
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Graphical representation

EEREE o iDNF(x—y ;42)

y

/‘;__ S 5 .
> iSF(x—y,m),
oo iDY (x — y)

Each line (propagator) represents a contraction in Wick's expansion
e.q.

L (';’a'n {“rl‘-l ét’n I-Jx?»:] Pl -' Pin (5'1 -' G"a‘n (:yl} I P (yZ:] Pin (3'2:] G"s’n l':y:a:' :
—e" |

Y ommmno A, T T

2 i (1) Gan (@2) 1 P (1) Pam (31) i (1) = Pi (W2) P (32) P (32)
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Vaccum Amplitude
In the denominator of T—function, there are no external lines

©

Y1d*ym (O T (Hy (93, (1)) M (95, (vm))) 10)

e.q. 2nd order term for the case H; = % : 47,3,, :

T (o (. (e A\
(O (s (0 001 M G )10 = (57) O 68 00) 2 ) ) 0

AN L F‘“_“‘—*—‘—l
= (g) i (1) Oun (1) P (91) = Din () Oin (2) i (w2) 23 x 2
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closed loop diagram :graphs with no external lines(lines with open end)

disconnected diagram :a subgraph not connected to any external lines

connected diagram :graph not disconnected

All graphs appearing in the numerator of the T—function can be seperated uniquely into connected and
disconnected parts. It turns out that disconnected part is cancelle by those in denominator.

Example ‘H, = %4)[3”

¢ (@) +¢(a) —¢(p)+¢(p)

Spa (B, out|a, in) = (p1, p2, out|qy, gz, in)
= (L) [ ettt dtndtnenn e (O, 47) (O +47) 01T 8 00) 00 ()¢ ) 0 >
(r:Tl +P‘2) (‘ﬁxz +P‘2) e~ i1X1 g=ia2%2
= (\%)4 / dxaded yidty, (17 = pi) (1 —p3) (° — af) (¥ — a3)
XT (y1,y2, X1, X2 ) €/(P1Y1+P2Y2) g =i(G1x1 +a252)
Perturbation expansion of T—function

(="

n!

Tyexe) = D [ d e d 2 00T (0, 00) 0, (2) 8 () 93, (0) H (8 (20)) - H (8, (20)))10)

Lowest order contribution
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(—i

@ (y1,y2,x1,%2) =

Using Wick's theorem, the connected diagrams are,

(Institute) Slide_ 04
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Their contribution to T (y1,y2, x1,X2) is

(i) [ e e ,
o / d*z21d* i N (y1 — 21) i OF (y2 — 21)

fAF (Zz —Xl)fAF (22 —Xg)I'AF (21 —22)+...

@ (y1.y2,x1,%2) =

use the propagator in momentum space

- dhk i ;
i A _ —ik-x
FoF (x) /(2n)4 K= te
Then

iA)2 oo 4 4 4
@ S Gl ) / - / d*ka / d*ks / d*ks
T Y24 X1, X = z z
(152,20, 32) 20 )12 ot ) ) n)
e M=) Ap (k) e 17 i Ap (ko)

ek (an)i N p (ks) e kaa=22)i Afp (ks) e ks (22—x2) j A p (ks)

z) integration /d“zle"(“l”‘Z”‘3)'Zl = (27r)4 5 (k1 — ko — k3)

2, integration /d“z;e’(k3+k4’k5)'12

4
(2m)* 6% (ks + ks — ks)
energy-momentum conservation at each vertex
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Then

(271)* 8% (ky — ko + kg — ks)

—iA? o odtk d*k
T(2>(y1'y2'X1’X2) (=) / 1 4

2 @m)* " (2m)"
PiAF (k)i NF (ko) i AF (Ka) i N (ks) i ANF (ki — ko) e k171 gfka 1 = kay2 giks 2

/ -2 V1, 2, %1, %2) d4x1d4x2d"yld"yze’("lyl+FZYZ)e”(QIX1+q2X2)e”kl'yl eikox1 g =iksy2 giks xp

= @08 (ko —aq1) (21)* 8" ( ks — @) (27)" 8" (p1 — k) (270)* 8" (P2 — ka)
We see that the external line propagators cancell out and

L2 4
(7;\) <i> (27‘()454(P1+p2—q1—q2)+___

vz

This is rather simple answer in momentum space.

5/30( =
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Cross section and Decay rate
Write the S-matrix elements as

S =05+ f(27'[)4(54(pf — p,‘) Ts

Ts :invariant amplitude for i — f.
For i # f, the transistion probability is

|55[* = (2m)*6* (0)[(27)*8" (pr — 1) | T4 "]

To interprete 6*(0), we write

(27)*6* (pr — p;) = / d*xe—i(Pr—pi)x
The integration is over some large but finite volume V and time interval T.
Then we can interprete 6*(0) as

(2m)*s*(0) = VT

and write

ISal* = VT[(27)*6* (pr — pi) | Tal®

The transistion rate (transistion probability per unit time) is then
ws = (2m)** (pr — pi) | Tal* V
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Decay rates
For a general decay processes with kinematics,

n

a(p) = (k) +ca(ke) + ..+ cnkn) pr= Ek,- pi=p
=

number of states in the volume elements d3k; ...d%k, in momentum space is

1 d3k
1 (271)32wk/
The transition rate, summing over final states is
’ d? ki
dw = (2n)**(p— 21 k) | Tal* V
W = @05 e~ Sk ol VT Gpon

For the invariant normalization of the physical states
’ o L
<plp >=(2n)*F(BE—-p )2w,
For p=p/,
< plp >= (2m)36%(0)2w, = 2Vw,

which is the number of particle in the initial state.
The decay rate per particle is then

’
dw 1 n d3k/

=) (p - k) | Tal? — T e —

2V, (2m)*5"(p = Zja k) [T 2wp,11(2n)32wk,

dw =
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If there are "m" identical particles in the final state, divide this by m!

_ 1 2 _d% a3 kn 4 ) _ 1
dw = 5| Tsl (zn>3zlw1 o Tk (2n)*6*(p — 7, k)S S= H i
j

(Institute) Slide_ 04 35 /41



Cross section
For a scattering processes ,
a(p1) + b(p2) — c1(ki) + co(ka) + ... + cn(kp)

the transition rate is, after summing over final states,

/ 1 d3k
dw = (2m)*s* k) | Tsl” vV
w = (2m)*8" (p1 + p2 — E]_1 k) | Tr H (2n)32wy
Normalize this to 1 particle in the beam and 1 particle in the target and divide this by the flux~relative
velocity divided by the volume, to get differential cross section

1 1 1
— —_(2m)%s* ki) | Tl Vl |
do 2wp1 14 2wp2 \/( ﬂ:) 0 (Pl Tp2 - J 1 ‘ ﬁ

d3k v
27'[ 32wk, ‘Vl - VQ‘

Velocity factor can be written as

In the C.M. frame p1=—pr=p p1 = (E1,P).p2 = (E2, —P)

(p1-p2)? = (E1E> + p2)* = E}E + 2E1Eop2 +p*
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(pr-p2)? —mim3 = (B +mi)(P
(

1
=1 EE (p1-p2)2 —m?m3
1 1 4 n d3 ki
do = (271)*6* (p1 + p2 — Z)_1 ;) | T4 H 2w,

7 prl 2wp2
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Feynman Rules

Since the final forms for transition matrix elements Ty are quite simple,we can use

simple rules to sidestep all those tedious intermediate steps.

Draw all connected Feynman graphs with appropriate external lines.Label each
with momenta and impose momentum conservation for each vertex.

1.For each internal fermion line with momentum p,enter the propagator

i
iS, =
F(p) i, —m e
2.For each internal boson line of spin 0,with momentum q,enter the propagator
' Ar (q) i
i =
F\q q2 — ;112 T e
3.For each internal photon line with momentum k,enter the propagator
o _iguv
R -

4 .For each internal momentum | not fixed by momentum conservation,enter

iDF (k)
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/ d*

)

5.For each closed fermion loop,enter (-1) .Also they should be factor of (-1)
between graphs which differ only by an interchange of two external identical

fermion lines.
At each vertex,the factors depend on the explicit form of interactions.

@y A° (-id)
(6) 3 A9* (-ih)
(C) e@’Y;ﬂ/’Ay (_ie')’y)
(df Prs9pg (—ifs)
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Example in A¢> theory

R ks
‘“}_\‘_-,,F}’

-

y kiky
{

(Institute)

In A¢> theory, consider scattering processes ¢ (ki) + ¢ (ka) — ¢ (k) + ¢ (ka)
To second order in A ,we have following 3 Feynman diagrams for this reaction

We can write down the matrix element for each graph,
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TE = (—ir)?

i

(k] - k3)2 - ‘112

Total amplitude T = T(2) 4 T(®) 4 T(c)

Mandelstam variables

(k +k2)2
(ki = ks)°
(ki — ka)?

Usually these amplitudes are written as

(Institute)

total energy in c.m. frame

T = (=ir)?

momentum transfer(scattering angle)

s+t +u =4y

Slide_04

(ko = ka)® =2
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