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Path integral formalism has close relationship to classical dynamics, e.g. the transition amplitude
(F1i) :/[dx] &S/

as h — 0, the trajectory with smallest S dominates, the action principle. Here uses the ordinary functions not
the operators. Later in non-Abelian gauge theory, to remove unphysical degrees of freedom can be
accomodated in the path integral formalism by imposing constraints in the integral.

Quantum Mechanics in 1-dimension

In QM, transition from |g, t) to (q¢’, t'|, can be written as,

(a't'lat) = (o™ lq)
where |q)’s are eigenstates of position operator Q in the Schrodinger picture,

Qla) = qlaq)

and |q, t) denotes corresponding state in Heisenberg picture,

g, t) = e™|q)

Ipath integral formalism,this can be written as

(@¢lat) = N [ldglewsli [ drL(a.a)}
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To get this formula, divide the interval (t/,t) into n intervals ,

t'—t
n

ot =
and write ,
(q'|e” ™ =0)|q) = /dql---dqnfl<q’\e””"‘|qn71><qn71\e”'”‘“\qnfg)--(ql\6””‘”\q>

For 6t small enough,
(a'le=|q) = (q'|(1 = H(P, Q)é1)|q) + O ((61)?) + ..

Suppose,
2
H(P.Q) = 2+ V(@)
then
’ / 2 +/ ,
(d|Hla) = <q\L|q>+V(%)5(qfq)
d
= /<q\f|p><p|q>( )+ v(iTL 2 )/27’; in(d'~a)
_ [ 9P ) q+dq
= 2nqu q[2 +V(—— 3 )]
where

(plq) = e~
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is the momentum eigenfunction. Exponentiation of this infinitesmal result

i dp o PP q+4q
1 —iHbt ~ ip(a"—q) 11 _ L
(qle™tlq) = [ Perdaf—is Py v

. . ’
/ ;TZ exp [ip(q' — q)] exp [7i5t[2pim +v( q ‘; q )]}

The whole transition matrix element can then be written as

(@'l 0lg) & [(9). (%) [ day...da-s exp [Z (q,fq,qw(sr)H(p,,%ﬂ}

27

This can be written formally as

(q'le € 0]g) = [1L% Jexp(; [ " dtlpa — H(p.q))}

= lim (2’7’; ”" /dq1 dqn_exp{i Zét[p, q’ 4= 91y H(p,,%)]}

If Hamiltonian depends quadractically on p, use the formula

/+oo %e—aXZerx — 1 e%
—eo 2T 47ta
to get
dpi _ 1/2 im(qi — qi-1)
/ 2 P ipi(ar — @] = (o) e s
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Then

qi —gi-1 >2 _ V]}

—iH( v —t)
(d'le Jlg) = lim ( 5

nHoo 27r/<5

n/2 et . iy m
/ L da;expfi X 5t[=(
or

(a'tlat) = (@l ™ o) = N [ldqlexpi [ del - V(a)))

This is the path integral representation for amplitude from initial state |g, t) to final state (¢, t’|. Or

(q't'|qt) = N/[dq exp iS
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Green’s functions
To generalize this to field theory where the basic entity is the vacuum expectation value of field operators, we
consider

G(t1,t2) = (0| T(Q"(t)@"(t2))|0)

Inserting complete sets of states, we get

Gt 12) = [ dadd/ (014’ )(a',¢|T(Q" (1)@ (12)a. ) {q. [0

The matrix element )
(0lg. t) = ¢y (q)e ™0 = ¢y (q. t)

is the wavefunction for ground state. Consider the case
t'>t >t >t,

we can write oy _ »
<q/' t" T(QH(t1)QH(t2))|q, t> — <qr|e—:H(t —rl)Qse—:H(tl—rz)Qse—:H(tQ—r) ‘q>

3 i ’_ —il _ —il _
:/<q'|e M=) |g1) qu (qu e ™M1 72) | g2) ga (qa] e (27| q) dgr dp
dpd ot
= 195 () ax(e)expli [ dloa— Hip. )]}
For the other time sequence

t'>th>t >t
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we get same formula, because path integral orders the time sequence automatically through the division of
time interval into small pieces. The Green's function is then

G(t1.t2) = [ dada'y(d'. )05 (0.0) [ (B (t)ar()ewpli [ drlpa—Hipall ()

We remove wavefunction ¢,(q, t) by the following procedure. Write

(¢, t16(tr, 2)|q. t) = /deQ’@’, Y1Q TNHQ, T'l0(t, 22)|Q. THQ. tlg. t)

where

0(t1, t2) = T(Q"(11)Q" (1))

Let |n > be eigenstate with energy E, and wave function ¢,,, i.e.,
Hln >= Ealn > (q|n) = ¢;(q)
Then

(@ 1]Q ') = (q'|le™=TI1Q") = Y(q'[n)e =T (n] Q') = Y% ('), (Q)e En¥'-T")

n n

To isolate the ground state wavefunction, we take an "unusual limit",

lim (g, ¢]Q" ') = 95(a)po(@)e 0™

t/ ——ico
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Similarity,

r[n’Jm(Q, Tla,t) = ¢o(q)pi(Q)e Foltle~iET

With these we write

t/——ico
t—ico

= 95(a)py(q)e Bl e Bl G (11, 1)
It is easy to see that
lim {q',t'|q,t) = ¢3(q" )y (q)e Pl e Foll

t/——ioo

t—ioco

Finally, the Green function can be written as,

[ TR (1) QY (12))]g, )
G(tl,t2>= lim |: (q’,t’lq,t) :|

t/——jco
t—ico

- i’"wm / [%] alt)alt) exoli [ * delpa— Hp @)}

t—ioco

This can generalized to n-point Green's function with the result,

G(t1,t2, o ta) = (0] T (q(t1)q(t2)---q(ts))10)
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= im s | [%] a()a(e)--alt)expli [ dtloq — H(p. )]}

t—ico

It is very useful to introduce generating functional for these n-point functions

wWJ] = t/if@vwm / {

t—ico

dpdq
27

Jexo(s [ drlpa — Hip.a) + Jmpa(o)])

Then

"

G(t1, ta, ey tn) = (—i)" I CYAICS]

J=0

The unphysical limit, t' — —ioco,t — jco , should be interpreted in term of Eudidean Green's functions defined
by

5(”)('[1,'(2, o Tp) = f"G(”)(—iTl, —iT, ey —iTh)

Generating functional for S is then

we )= i [ da] s el [T a7 = (5% V(@) + S al )

Since we can adjust the zero point of V/(q) such that

m (dq 2
?(E) +V(q)>0

which provides the damping to give a converging Gaussian integral. In this form, we can see that any constant
in the path integral which is independent of g will be canceled out in the generation functional:
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Field Theory
From quantum mechanics to field theory of a scalar field ¢ (x) replace,

1 [daidpi] — [dg(x)d7(x)]

-

L@.q) — [ L0,0)d Hip.q) — [H(g.m)d?

Generating functional is

[ 1dglexnti [ d*x(£(9.0,9) + ()91}

functional derivative is defined by

SFlp()) _ . Flp(x)+ed(x—y)] = Fp(x)]
59 (y) =0 €
Then wi
) i [ @19 el [ d*5(L(0,3,9) + I)p(]} )
and

= (1) [ 14919 (n) ¢ (r2) exp{i [ d*x(L(9.2,9) + J(x)p()]}
Consider A¢* theory
L(§) = Lo(@) + L1(9)
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2

_1 2 K 2 _ A,
Lo(¢p) = E(aMP) -5 L1(¢) = —u?
Use Euclidean time the generating functional

W)= [laglen(~ [ xR+ LTor + g+ 2ot~ gl)

can be written as

W] = [exp/d‘*xz, (5%(@)] Wo U]

We have used Eq(2) to write the interaction term in terms of function derivative with repect to the source
J(x) .Here W, [J] is the free field generating function

Wo [J] = /[dq; exp 77/d4xd4y¢ (x)K /d4zJ
and )
o —
Klun) =00 ) (- g = 7 +#2>
ot
. The Gaussian integral for many variables is
/ dpydg,..dp, exp |~ Y 0.Ki9, + Y | - —— exp | S Y (K )5
1 2 n 2 = iy - k \/m 2 = y=J
Apply this to the case of scalar fields,
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Wo [J] = exp B /d“xd“yJ(x) A0 9) ()
where
/d“yK(ny) Ay z) =8 (x—2)
A(x,y) can be calculated by Fourier transform to give,

d4kE eikE(x—y)
(2m)* kg +p

Aty = [

N
where kg = (iko, k ),the Euclidean momentum
Perturbative expansion in power of A gives

W [J] = Wo [ {1+ Awy [J] + APwo [J] + ...}

where

wy = _%WJl ] {/ dhx [MfX)T}WO ]

1
2(a1)

Wy = —

Use explicit form for Wo[J],
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WolJ] = 1+%/d“xd“yJ(X)A(xry)J(y)Jr

2
(3) 3 ] d'netnatndtslion) & 0a s 05) & (53,30 H0m)] + .

We get for wy,

wy = —% ['/A(x,yl) A(x,y2) A (x,y3) A (x,ya) (1) (v2) J(y3)(ya) + 31D (x,y1) A (x,y2) I (y1)d (v2) & (x,

we dropped all J independent terms, and all (x;, y;) are integrated over. In this computation we have used the
identity,

/dyu (1) F () = [ 8 (x =) d*nf () = 7 ()

Graphical representation for wq

¥ Y3

Y1 X Y2
¥y Ya
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The connected Green's function is

5" In W [J]

() ___ oWl
G (x1x2,x0) JJ(xl)JJ(xQ)...tSJ(X,,)‘J:O

Thus replacing y; by external x;, we get contributions for 4-point, 2-point functions.
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Grassmann algebra
For fermion fields in path integral, we need to use anti-commuting c-number functions.This can be realized as
elements of Grassmann algebra.

In an n-dimensional Grassmann algebra,the n generators 6, 05, 03, ..., 6, satisfy the anti-commutation
relations,

{6;,6;} =0 ihj=1,2,..,n
and every element can be expanded in a finite series,

P (8) = Po+ P10y + P2 0,01, + ...+ Py in0i 03,

Simplest case:n=1

{6.6}=0 or  6°=0  P(6)=Po+06P

We can define the "differentiation" and "integration" as follows,

de” ~ 7do de

Integration is defined in such a way that it is invariant under translation,

/dep 0) = /deP (6+a)

« is another Grassmann variable. This implies

/dG:O

(Institute) Slide_03 15 /



We can normalize the integral such that

Then
[ aop @) = pi = < p o)
T
Consider a change of variable
0—0=a+bo
Since
/déP (2) = 9p (@) =p
do
/dﬁP (5) = /dG [Po +§P1} - /d9 [Po + (a+ b8) P1] = bP,
we get

/d'éP (0) = /d9 (j—?)il P(80)

The "Jacobian" is the inverse of that for c-number integration.
Generalize to n-dimensional Grassmann algebra,

do;
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{d6;,d6;} =0

/ d9; =0 / d0:0; = 5;

0; = b,’j@j

For a change of variables of the form

we have

P (5 (9))

o . i
/dendon,l...delp (9) - / d6,...d6; [det%

Proof: SO
9192...9,, = bl,‘l bz,‘z ---bn/'ngil ...9,‘"

RHS is non-zero only if i1, iz..., i, are all different and we can write

016,...0, = bl,‘l bz,-2...b,,,'ne,»lv,ﬂz__”,ﬂne,»l...9fn
(det b) 016,63...60,

From the normalization condition,
1= /df)}df):l...dei (0:6..6,) = (detb) /de}dé}fl...dei (616,05...6,)
we see that

(Institute) Slide_03 17 /19



d6,d, 1...d6; = (det b)* db;...d6,

In field theory, we need Gaussian integral of the form,

G (A) = [ doy...dos exp <%(9,A0)> where (0, A0) = 6,A;6;
First consider n=2

a=(h )
Then
G(A) = /d92d91 exp (0102A12) ~ /d92d91 (14 60162A12) = Ajp = Vdet A
generalization to arbitrary n
G(A) = / d6,...d6, exp (% (9,A9)> = VdetA  neven
and for "complex" Grassmann variables
/dG,,d@nde,,,ld@,,,l...deldélexp (6, Af) =det A

For the Fermion fields, the generating functional is of the form,

W .7 = [ 1d9 (0] [ ()] expli [ d*x [£ (9. 9) + g +79]}
If £ depends on 1,9 quadratically
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L= (p Ap)

then we have

W = [ (0] [d (x)] exp{ [ d*xPAY} = det A
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