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Renormalization
Renomalization is a general physical phenomena Consider an electron moving inside a solid. Due to interaction
of electorn with ions on the lattice, the e¤ective mass of the elelctron m� 6= m. Electron mass is changed (
renormalized) from m to m�. Clearly both m and m� are �nite and measurable.
In relativistic �eld theory the concept of renormalization is the same.
Two important distinctions.

1 Modi�cation due to interaction is in�nite.
2 Can�t turn o¤ interaction to measure bare mass

Technically, the theory of renormalization is quite complicated. We will explain the principal ideas
Renormalization in λφ4 Theory
Consider λφ4 theory

L = L0 + LI

L0 =
1
2
[(∂µφ0)

2 � µ20φ20 ] , LI = �
λ0
4!

φ40

Feynman rule
vertex and propagator are

1 4-momentum conservation at each vertex.
2 Integrate over internal momenta not �xed by momentum conservation
3 no propagator for external line
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Simple example
2-point function has contribution from following graphs,

De�ne 1PI: one-particle irreducible graphs� graphs which can not be disconnected by cutting any one line.
Complete 2 point function in terms of 1PI graphs

i
(p2 � µ20 + i ε)

+
i

(p2 � µ20 + i ε)
(�iΣ(p2)) i

(p2 � µ20 + i ε)
+ . . . . . .

=
i

(p2 � µ20 + i ε)
[

1

1+ iΣ(p2) i
p2�µ20+i ε

] =
i

p2 � µ20 � Σ(p2) + i ε

1-loop diagrams
In one-loop we have
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The self energy

�iΣ(p) = � iλ0
2

Z d 4 l
(2π)4

i
l 2 � µ20 + i ε

is quadratically divergent.
The 4-point function are
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Graph (a) gives

Γ(p2) =
(iλ0)2

2

Z d 4 l
(2π)4

i
(l � p)2 � µ20 + i ε

i
l 2 � µ20 + i ε

and is logarithmically divergent. If we di¤erentiate Γ
�
p2
�
with respect to p, power of l will increase in

denominator and make the integral more convergent,

∂

∂p2
Γ(p2) =

1
2p2

pµ
∂

∂pµ
Γ(p2) =

λ20
p2

Z d 4 l
(2π)4

(l � p) � p
[(l � p)2 � µ20 + i ε]2

1
l 2 � µ20 + i ε

! convergent

If expand Γ(p2) in Taylor series,
Γ(p2) = a0 + a1p2 + . . .

divergences are contained in �rst few terms. In our simple case,

Γ(p2) = Γ(0) + Γ̃(p2)

Γ̃(p2) is �nite.
In 1-loop, the divergent graphs are (1PI)
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Other 1-loop graphs are either �nite or contain the above graphs as subgraphs
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Mass and wavefunction renormalization
Taylor expansionof 1PI self energy, has 2 divergent terms,

Σ(p2) = Σ(µ2) + (p2 � µ2)Σ02(p2) + Σ̃(p2) µ2 : arbitrary

Σ(µ2) is quadratically, Σ02(µ2) logarithmically divergnet, 3rd term Σ̃(p2) is �nite and ,

Σ̃(µ2) = 0, Σ̃02(p2) = 0

Complete propagator is

i∆(p2) =
i

p2 � µ20 � Σ(µ2)� (p2 � µ2)Σ02)� Σ̃(p2)

Choose µ2 such that
µ20 � Σ(µ2) = µ2 mass renormalization

then ∆(p2) has a pole at p2 = µ2 . =) µ2 physical mass and µ20 bare mass.
Full propagator is

i∆(p2) =
i

(p2 � µ2)[1� Σ02 (µ2))]� Σ̃(p2)

Σ0(µ2) and Σ̃(p2) are both of order λ0 or higher, we can approximate

Σ̃(p2)! (1� Σ02
�
µ2
�
)Σ̃(p2)

Then

i∆(p2) =
iZφ

p2 � µ2 � Σ̃(p2) + i ε
with Zφ =

1
1� Σ02(p2)

� 1+ Σ02(p2)
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Get rid of Zφ by de�ning renormalized �eld φ by

φ =
1p
Zφ

φ0

propagator for φ is

i∆R (p) =
Z
d 4xe�px h0jT (φ(x )φ(0))j0i = i

P 2 � µ2 � Σ̃(p2) + i ε

which is completely �nite. Zφ is called the wave function renormalization constant .
For general Green�s functions of renomalized �elds,

G (n)R (x1 . . . xn) = h0jT (φ(x1) � � � φ(xn))j0i

= Z�n/2
φ h0jT (φ0(x1) � � � φ0(xn))j0i = Z

�n/2
φ G (n)0 (x1 . . . xn)
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Coupling constant renormalization
1PI 4-point functions Γ(4)(p1 � � � p4), there are ,

Include tree diagram,

Γ(4)0 (s , t , u) = �iλ0 + Γ(s) + Γ(t) + Γ(u)

s = (p1 + p2)2 , t = (p1 � p3)2 , u = (p1 � p4)2 , s + t + u = 4µ2

These are logarithmically divergent, one substraction to make this �nite.

Choose s0 = t0 = u0 =
4µ2

3
,

Γ(4)0 (s , t , u) = �iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)

where
Γ̃(s) = Γ(s)� Γ(s0),
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is �nite. De�ne Zλ by
�iλ0 + 3Γ(s0) = �iZ�1λ λ0

Thus
Γ(4)0 (s , t , u) = �iZ�1λ λ0 + Γ̃(s) + Γ̃(t) + Γ̃(u)

At the symmetric point

Γ(4)0 (s0 , t0 , u0) = �iZ�1λ λ0

with Γ̃(s0) = Γ̃(t0) = Γ̃(u0) = 0. Renormalized 1PI 4 point function Γ(4) is related to Green�s function by

Γ(4)R =
4

∏
j=1

[i∆R (pj )]�1G
(4)
R

which implies

Γ(4)R (s , t , u) = �Z 2φ Γ(4)0 (s , t , u)

De�ne renormalized coupling constant λ by
λ = Z 2φZ

�1
λ λ0

then

Γ(4)R (p1 , � � � , p4 ) = Z 2φ Γ(4)0 = �iZ�1λ Z 2ϕ λ0 + Z 2ϕ [Γ̃(s) + Γ̃(t) + Γ̃(u)] = �iλ+ Z 2ϕ [Γ̃(s) + Γ̃(t) + Γ̃(u)]

Since Zϕ = 1+O (λ0), Γ̃ = O (λ20) λ = λ0 +O (λ
2
0), we can approximate

Γ(4)R ( p1 , � � � , p4) = �iλ+ Γ̃(s) + Γ̃(t) + Γ̃(u) + 0(λ3)
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which is completely �nite. From the original Lagrangian (unrenormalized Lagrangian)

L0 =
1
2
[(∂µφ0)

2 � µ20φ20 ]�
λ0
4!

φ4

we can write
L0 = L+ ∆L

L = 1
2
[(∂µφ)2 � µ2φ2 ]� λ

4!
φ4

∆L = L0 �L =
1
2
(Zφ � 1)[(∂µφ)2 � µ2φ2 ] +

δµ2

2
φ2 � �λ(Zλ � 1)

4!
φ4

where

µ2 = δµ2 + µ20 , φ = Z
� 12
φ φ0 , λ = Z�1λ Z 2φ λ0

Here L is usually called renormalized Lagrangian and ∆L the counterterms.
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BPH renormalization
An equivalent scheme is BPH (Bogoliubov, Parasiuk and Hepp) renormalization scheme.
Essential idea: use counter terms Lagrangian ∆L as a device to cancel the divergences.

1 Starts with renormalized Lagrangian

L = 1
2
(∂µφ)2 � µ2

2
φ2 � λ

4!
φ4

Generate free propagator and vertices from this Lagrangian.

2 The divergent parts of one-loop 1PI diagrams are isolated by Taylor expansion. Construct a set of
counter terms ∆L(1) to cancel these divergences.

3 A new Lagrangian L(1) = L+ ∆L(1) is used to generate 2-loop diagrams and to counter terms ∆L(2) to
cancel 2-loops divergences. This sequence of operation is iteratively applied.

To illustrate the usefulness of BPH scheme, we need to make use of the power counting method.
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Power counting
Super�cial degree of divergence D is de�ned as

D = (] of loop momenta in numerator )� (] of loop momenta indenominator )

We de�ne the following quantities,
B= number of external lines
IB= number of internal lines
n= number of vertices
Counting the lines in the graph, we get

4n = 2(IB ) + B

4-momentum conseravation at each vertex and overall 4-momentum conseravation which do not depend on
the internal momentum.
number of loops L is

L = IB � n + 1

Eliminating n, L and (IB ),
D = 4� B

Thus D < 0 for B > 4. The λφ4 theory has the symmetry φ ! �φ. which implies that B = even and only
B = 2, 4 are super�cially divergent.
Comments on subgraph divergences

Convergence of Feynman integrals (Weinberg�s Theorem): Feynman integral converges if the super�cial
degree of divergence of of all subgraphs are negative.
More explicitly, consider a Feynman graph with n external lines and l loops,

Γ(n) (p1 , p2 , � � � , pn) =
Z Λ

d 4q1 � � � d 4ql I (p1 , p2 , � � � , pn ; q1 , � � � ql )
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where we have used a cuto¤ Λ to make estimate of the divergence. The integrand I is the product of vertices
and propagators. Take a subset S = fq 01 , � � � q 0mg of the loop momenta fq1 , q2 � � � ql g and scale them to in�nity
with all other momenta �xed. Let D (S ) be the super�cial degree of divergence for integration over this set,
namely ����Z Λ

d 4q 01 � � � d 4q 0m I
���� � ΛD (S ) jlnΛj

Then the convergence theorem says that the integral onver fq1 , q2 � � � ql g converges if the D (S ) for all
possible choices of S are negative. For example, in the graph on the left below, we have D = �2. But the
integration inside the box having D = 0 is logarithmically divergent. In the BPH procedure these subdiagram
divergences are in fact renormalized by low-order counterterm. For example, the graph on the right below with
its counter term vertex will cancel the subgraph divergence of the graph on the left.

Here we see that even though some graphs are not convergent according to Weinberg�s theorem, in BPH
scheme the divergences associated with some subgraphs are systematically canceled by lower order counter
terms.
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Regularization
Need �rst to make divergent integral �nite before we can do any manipulation.
2 di¤erent schemes: Pauli-Villars regularization and dimensional regularization.

Pauli-Villars Regularization
Repalce the propagator by

1
k 2 � µ20

! (
1

k 2 � µ20
� 1
k 2 �Λ2 ) =

(µ20 �Λ2)

(k 2 � µ20)(k 2 �Λ2)
! 1

k 4
for large k

will make the integral more convergent.
. 4-point function from the following graph,
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Γ
�
p2
�
= Γ (s) =

(�iλ)2

2

Z d 4 l

(2π)4
i

(l � p)2 � µ2
i

l 2 � µ2

With Pauli-Villars regularization this becomes,

Γ
�
p2
�
=
�λ2Λ2

2

Z d 4 l

(2π)4
1h

(l � p)2 � µ2
i
(l 2 � µ2) (l 2 �Λ2)

Taylor expansion around p2 = 0,
Γ
�
p2
�
= Γ (0) + eΓ �p2�

with

Γ (0) =
�λ2Λ2

2

Z d 4 l

(2π)4
1

(l 2 � µ2)2 (l 2 �Λ2)

eΓ �p2� = λ2

2

Z d 4 l

(2π)4
2l � p � p2h

(l � p)2 � µ2
i
(l 2 � µ2)2

take the limit Λ2 ! ∞ inside in eΓ �p2�.
Combine the denominators by using the identities,

1
a1a2 � � � an

= (n � 1)!
Z 1

0

dz1dz2 � � � dzn
(a1z1 + � � �+ anzn)n

δ

 
1�

n

∑
i=1

zi

!

1
a21a2 � � � an

= n!
Z 1

0

z1dz1dz2 � � � dzn
(a1z1 + � � �+ anzn)n+1

δ

 
1�

n

∑
i=1

zi

!
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Here α1 , � � � αn are called the Feynman parameters. Then

1h
(l � p)2 � µ2

i
(l 2 � µ2)2

= 2
Z
(1� α) dα

A3

where
A = (1� α)

�
l 2 � µ2

�
+ α

h
(l � p)2 � µ2

i
= (1� αp)2 � a2

with
a2 = µ2 � α (1� α) p2

Thus

eΓ �p2� = λ2
Z 1

0
(1� α) dα

Z d 4 l

(2π)4
2l � p � p2h

(l � αp)2 � a2
i3

= λ2
Z 1

0
(1� α) dα

Z d 4 l

(2π)4
(2α� 1) p2

(l 2 � a2 + i ε)3

we have changed the variable l ! l + αp and drop terms linear in l . In the complex l0 plane, poles at

l0 = �
hp
l 2 + a2 � i ε

i
Do the integration by Wick rotation,
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From Cauchy�s theorem we have I
C

dl0 f (l0) = 0

where

f (l0) =
1"

l 20 � (
q
!
l
2
+ a2 � i ε)2

#3
Since f (l0) ! l�60 as l0 ! ∞, circular part of contour C with very large radius vanishes and

Z ∞

�∞
dl0 f (l0) =

Z i∞

�i∞
dl0 f (l0)
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Integration path has been rotated from along real axis to imaginary axis (Wick rotation). Changing the
variable l0 = il4 , Z i∞

�i∞
dl0 f (l0) = i

Z ∞

�∞
dl4 f (l4) = �i

Z ∞

�∞

dl4
(l 21 + l

2
2 + l

2
3 + l

2
4 + a2 � i ε)

3

De�ne Euclidean momentum ki = (l1 , l2 , l3 , l4) with k 2 = l 21 + l
2
2 + l

2
3 + l

2
4 . The integral is then

Z d 4 l

(2π)4
1

(l 2 � a2 + i ε)3
= �i

Z d 4k

(2π)4
1

(k 2 + a2 � i ε)3

Using polar coordinates in 4-dim

Z
d 4k =

Z ∞

0
k 3dk

Z 2π

0
dφ

Z π

0
sin θd θ

Z π

0
sin2 χdχ

and integrating over angles

Z d 4k

(2π)4
1

(k 2 + a2 � i ε)3
= 2π2

Z ∞

0

k 3dk

(2π)4
1

(k 2 + a2 � i ε)3

=
1

16π2

Z ∞

0

k 2dk 2

(k 2 + a2 � i ε)3

Using the formula Z tm�1dt
(t + a2)n

=
1

(a2)n�m
Γ (m) Γ (n �m)

Γ (n)

we get Z d 4k

(2π)4
1

(k 2 + a2 � i ε)3
=

1
32π2 (a2 � i ε)
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and eΓ �p2� = �iλ2
32π2

Z 1

0

dα (1� α) (2α� 1) p2
[µ2 � α (1� α) p2 � i ε]

It is straightforward to carry out the integration to compute eΓ �p2� to get
Γ̃(p2) = Γ̃(s) =

iλ2

32π2

8<:2+
�
4µ2 � s
js j

� 1
2
ln

"
(4µ2 � s) 12 � (js j) 12 g
f(4µ2 � s) 12 + (js j) 12 g

#9=; for s < 0

=
iλ2

32π2

8<:2� 2
�
4µ2 � s
s

� 1
2
tan�1

�
s

4µ2 � s

� 1
2

9=; for 0 < s < 4µ2

=
iλ2

32π2

(
2+ (

s � 4µ2

s
)
1
2 ln

"
s
1
2 � (s � 4µ2)

1
2

s
1
2 + (s � 4µ2)

1
2

#
+ iπ

)
for s > 4µ2
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Dimensional regularization
The basic idea here is that since the divergences come from integration of internal momentum in 4-dimensional
space, the integral can be made �nite in lower dimensional space. We can de�ne the Feynman integrals as
functions of space-time n and carry out the renormalization for lower values of n before taking the limit n ! 4.
Consider the integral

I =
Z d 4k
(2π)4

(
1

k 2 � µ2
)[

1
(k � p)2 � µ2

]

which is divergent in 4-dimension. If we de�ne this as integration over n�dimension

I (n) =
Z d nk
(2π)4

1
(k 2 � µ2)

�
1

(k � p)2 � µ2

�
then the integral is convergent for n < 4.To de�ne this integral for non-integer values of n, we �rst combine
the denominators using Feynman parameters and make the Wick rotation,

I (n) =
Z 1

0
dα
Z d nkh

(k � αp)2 � a2 + i ε
i2

= i
Z 1

0
dα
Z d nk

[k 2 + a2 � i ε]2
with a2 = µ2 � α (1� α) p2

Now introduce the spherical coordinates

Z
d nk =

Z ∞

0
k n�1dk

Z 2π

0
d θ1

Z π

0
sin θ2d θ2

Z
� � �

Z π

0
sinn�2 θn�1d θn�1

=
2πn/2

Γ
� n
2

� Z ∞

0
k n�1dk
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where we have used the formula,

Z π

0
sinm θd θ =

p
πΓ
�
m + 1
2

�
Γ
�
m + 2
2

�
Then the n�dimensional integral is

I (n) =
2iπn/2

Γ
� n
2

� Z 1

0
dα
Z ∞

0

k n�1dk

[k 2 + a2 � i ε]2

The dependence on n is now explicit and the integral is well-de�ned for 0 < Re(n) < 4. We can extend this
domain of analyticity by integration by parts

1
Γ( n2 )

Z ∞

0

k n�1dk
[k 2 + a2 � i ε]2 =

�2
Γ( n2 + 1)

Z ∞

0
k ndk

d
dk

�
1

[k 2 + a2 � i ε]2
�

where we have used
zΓ(z ) = Γ(z + 1)

The integral is now well de�ned for 2 < Re(n) < 4. Repeat this procedure m times, the analyticity domain is
extended to �2m < Re(n) < 4 and eventually to Re(n)! �∞. To see what happens as n ! 4, we can
integrate over k to get

I (n) = iπn/2Γ
�
2� n

2

� Z 1

0

dα

[a2 � i ε]2�n/2

Using the formula,

Γ
�
2� n

2

�
=

Γ
�
3� n

2

�
2� n

2

! 2
4� n as n ! 4
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we see that the singularity at n = 4 is a simple pole. Expand everything around n = 4,

Γ
�
2� n

2

�
=

2
4� n + A + (n � 4)B + � � �

an�4 = 1+ (n � 4) ln a + � � �

where A and B are some constants, we obtain the limit, as n �! 4

I (n) �! 2iπ2

4� n � iπ
2
Z 1

0
dα ln[µ2 � α(1� α)p2 ] + iπ2A

and the 1-loop contribution to 4-point function is,

Γ(p2) =
λ2

32π2

�
2i
4� n � i

Z 1

0
dα ln[µ2 � α(1� α)p2 ] + iA

�

Taylor expansion around p2 = 0 gives
Γ(p2) = Γ(0)� Γ̃(p2)

Γ(0) =
λ2

32π2

�
2i

4� π
� i ln µ2 + iA

�
' iλ2

16π2(4� n)

and

Γ̃(p2) =
�iλ2
32π2

Z 1

0
dα ln

�
µ2 � α(1� α)p2

µ2

�
=

�iλ2
32π2

Z 1

0

dα(1� α)(2α� 1)p2
[µ2 � α(1� α)p2 ]
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Clearly this �nite part is exactly the same as that given by the method of covariant regulariztion.
The 1-loop self energy in dimensional-regularization scheme becomes

�iΣ(p2) = λ

2

Z d nk
(2π)4

1
k 2 � µ2 + i ε

=
�iλπn/2Γ

�
1� n

2

�
32π4(µ2)1�n/2

From the relation,

Γ
�
1� n

2

�
=

Γ
�
3� n

2

��
1� n

2

� �
2� n

2

�
we see that the quadratic divergnece has pole at n = 4 and also at n = 2. For n ! 4 we have,

�iΣ(0) = iλµ2

16π2

�
1

4� n

�
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Composite operator
In some cases, we need to consider Green�s function of composite operator, an operator with more than one
�elds at same space time.
Consider a simple composite operator of the form Ω(x ) = 1

2 φ2(x ) in λφ4 theory. Green�s function with one
insertion of Ω is of the form,

G (n)Ω (x ; x1 , x2 , x3 , ..., xn) =
�
0jT ( 1

2
φ2(x )φ(x1)φ(x2)...φ(xn))j0

�
In momentum space we have

(2π)4δ4(p + p1 + p2 + ...+ pn)G
(n)
φ2
(p; p1 , p2 , p3 , ..., pn) =

Z
d 4x e�ipx

Z n

∏
i=1

d 4xi e�ipi xi G
(n)
Ω (x ; x1 , x2 , x3 , ..., xn)

In perturbation theory, we can use Wick�s theorem to work out these Green�s functions in terms of Feynman
diagram.
Example, to lowest order in λ the 2-point function with one composite operator Ω(x ) = 1

2 φ2(x ) is, after using
the Wick�s theorem,

G (2)
φ2
(x ; x1 , x2) =

1
2



0jT fφ2(x )φ(x1)φ(x2)gj0

�
= i∆(x � x1)i∆(x � x2)

or in momentum space

G (2)
φ2
(p; p1 , p2) = i∆(p1)i∆(p + p1)

If we truncate the external propagators, we get

Γ(2)
φ2
(p, p1 ,�p1 � p) = 1
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To �rst order in λ, we have

G (2)
φ2
(x , x1 , x2) =

Z �
0jT f 1

2
φ2(x )φ(x1)φ(x2)

(�iλ)
4!

φ4(y )gj0
�
d 4y

=
Z
d 4y

�iλ
2
[i∆(x � y )]2 i∆(x1 � y )i∆(x2 � y )

The amputated 1PI momentum space Green�s function is

Γ(2)
φ2
(p; p1 ,�p � p1) =

�iλ
2

Z d 4 l
(2π)4

i
l 2 � µ2 + iε

i
(l � p)2 � µ2 + iε

To calculate this type of Green�s functions systematically, we can add a term χ(x )Ω(x ) to L

L[χ] = L[0] + χ(x )Ω(x )
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where χ(x ) is a c-number source function. We can construct the generating functional W [χ] in the presence
of this external source. We obtain the connected Green�s function by di¤erentiating lnW [χ] with respect to χ
and then setting χ. to zero.

(Institute) Slide_07 27 / 37



Renormalization of composite operators
Super�cial drgrees of divergence for Green �s function with one composite operator is,

DΩ = D + δΩ = D + (dΩ � 4)

where dΩ is the canonical dimension of Ω. For the case of Ω(x ) = 1
2 φ2(x ), dφ2 = 2 and Dφ2 = 2� n ) only

Γ(2)
φ2
is divergent. Taylor expansion takes the form,

Γ(2)
φ2
(p; p1) = Γ(2)

φ2
(0, 0) + Γ(2)

φ2R
(p, p1)

We can combine the counter term
�i
2

Γ(2)φ2(0, 0)χ(x )φ2(x )

with the original term to write
�i
2

χφ� i
2

Γ2
φ2
(0, 0)χφ2 = � i

2
Zφ2χφ2

In general, we need to insert counterterm ∆Ω into the original addition

L ! L+ χ(Ω+ ∆Ω)

If ∆Ω = CΩ, as in the case of Ω = 1
2 φ2 ,we have

L[χ] = L[0] + χZΩΩ = L[0] + χΩ0

with
Ω0 = ZΩΩ = (1+ C )Ω
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Such composite operators are said to be mutiplicative renormalizable and Green�s functions of unrenormalized
operator Ω0 is related to that of renormalized operator Ω by

G (n)Ω0
(x ; x1 , x2 , ...xn) = h0jT fΩ0(x )φ(x1)φ(x2)...φ(xn)gj0i

= ZΩZ
n/2
φ G (n)lR (x ; x1 , ...xn)

For more general cases,∆Ω 6= cΩ and the renormalization of a composite operator may require counterterm
proportional to other composite operators.
Example: Conside 2 composite operators A and B . Denote the counterterms by ∆A and ∆B . Including the
counter terms we can write,

L[χ] = L[0] + χA(A + ∆A) + χB (B + ∆B )

Very often with counterterms ∆A and ∆B are linear combinations of A and B

∆A = CAAA + CABB

∆B = CBAA + CBBB

We can write

L[χ] = L[0] + (χA χB ) fC g
�

A
B

�
where fC g =

�
1+ CAA CAB
CBA 1+ CBB

�

Diagonalized fC g by bi-unitary transformation

UfC gV + =
�
Z
A
0 0
0 Z

B
0

�

(Institute) Slide_07 29 / 37



Then
L[χ] = L[0] + Z

A
0 χ
A
0 A

0
+ Z

B
0 χ
B
0 B

0

 
A
0

B
0

!
= V

�
A
B

� �
χ
A
0 χ

B
0
�
= (χA χB )U

A
0
,B

0
are multiplicatively renormalizable.
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Renormalization group
Discussion will be brief. Renormalization scheme requires speci�cation of substraction points which introduce
new mass scales. As we will see this introduces the concept of energy dependent "coupling constants",

e .g λ = λ(s)

even though the coupling constants in the original Lagranggian are independent of energies.
Renormalization group equation
In general, there is arbitrariness in choosing the renormalization schemes (or the substraction points).
Nevertheless, the physical results should be the same, i.e. independent of renormalization schemes. In essence
this is the physical content of the renormalization group equation. Suppose we have di¤erent renormalizarion
scheme R and R 0. From the point of view of BPH renormalization, we can write

L = LR (R � quantities) = LR 0 (R 0 � quantities)

Recall that

φR = Z
� 12
ϕR φ0 , λR = Z�1λR Z

2
φRλ0 µ2R = µ20 + δµ2R

Similarly,

φR 0 = Z
� 12
ϕR 0 φ0 , λR 0 = Z

�1
λR 0Z

2
φR 0λ0 µ2R 0 = µ20 + δµ2R 0

Since φ0 , λ0 and µ0 are the same, we can �nite relations between R� and R 0 quantities
Callan-Symanzik equation
This particular derivation of RG equation is conceptually simple. Start with the fact that for the bare
propagator, we have

∂

∂µ20
(

i
p2 � µ20 + i ε

) =
i

p2 � µ20 + i ε
(�i ) i

p2 � µ20 + i ε
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This corresponds to insertion of composite operator Ω = 1
2 φ20with zero momentum. Thus

∂Γ(n)(Pi )
∂µ20

= �iΓ(n)
φ2
(0;Pi )

In terms of renormalized (1PI) Green�s functions, the relations are

Γ(n)R (Pi ,λ, µ) = Z
n
2

φ Γ(n)(Pi ,λ0 , µ20)

Γ(n)
φ2R
(P ,Pi ,λ, µ) = Z�1φ2

Z
1
2

φ Γ(n)
φ2
(P ,Pi ,λ0 , µ20)

We now di¤erentiate with respect to µ20 ,

∂

∂µ20
Γ(n)R (Pi ,λ, µ) = (

∂µ2

∂µ20

∂

∂µ2
+

∂λ

∂µ20

∂

∂λ
)Γ(n)R (Pi ,λ, µ)

We can write this as

[µ
∂

∂µ
+ β

∂

∂λ
+ nγ]Γ(n)R (Pi ,λ, µ) = �iµ2αΓ(n)

φ2R
(0,Pi ,λ, µ)

where β = 2µ2

∂λ

∂µ20
∂µ2

∂µ20

, γ = µ2

∂ ln Zφ

∂µ20
∂µ2

∂µ20

, α =

∂Zφ2

∂µ20
∂µ2

∂µ20

This is usually referred to as Callan-Symanzik equation.
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Weinberg�s Theorem:(simpli�ed version)
Write the external momenta as Pi = σRi , and take σ ! ∞ limit, the asymptotic behaviors are

Γ(n)R � σ4�n , Γ(n)
φ2R

� σ2�n

So in the large momenta region, we can neglect Γ(n)
φ2R

,

[µ
∂

∂µ
+ β(λ)

∂

∂λ
� nγ(λ)]Γ(n)as (Pi ,λ, µ) = 0

De�ne a dimensionless quantity Γ̄ by

Γ(n)as (Pi ,λ, µ) = µ4�n Γ̄(n)R (
Pi
µ
,λ)

Since Γ̄ is dimensionless, as we scale up the momenta we can write

(µ
∂

∂µ
+ σ

∂

∂σ
)Γ̄(n)R (

σpi
µ
,λ) = 0

and

[µ
∂

∂µ
+ σ

∂

∂σ
+ (n � 4)]Γ(n)as (

σPi
µ
,λ) = 0

From Callan-Symanzik equation we get

[σ
∂

∂σ
� β(λ)

∂

∂λ
+ nγ(λ) + (n � 4)]Γ(n)as (σpi ,λ, µ) = 0
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To solve this equation, we remove the non-derivative terms by the transformation

Γ(n)as (σpi ,λ, µ) = σ4�n exp[n
Z λ

0

γ(x )
β(x )

dx ]Γ(n)(σpi ,λ, µ)

Then F (n) satis�es the equation

[σ
∂

∂σ
� β(λ)

∂

∂λ
]Γ(n)(σpi ,λ, µ) = 0

or

[
∂

∂t
� β(λ)

∂

∂λ
]Γ(n)(e tpi ,λ, µ) = 0 where t = ln σ

Introduce the e¤ective, or running constant λ̄ as solution to the equation

d λ̄(t ,λ)
dt

= β(λ̄) with initial condition λ̄(0,λ) = λ

This equation has the solution

t =
Z d λ̄(t ,λ)

λ

dx
β(x )

It is straightforward to show that

1
β(λ̄)

d λ̄

dλ
= β(λ) and [

∂

∂t
� β(λ)

∂

∂λ
]λ̄(t ,λ) = 0

In other words, F (n) depends on t and λ only through the combination λ̄(t ,λ)

F (n) = F (n)(pi , λ̄(t ,λ), µ)
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Also

exp[n
Z λ

0

γ(λ)

β(λ)
dλ] � exp[n

Z λ̄

0

γ(x )
β(x )

dx + n
Z λ

λ̄

γ(x )
β(x )

dx ]

= H (λ̄) exp[�n
Z λ̄

λ

γ(x )
β(x )

dx ]

where

H (λ̄) = exp[n
Z λ̄

0

γ(x )
β(x )

dx ]

The solution is then

Γ(n)as (σpi ,λ, µ) = σ4�nexp[�n
Z t

0
γ(λ̄(x 0,λ))dx 0 ]H (λ̄)F (n)(pi , λ̄(t ,λ), µ)

If we set t = 0 (or σ = 0), we see that

Γ(n)as (pi ,λ, µ) = H (λ)F (n)(pi ,λ, µ)

Thus the solution has the simple form

Γ(n)as (σpi ,λ, µ) = σ4�nexp[�n
Z t

0
γ(λ̄(x 0,λ))dx 0(n)as (pi , λ̄(t ,λ), µ)
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E¤ective coupling constant λ̄

d λ̄(t ,λ)
dt

= β(λ̄) initial condition λ̄(0,λ) = λ

Suppose β(λ) has the following simple behavior

Suppose 0 < λ < λ1 ,then att = 0, λ̄
dt jt=0> 0 ) λ̄ increases as t increases

This increase will continue until λ̄ reaches λ1 , where λ̄
dt = 0

On the other hand, if initially λ1 < λ < λ2 , then λ̄
dt jt=0< 0,λ̄will decrease until it reaches λ1 . Thus as t ! ∞,

we get
lim
t!∞

λ̄(t ,λ) = λ1 λ1 : ultraviolet stable �xed point

and
Γ(n)as (pi , λ̄(t ,λ), µ)!t!∞ Γ(n)as (pi ,λ1 , µ)

Example: Suppose β(x ) has a simple zero at λ = λ1 ,

β(λ) ' a(λ1 � λ) a > 0
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Then
d λ̄

dt
= a(λ1 � λ)) λ̄ = λ1 + (λ� λ1)e�at

i.e. the approach to �xed point is exponential in t, or power in t = ln σ. Also the prefactor can be simpli�ed,

Z t

0
γ(λ̄(x ,λ))dx =

Z λ̄

λ

γ(y )dy
β(y )

� �γ(λ1)

a

Z λ̄

λ

dλ0

λ0 � λ1
=
�γ(λ1)

a
ln(

λ̄� λ1
λ� λ1

)

= γ(λ1)t = γ(λ1) ln σ

lim
σ!∞

Γ(n)as (σpi ,λ, µ) = σ4�n[1+γ(λ1 )]Γ(n)as (pi ,λ1 , µ)

Thus the asymptotic behavior in �eld theory is controlled by the �xed point λ1 and γ(λ1) anomalous
dimension.
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