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Group Theory

The tool for studying symmetry is the group theory. Will give a simple discussion
Elements of group theory

group G :collection of elements (a, b, c---) with a multiplication laws satisfies;

@ Closure. IfabeG,c=abeG

@ Associative a(bc) = (ab)c

© lIdentity JdeeG > a=ea=ae VaeG

Q Inverse Foreverya€ G ,3a ! 3 aal=e=ala
Examples

@ Abelian group —- group multiplication commutes, i.e. ab=ba Va,be G

e.g. cyclic group of order n, Z,, consists of a, a2, a3, a"=E

@ Orthogonal group —— n x n orthogonal matrices, RRT = RTR =1, R: nx n matrix
e. g. the matrices representing rotations in 2-dimesions,

cosf —sinf
R(G)_< sinf  cosf )
© Unitary group ———— n X n unitary matrices,
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Built larger groups from smaller ones by direct product:
Direct product group —— Given two groups , G = {g1,82---}, H={h1,ha---} define a
direct product group is defined as G x H = {gjh;} with multiplication law

(gihj)(gmhn) = (gigm)(hjh")
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Theory of Representation

group G = {g1---gn - }. If for each group element g; — D (g;) ,n X n matrix such that

D(g1)D(g2) = D(g182) V gL.&eG

then D’s a representation of the group G (n-dimensional representation). If a non-singular
matric M such that matrices can be transformed into block diagonal form,

Dia) 0 0
mMpamt=| 0 D) 0 for all a€ G.

0 0

D (a) is called reducible representation. Otherwiseit is irreducible representation (irrep)
Continuous group: groups parametrized by continuous parameters
Example: Rotations in 2-dimensions can be parametrized by 0 < 6 < 27
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SU(2) group
Set of 2 X 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n X n unitary matrix U can be written as

U=e" H :n X n hermitian matrix

From )
detU = '™

TrH =0 if detU =1

Thus n X n unitary matrices U can be written in terms of n X n traceless Hermitian matrices.

Note that Pauli matrices:

0 1 0 —i 1 0
1=\ 1 0) 27\ 0o ) B7 o0 4

complete set of 2 X 2 hermitian traceless matrices.
Define J; = % then
(N, hl=its , [hBl=ih , [J5,4h]=ik

Lie algebra of SU (2) symmetry. exactly the same as commutators of angular momentum.
to construct the irrep of SU (2) algebra, define

P =24+ 2+35 , with property [J2,J]=0, i=1,23
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Also define

Jr=h+ih then 2= (U +J_J)+J2 and [Jy, J-] =21

N| —

choose simultaneous eigenstates of J2, J3,

PIA,my=AAm) , As|A,m) = m|A, m)

From
[(J+, B3] = —Js
we get
(J+J3 - J3J+)|)L, m) = 7J+|)L, m)
Or

S3(J+|A, m)) = (m+1)(J¢[A, m))

Thus J4 is called raising operator. Similarly, J_ lowers m to m — 1,
S3(J-[A,m)) = (m=1)(J-[A, m))

Since
S2>2 , A=-m?>0
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m is bounded above and below. Let j be the largest value of m, then
Ji|Aj)y =0

Then

’.>:(J§_J§—J3)|/\,j>:(A_j2_j)

J)
and
A=jG+1)
Similarly, let j/ be the smallest value of m, then
oAy =0 A=j("-1)
Combining these 2,
JG+1)=/'('-1) = j=—j and j—] =2j = integer

use j, m to label the states. Assume the states are normalized,

(jm|jm") = 8y Write Ji|jm) = C1(jm)lj,

)

Then
(jm|J—dy|jm) = [C+(j, m)[* —

= Gom|(S? = 55 = S)lim) =j(+1) =m?* =m = Ci(,m)=/(—m)(+m+1)
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Similarly
C_(.m)=/(+m({-m+1)

Summary: eigenstates |jm) have the properties

Sljm)y =mlj,m)  Jiljym) =\/GFm)(Em+1)|[jm£1) , S|j,m)=j(j+1)jm)

J|j,m), m=—j,—j+1,---,j are the basis for irreducible representation of SU(2) group.
From these relations we can construct the representation matrices.

Example:j:% , m::t%
1 1 1,1 1
=|z, = (=+=|=, &=
S=ly k=450 45
11 1 1 11 11 1 1
J+|§,§>—O ) J+|§,7§_|§,§> , J—|§,§—|*,*§> . Jo 7,7§>—0
If we write

T G R

Then we can represent J's by matrices,

1 1 0 0 1 0 0
J3_§<0 71> J+_(0 o) J’_<1 0)

1 1 0 1 1 1
J175(J++J—)*§< 1 0) L= —J) =3

Within a factor of % these are just Pauli matrices

(Institute) Note 8



Product representation

Let « be the spin-up and B the spin-down states. Then for 2 spin % particles, the total
wavefunction is product of wavefunctions of the form, ajas, a1, - - -
Define J() acts only on particle 1 and J@ acts only on particle 2.

=304 5@
Js=JM 4P Bma) = (Y + ) (@az) = (ara2)
from
2= (30 4 Iy = (j<1>)2+(7<2>)2+2[%(J<+1>Jg2> yONCIyONC)

- 3 3 2 .
Jz(lezxz) = (Z + N + Z)|0€10¢2> = 2|le!¥2> = j =1 state

1,1) = mar
To get other j = 1 states, we can use the lowering operator

J- (@) = (U + D) (ma2) = (a2 +aafy)
On the other hand

Jo(aap) = J_|11) = /(1 +1)(1 — 14+ 1)|1,0) = v/2|1,0)
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= [1,0)= %(ﬁlazmﬁg

Clearly |1,0) = B;B,The The only state left-over is
1
ﬁ(alﬁQ —Bya2) = |0,0)state
Summary:

@ Among the generator only J3 is diagonal, — SU(2) is a rank-1 group
@ Irreducible representation is labeled by j and the dimension is 2j + 1
© Basis states |j,m) m=j,j—1---(—j) representation matrices can be obtained from

jom) =\/UFm)(Em+1)[j,mE1)

J3

jom) =mlj,m)  Jx
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SU(2) and rotation group
The generators of SU(2) group are Pauli matrices

0 1 0 —i 1 0
1=\1 0 /) 2=\ - o c =10 -1

Let ¥ = (x,y,z) be arbitrary vector in R (3 dimensional coordinate space). Define a 2 x 2

matrix h by
a2 z X — iy
h=7c ri(x—',—iy _, )

h has the following properties
Q rt=n
Q Trh=0
@ det h=—(x>+y?+2?)

Let U be a 2 x 2 unitary matrix with detU = 1. Consider the transformation

h— 0 = UnU*
Then we have
e h/+ — h/
Q@ T =0
(Institute) Note 8
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det h' =deth
. (3)

Properties (1)&(2) imply that h’ can also be expanded in terms of Pauli matrices
W=r.¢r=(K,y, 2"
deth' =deth = x?+y?+77=x>+y?>+7?

Thus relation between r and r is a rotation. This means that an arbitrary 2 X 2 unitary matrix
U induces a rotation in R3. This provides a connection between SU(2)and O(3) groups.
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Rotation group & QM
Rotation in R3 can be represented as linear transformations on

T(X,y,z):(rl,rg,@) , r,-ﬂr,-':R,-ij RRT =1=RTR

—
r

Consider an arbitary function of coordinates, f(r) = f(x,y,z). Under the rotation, the change

in f
f(ri) = f(Ryry) = £'(r)

If f = f" we say f is invariant under rotation, eg f(7v;) = (), 7 = Vx2 + y? + 22
In QM, we implement the rotation by

lp) — ') = Uly), 0 — 0" =UvoU"

so that
= (y'|0'[¢") = (y|Oly)

If O'T = O, we say the operator O is invariant under rotation
— Uo=0U [0,U]=0

In terms of infinitesimal generators

U= e i6ad/n
this implies [J;, 0] =0, i =1,2,3. For the case where O is the Hamiltonian H, this gives
[Ji,H] = 0.
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Let |i) be an eigenstate of H with eigenvaule E,
Hly) = Elyp)

then (LiH—HJ)|w) =0 = HJ;|p)) = E(J|p))

i.e |i) & Ji|ip) are degenerate. For example, let |) = |j, m) the eigenstates of angular
momentum, then Ji|j.m) are also eigenstates if |i) is eigenstate of H. This means
for a given j , the degeneracy is (2j +1).
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Gauge Theory
Abelian gauge theory(QED)
Maxwell Equation

V.E=L  v.B=0

€0
B 1o = E -
vV x E+a—:0, —VXB:eoa——i-J
ot Ho ot
Source free equations can be solved
o - L oA
B=VxA , = V(E ﬁ) =0

E=-V¢-— a0 AT AN=FM Fl~ eB, FO~E

Gauge invariance

Al = (%,Z\) Al AF — 9ty

Schrodinger Equation for a charged particle

= = a

2m

(

1, +h
i
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To get gauge invariance, need to transform ¢
Y ey
Consider the Lagrangian for a free electron field i(x)
Lo = () (i7" — m)ip(x)
This has global U(1) symmetry,
P(x) — ¢ %p(x)  a: constant
P(x) = ' (x) = P(x)e™
Suppose

a=alx) P 0px) L Px) = Px)e)

transformation of derivative

Pp(x) — P ()0 (x) = P(x)up(x) — i(9u0)(P)  not invariant

Introduce gauge field A, (x) to form covariant derivative
Dyp = (9 + igAu)p(x)

(Institute) Note 8
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So that D,y transforms by a phase,
(D) = e (D)
This requires that
(O + igAL )Y " (O + gAY — e [0+ i(9ua) 9 + igAL Y]
1
= A=A - ga,,a

Then
$o — Piv (0 +igA)p — mpy

is invariant under local symmetry transformation (local symmetry)
The Lagrangian for gauge field is of the form,

1
3y = _ZF%IVFW Fuy = 9,Ay —9yA,  invariant
One useful relation is to write Fuy in terms of covariant derivative,
DyuDytp = (3 + igAu) (3 + igAv) Y = 3,0, — g2 AuAvtp + ig(Audy + Ay Y

+ig(0uAV)Y
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= (DuDy — DyDy)Y = ig(3uAy — ALY = ig(Fu) ¥
From [(DyDy — DyDy)9)'~"*(DyDy — DuDy)§p = Fjy = Fuy

Thus the Lagrangian of the form
ik i T 1 w
L= Piy" (9 + ighAp)p — mPyp — ZF,,,,F
is invariant under gauge transformation

P(x) = Hy(x)

Ap(x) = AL(x) = Ap(x) — éaﬂzx(x)

Remarks:

(1) Ay A term is not gauge invariant = field massless.
@ Duyp = (9, + igAy)p = minimal coupling determined by U(1) transformation universality.
© no gauge self coupling because Ay does not carry U(1) charge.
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Non-Abelian symmetry-Yang Mills fields
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symm.

Consider an isospin doublet
_( ¥ )
Y ( v,

Under SU(2) transformation

IT2.6}¢(X) T = (11, T2, T3) Pauli matrices

Y(x) = ¢/ (x) = exp{-

T Tj . TR
5 21 = iew(F)

Start with free Lagrangian
Lo = p()(ir"y — m)y

Under local symmetry transformation,

P(x) = 9/ (x) = U@O)p(x) U®B) = exp{_@}

Derivative term

Aup(x) —= ' (x) = Udyuyp + (3, U)y
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Introduce gauge fields A;A to form covariant derivative,

T
D],t,b(x) = (8,4 —ig 2
Require that

=

[Du) = VD] = (3 — ig—52-) (Ug) = U@, — ig

=/

or —ig(

A 7-A .
KV +0,U = U(—ig— 1) | B = uEut - L)

We can use covariant derivatives to construct field tensor

5

L T-A CT-A Z.A A
DyDyyp = (3 — ig———1)(3y — ig ")47:3u3v¢—/g(7"avzp+ Ya,)
7-A AL TA,
~igau (T + (i (L (T
Antisymmetrization
_T-Fy -Fw 7 o » A, A
(DyDy = DD = ig(—5 =) —5 = 5 - (A — A — gl — ]
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20 / 31



or F;;V = BMA{; — E)VAL +geUkALA5 — new term

under gauge transformation.
o L 1
T-Fyv =U@Fuv)U

Infinitesmal transformation 6(x) < 1

AlE = Ar  elikgi AK — Lo0
g

i i ik pj £k
Fii = Fl, + €™/ F,

Remarks

Q Again A;Aa?‘ is not gauge invariant=-gauge boson massless=-long range force

Q Aj, carries that symmetry charge (e.g. color —)

(Institute) Note 8
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Fe¥ ~ dA — dA + gAA — term responsible for Asymptotic freedom.
Maxwell Equation

€0
- - 0B 1o = 9 -
V X E+ =0, —VxB=¢—+J
ot Ho
Source free equations can be solved
= - 9A
B=VxA,K6 = V(E+§)70
I a’a v v v if ijk o\ i
E:—V(p—; oHAY — VAl = FH FY ~e"B, F' ~E
Gauge invariance
Ju =

¢ — ¢ 3% A— A4V
Al = (f A) AP - AF — Jt
C

Schrodinger Eq for a charged particle

9%

1 he .
TV eA)? 7e¢]1,b:l'hat

5 (

2m

(Institute) Note 8

22 /31



To get gauge invariance, need to transform ¢

l/J _ eieoc/‘hlp

(Institute) Note 8




Spontaneous symmetry breaking

Spontaneous symmetry breaking—-ground state does not have the symmetry of the Hamiltonian

=If the symmetry is continuous one, there will be massless scalar fields
Example:ferromagnetism

T > T(Curie temp) all dipoles are randomly oriented-rotational invariant
T < Tc.all dipoles are oriented in some direction

Ginzburgh-Landau theory

Free energy as function of magnetization m (averaged)

(M) = (3:M)? + ar (TYM - M + ap (M - )2
>0, a(T)=a(T-Tc) a>0
ground state M (ay + 2ayM - M) =0

T > T. only solution is M = 0
T < T, non-trivial sol |M| = 4,/AL =0

2ay

= ground state with M in some direction is no longer rotational invariant.

Nambu-Goldstone theorem:
Noether’s theorem: continuous symmetry — conserved charge Q
Suppose there are 2 local operator A, B with property

Q.B]=A Q= /d3 X jo(x) indep of time

(Institute) Note 8
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Suppose (0|A[0) = V # 0 (symmetry breaking condition)
= 0#(0][@. B])) = [ & x (Olli(x), BJ][0)

= Y. (27)°6*(Pa){(0L)o(0)|m)(n| BJ0)e "t — (n|B[0)(0Ljo (0) | m)e ™"} = U

n

Since U—0 and time-independent, we need to a state such that
E,—0 for P,=0
massless excitation. For the case of relativistic particle with energy momentum rotation

E = v/ P2 4+ m? this implies massless particle- Goldstone boson.
Discrete symmetry case

2
$ = %(awp)2 - Lo %4%‘ ¢ — —¢ symmetry

The Hamiltonian density

(%0¢)* + ( V)’ + Ph + 4’

M\»—x

Effective energy

1 V vV 7]"2 2 4
K@) = S0P V@) . Vo) =Bty
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—2
For y2 < 0 the ground state has ¢ = £/ Tﬂ classically. This means the quantum ground state
|0) will have the property

(0|¢|0) =v # 0 symmetry breaking condition
Define quantum field ¢’ by ¢/ = ¢ — v

A

then  § — (8,,47’2 B (7]12)4)/2 _ AV¢/3 _ Zq)m

N =

No Goldstone boson—-discrete symmetry
Abelian symmetry case

§ = 2@ + @) - V(o> + %)

2
with V(0 + %) = —%(02 + %) + %(02 + 72)?

o o’ cosax  sina o
0(2) symmetry ( ﬂ)ﬂ< Fd ):< —sina cosoc)( 7r>
W 2

minimum  o?+ 1= =y circle in o — 71t plane

A

For convenience choose (0|c|0) =v  (0|x]|0) =0
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New quantum field o =c—v , n’'=n
1 A
New Lagrangian $ = 5[(8,,0/2 + (9um)?] — p20” — Ao (07 + 7?) — Z(U/2 + 72?2 0(2)

no 7’2 term, = 7’ massless Goldstone boson
Non-Abelian case- omodel

1 _ = oL o
$= 5[(a,,a/2 + (3,7)2) + Nin* N + gN (0 + itau - 7tys )N — V(02 + 72) + (frm20)

minimum  o® + 7 =% =

choose (0)=v , ()=

Then 7 are Goldstone bosons.
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Higgs Phenomena

When we combine spontaneous symmetry breaking with local symmetry, a very interesting
phenomena occurs. This was discovered in the 60’s by Higgs, Englert & Brout, Guralnik, Hagen
& Kibble independently.

Abelian case

Consider the Lagrangian given by

$ = (Dugp)" (DFp) + p?¢? — A(9p"9)? ~F;WF”

where  DF¢ = (o' —igA")p . Fu = 9,A, — A

The Lagrangian is invariant under the local gauge transformation
9(x) = ¢/~ p(x)
, 1
Au(x) = Ay(x) = Au(x) — ana(x)
The spontaneous symm. breaking is generated by the potential

V() =12 o+ A (9T 9)

which has a minimum at
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For the quantum theory, we can choose

v

[(0]¢[0)]

N

Or if we write 1
¢ = %(% +ig,)

this corresponds to
(1) =v . (¢,) =0 ¢, : Goldstone boson

Define the quantum fields by
P=¢r—v . =9

Covariant derivative terms gives

(D)™ (D"¢) = [(0y + igA)p " 1[(9" — igA")g]

-1 1 292
7(3;44?/1 +gAV¢IQ)2 + 5(3;447/2 - gA;,(p/1)2 + gTA"AV + -+ mass terms forA!

Write the scalar field as 1
P(x) = 7 (v +7(x))et7v
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"Gauge" transformation:

1
— 3,8

1—ié(x)/v — _
¢ P(x) , Bu=Au(x) 2v

&(x)disappears from the Lagrangian

Roughly speaking, massless gauge field A, combine with Goldstone boson

&(x) to become massive gauge boson. As a consequence, two long range forces (from Goldstone
boson ¢(x) and Ay(x)) disappear.

Non-Abelian case

SU(2) group: ¢ = ( gl ) doublet
2
1
$= (DM¢)+(DV¢) - V(‘P) - ZF;WFW ' F;u/ = ayAv _aVAy

V(p) = =1’ (¢7¢) + A9t 9)?

Spontaneous symmetry breaking:

Define ¢/ = ¢ — (¢)o

(Institute) Note 8



From covariant derivative

(D) (D40) = 3y — ig L (g + (p)o)] 0% — i L 0+ (gl

— 8 Po(t AT AN (9)o = 5 (fracgr2)?y - A

All gauge bosons get masses

The symmetry is completely broken.

IT 0
Write  ¢(x) = exp{ (:( )}< v (x) )
V2

"gauge" transformation

f'll
U‘ﬂl

where  U(x) = exp{—}
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