Quantum Field Theory

Ling-Fong Li

National Center for Theoretical Science

Group Theory

The tool for studying symmetry is the group theory. Will give a simple discussion Elements of group theory
group G :collection of elements (a, b, c…) with a multiplication laws satisfies;
(1) Closure. If $a, b \in G, c=a b \in G$
(2) Associative $a(b c)=(a b) c$
(3) Identity

$$
\exists e \in G \quad \ni \quad a=e a=a e \quad \forall a \in G
$$

(4) Inverse For every $a \in G, \exists a^{-1} \ni a a^{-1}=e=a^{-1} a$

Examples

(1) Abelian group -- group multiplication commutes, i.e. $a b=b a \quad \forall a, b \in G$ e.g. cyclic group of order n, Z_{n}, consists of $a, a^{2}, a^{3}, \cdots, a^{n}=E$
(2) Orthogonal group —— $n \times n$ orthogonal matrices, $R R^{T}=R^{T} R=1, R: n \times n$ matrix e. g. the matrices representing rotations in 2-dimesions,

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(3) Unitary group -—— $n \times n \quad$ unitary matrices,

Built larger groups from smaller ones by direct product:
Direct product group -- Given two groups, $G=\left\{g_{1}, g_{2} \cdots\right\}, \quad H=\left\{h_{1}, h_{2} \cdots\right\}$ define a direct product group is defined as $G \times H=\left\{g_{i} h_{j}\right\}$ with multiplication law

$$
\left(g_{i} h_{j}\right)\left(g_{m} h_{n}\right)=\left(g_{i} g_{m}\right)\left(h_{j} h_{n}\right)
$$

Theory of Representation

group $G=\left\{g_{1} \cdots g_{n} \cdots\right\}$. If for each group element $g_{i} \rightarrow D\left(g_{i}\right), n \times n$ matrix such that

$$
D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{1} g_{2}\right) \quad \forall g_{1}, g_{2} \in G
$$

then $D^{\prime} s$ a representation of the group G (n -dimensional representation). If a non-singular matric M such that matrices can be transformed into block diagonal form,

$$
M D(a) M^{-1}=\left(\begin{array}{ccc}
D_{1}(a) & 0 & 0 \\
0 & D_{2}(a) & 0 \\
0 & 0 & \ddots
\end{array}\right) \quad \text { for all } a \in G .
$$

$D(a)$ is called reducible representation. Otherwiseit is irreducible representation (irrep) Continuous group: groups parametrized by continuous parameters Example: Rotations in 2-dimensions can be parametrized by $0 \leq \theta<2 \pi$

SU(2) group

Set of 2×2 unitary matrices with determinant 1 is called $S U(2)$ group.
In general, $n \times n$ unitary matrix U can be written as

$$
U=e^{i H} \quad H: n \times n \text { hermitian matrix }
$$

From

$$
\begin{gathered}
\operatorname{det} U=e^{i T r H} \\
\operatorname{Tr} H=0 \quad \text { if } \quad \operatorname{det} U=1
\end{gathered}
$$

Thus $n \times n$ unitary matrices U can be written in terms of $n \times n$ traceless Hermitian matrices.

Note that Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

complete set of 2×2 hermitian traceless matrices.
Define $J_{i}=\frac{\sigma_{i}}{2}$ then

$$
\left[J_{1}, J_{2}\right]=i J_{3}, \quad\left[J_{2}, J_{3}\right]=i J_{1}, \quad\left[J_{3}, J_{1}\right]=i J_{2}
$$

Lie algebra of $S U(2)$ symmetry. exactly the same as commutators of angular momentum. to construct the irrep of $S U(2)$ algebra, define

$$
J^{2}=J_{1}^{2}+J_{2}^{2}+J_{2}^{3}, \text { with property }\left[J^{2}, J_{i}\right]=0, \quad i=1,2,3
$$

Also define

$$
J_{ \pm} \equiv J_{1} \pm i J_{2} \quad \text { then } \quad J^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{3}^{2} \quad \text { and } \quad\left[J_{+}, J_{-}\right]=2 J_{3}
$$

choose simultaneous eigenstates of J^{2}, J_{3},

$$
J^{2}|\lambda, m\rangle=\lambda|\lambda, m\rangle \quad, \quad \lambda_{3}|\lambda, m\rangle=m|\lambda, m\rangle
$$

From

$$
\left[J_{+}, J_{3}\right]=-J_{+}
$$

we get

$$
\left(J_{+} J_{3}-J_{3} J_{+}\right)|\lambda, m\rangle=-J_{+}|\lambda, m\rangle
$$

Or

$$
J_{3}\left(J_{+}|\lambda, m\rangle\right)=(m+1)\left(J_{+}|\lambda, m\rangle\right)
$$

Thus J_{+}is called raising operator. Similarly, J_{-}lowers m to $m-1$,

$$
J_{3}\left(J_{-}|\lambda, m\rangle\right)=(m-1)\left(J_{-}|\lambda, m\rangle\right)
$$

Since

$$
J^{2} \geq J_{3}^{2}, \quad \lambda-m^{2} \geq 0
$$

m is bounded above and below. Let j be the largest value of m, then

$$
J_{+}|\lambda, j\rangle=0
$$

Then

$$
0=J_{-} J_{+}|\lambda, j\rangle=\left(J_{3}^{2}-J_{3}^{2}-J_{3}\right)|\lambda, j\rangle=\left(\lambda-j^{2}-j\right)|\lambda, j\rangle
$$

and

$$
\lambda=j(j+1)
$$

Similarly, let j^{\prime} be the smallest value of m, then

$$
J_{-}\left|\lambda, j^{\prime}\right\rangle=0 \quad \lambda=j^{\prime}\left(j^{\prime}-1\right)
$$

Combining these 2 ,

$$
j(j+1)=j^{\prime}\left(j^{\prime}-1\right) \Rightarrow j^{\prime}=-j \quad \text { and } \quad j-j^{\prime}=2 j=\text { integer }
$$

use j, m to label the states. Assume the states are normalized,

$$
\left\langle j m \mid j m^{\prime}\right\rangle=\delta_{m m^{\prime}} \quad \text { Write } \quad J_{ \pm}|j m\rangle=C_{ \pm}(j m)|j, m \pm 1\rangle
$$

Then

$$
\langle j m| J_{-} J_{+}|j m\rangle=\left|C_{+}(j, m)\right|^{2} \rightarrow
$$

$$
=\langle j, m|\left(J^{2}-J_{3}^{2}-J_{3}\right)|j m\rangle=j(j+1)-m^{2}-m \quad \Rightarrow \quad C_{+}(j, m)=\sqrt{(j-m)(j+m+1)}
$$

Similarly

$$
C_{-}(j, m)=\sqrt{(j+m)(j-m+1)}
$$

Summary: eigenstates $|j m\rangle$ have the properties

$$
\left.J_{3}|j, m\rangle=m|j, m\rangle \quad J_{ \pm}|j, m\rangle=\sqrt{(j \mp m)(j \pm m+1)}|j m \pm 1\rangle \quad, \quad J^{2}|j, m\rangle=j(j+1) j m\right\rangle
$$

$J|j, m\rangle, m=-j,-j+1, \cdots, j$ are the basis for irreducible representation of $\mathrm{SU}(2)$ group. From these relations we can construct the representation matrices.
Example: $j=\frac{1}{2}, \quad m= \pm \frac{1}{2}$

$$
\begin{aligned}
J_{3} & =\left\lvert\, \frac{1}{2}\right., \pm \frac{1}{2}\left\langle\left.= \pm \frac{1}{2} \right\rvert\, \frac{1}{2}, \pm \frac{1}{2}\right\rangle \\
J_{+}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=0 \quad, \quad J_{+} \left\lvert\, \frac{1}{2}\right.,-\frac{1}{2} & \left.=\left|\frac{1}{2}, \frac{1}{2}\right\rangle, \quad J_{-}\left|\frac{1}{2}, \frac{1}{2}=\right| \frac{1}{2},-\frac{1}{2}\right\rangle, \quad J_{-}\left|\frac{1}{2},-\frac{1}{2}\right\rangle=0
\end{aligned}
$$

If we write

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\alpha=\binom{1}{0} \quad\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\beta=\binom{0}{1}
$$

Then we can represent $J^{\prime} s$ by matrices,

$$
\begin{gathered}
J_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad J_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad J_{-}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \\
J_{1}=\frac{1}{2}\left(J_{+}+J_{-}\right)=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad J_{2}=\frac{1}{2 i}\left(J_{+}-J_{-}\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{gathered}
$$

Within a factor of $\frac{1}{2}$, these are just Pauli matrices

Product representation

Let α be the spin-up and β the spin-down states. Then for 2 spin $\frac{1}{2}$ particles, the total wavefunction is product of wavefunctions of the form, $\alpha_{1} \alpha_{2}, \alpha_{1} \beta_{2} \ldots$
Define $\vec{\jmath}^{(1)}$ acts only on particle 1 and $\vec{\jmath}^{(2)}$ acts only on particle 2 .

$$
\vec{\jmath}=\vec{\jmath}^{(1)}+\vec{\jmath}^{(2)}
$$

Use

$$
J_{3}=J_{3}^{(1)}+J_{3}^{(2)} \quad, \quad J_{3}\left(\alpha_{1} \alpha_{2}\right)=\left(J_{3}^{(1)}+J_{3}^{(2)}\right)\left(\alpha_{1} \alpha_{2}\right)=\left(\alpha_{1} \alpha_{2}\right)
$$

from

$$
\begin{aligned}
& \vec{\jmath}^{2}=\left(\vec{\jmath}^{(1)}+\vec{\jmath}^{(2)}\right)^{2}=\left(\vec{J}^{(1)}\right)^{2}+\left(\vec{\jmath}^{(2)}\right)^{2}+2\left[\frac{1}{2}\left(J_{+}^{(1)} J_{-}^{(2)}+J_{-}^{(1)} J_{+}^{(2)}+J_{3}^{(1)} J_{3}^{(2)}\right]\right. \\
& \vec{\jmath}^{2}\left(\alpha_{1} \alpha_{2}\right)=\left(\frac{3}{4}+\frac{3}{4}+\frac{2}{4}\right)\left|\alpha_{1} \alpha_{2}\right\rangle=2\left|\alpha_{1} \alpha_{2}\right\rangle \Rightarrow j=1 \text { state }|1,1\rangle=\alpha_{1} \alpha_{2}
\end{aligned}
$$

To get other $j=1$ states, we can use the lowering operator

$$
J_{-}\left(\alpha_{1} \alpha_{2}\right)=\left(J_{-}^{(1)}+J_{-}^{(2)}\right)\left(\alpha_{1} \alpha_{2}\right)=\left(\beta_{1} \alpha_{2}+\alpha_{1} \beta_{2}\right)
$$

On the other hand

$$
J_{-}\left(\alpha_{1} \alpha_{2}\right)=J_{-}|11\rangle=\sqrt{(1+1)(1-1+1)}|1,0\rangle=\sqrt{2}|1,0\rangle
$$

$$
\Rightarrow \quad|1,0\rangle=\frac{1}{\sqrt{2}}\left(\beta_{1} \alpha_{2}+\alpha_{1} \beta_{2}\right)
$$

Clearly $\quad|1,0\rangle=\beta_{1} \beta_{2}$ The The only state left-over is

$$
\frac{1}{\sqrt{2}}\left(\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right) \Rightarrow|0,0\rangle \text { state }
$$

Summary:
(1) Among the generator only J_{3} is diagonal, - $\mathrm{SU}(2)$ is a rank-1 group
(2) Irreducible representation is labeled by j and the dimension is $2 j+1$
(3) Basis states $|j, m\rangle m=j, j-1 \cdots(-j)$ representation matrices can be obtained from

$$
J_{3}|j, m\rangle=m|j, m\rangle \quad J_{ \pm}|j, m\rangle=\sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle
$$

SU(2) and rotation group

The generators of $\operatorname{SU}(2)$ group are Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let $\vec{r}=(x, y, z)$ be arbitrary vector in R_{3} (3 dimensional coordinate space). Define a 2×2 matrix h by

$$
h=\vec{\sigma} \cdot \vec{r}=\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)
$$

h has the following properties
(1) $h^{+}=h$
(2) Trh $=0$
(3) $\operatorname{det} h=-\left(x^{2}+y^{2}+z^{2}\right)$

Let U be a 2×2 unitary matrix with $\operatorname{det} U=1$. Consider the transformation

$$
h \rightarrow h^{\prime}=U h U^{+}
$$

Then we have
(1) $h^{\prime+}=h^{\prime}$
(2) $T r h^{\prime}=0$
$\operatorname{det} h^{\prime}=\operatorname{det} h$

Properties (1)\&(2) imply that h^{\prime} can also be expanded in terms of Pauli matrices

$$
\begin{aligned}
h^{\prime} & =\vec{r}^{\prime} \cdot \vec{\sigma} \vec{r}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
\operatorname{det} h^{\prime}=\operatorname{det} h & \Rightarrow x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Thus relation between \vec{r} and \vec{r}^{\prime} is a rotation. This means that an arbitrary 2×2 unitary matrix U induces a rotation in R3. This provides a connection between $S U(2)$ and $O(3)$ groups.

Rotation group \& QM

Rotation in R_{3} can be represented as linear transformations on

$$
\vec{r}(x, y, z)=\left(r_{1}, r_{2}, r_{3}\right) \quad, \quad r_{i} \rightarrow r_{i}^{\prime}=R_{i j} X_{j} \quad R R^{T}=1=R^{T} R
$$

Consider an arbitary function of coordinates, $f(\vec{r})=f(x, y, z)$. Under the rotation, the change in f

$$
f\left(r_{i}\right) \rightarrow f\left(R_{i j} r_{j}\right)=f^{\prime}\left(r_{i}\right)
$$

If $f=f^{\prime}$ we say f is invariant under rotation, eg $f\left(\gamma_{i}\right)=f(\gamma), \gamma=\sqrt{x^{2}+y^{2}+z^{2}}$ In QM, we implement the rotation by

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle, \quad O \rightarrow O^{\prime}=U O U^{+}
$$

so that

$$
\Rightarrow\left\langle\psi^{\prime}\right| O^{\prime}\left|\psi^{\prime}\right\rangle=\langle\psi| O|\psi\rangle
$$

If $O^{\prime+}=O$, we say the operator O is invariant under rotation

$$
\rightarrow \quad U O=O U \quad[O, U]=0
$$

In terms of infinitesimal generators

$$
U=e^{-i \theta \cdot n \cdot J / \hbar}
$$

this implies $\left[J_{i}, O\right]=0, i=1,2,3$. For the case where O is the Hamiltonian H, this gives $\left[J_{i}, H\right]=0$.

Let $|\psi\rangle$ be an eigenstate of H with eigenvaule E,

$$
\begin{gathered}
H|\psi\rangle=E|\psi\rangle \\
\text { then } \quad\left(J_{i} H-H J_{i}\right)|\psi\rangle=0 \Rightarrow H\left(J_{i}|\psi\rangle\right)=E\left(J_{i}|\psi\rangle\right)
\end{gathered}
$$

i.e $\quad|\psi\rangle \& J_{i}|\psi\rangle$ are degenerate. For example, let $|\psi\rangle=|j, m\rangle$ the eigenstates of angular momentum, then $J_{ \pm}|j . m\rangle$ are also eigenstates if $|\psi\rangle$ is eigenstate of H . This means for a given j, the degeneracy is $(2 j+1)$.

Gauge Theory

Abelian gauge theory (QED)
Maxwell Equation

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \quad, \quad \vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0, \frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\vec{\jmath}
\end{gathered}
$$

Source free equations can be solved

$$
\begin{gathered}
\vec{B}=\nabla \times \vec{A}, \quad \Rightarrow \nabla\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0 \\
\vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t} \quad \partial^{\mu} A^{v}-\partial^{v} A^{\mu}=F^{\mu v} \quad F^{i j} \sim \epsilon^{i j k} B_{h} \quad F^{0 i} \sim E^{i}
\end{gathered}
$$

Gauge invariance

$$
\begin{aligned}
\phi & \rightarrow \phi-\frac{\partial \alpha}{\partial t} \quad \vec{A} \\
A^{\mu} & \rightarrow\left(\frac{\phi}{c}, \vec{A}+\vec{\nabla} \alpha\right. \\
A^{\mu} & \rightarrow A^{\mu}-\partial^{\mu} \alpha
\end{aligned}
$$

Schrodinger Equation for a charged particle

$$
\left[\frac{1}{2 m}\left(\frac{\hbar}{i} \vec{\nabla}-e \vec{A}\right)^{2}-e \phi\right] \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

To get gauge invariance, need to transform ψ

$$
\psi \rightarrow e^{i e \alpha / \hbar} \psi
$$

Consider the Lagrangian for a free electron field $\psi(x)$

$$
\mathcal{L}_{0}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)
$$

This has global $U(1)$ symmetry,

$$
\begin{gathered}
\psi(x) \rightarrow \psi^{\prime-i \alpha} \psi(x) \quad \alpha: \text { constant } \\
\bar{\psi}(x) \rightarrow \bar{\psi}^{\prime}(x)=\bar{\psi}(x) e^{i \alpha}
\end{gathered}
$$

Suppose

$$
\alpha=\alpha(x) \quad \psi^{\prime-i \alpha(x)} \psi(x) \quad, \quad \bar{\psi}^{\prime}(x)=\bar{\psi}(x) e^{i \alpha(x)}
$$

transformation of derivative

$$
\bar{\psi}(x) \partial_{\mu} \psi(x) \rightarrow \bar{\psi}^{\prime}(x) \partial_{\mu} \psi^{\prime}(x)=\bar{\psi}(x) \partial_{\mu} \psi(x)-i\left(\partial_{\mu} \alpha\right)(\bar{\psi} \psi) \quad \text { not invariant }
$$

Introduce gauge field $A_{\mu}(x)$ to form covariant derivative

$$
D_{\mu} \psi \equiv\left(\partial_{\mu}+i g A_{\mu}\right) \psi(x)
$$

So that $D_{\mu} \psi$ transforms by a phase,

$$
\left(D_{\mu} \psi\right)^{\prime}=e^{-i \alpha(x)}\left(D_{\mu} \psi\right)
$$

This requires that

$$
\begin{gathered}
\left(\partial_{\mu}+i g A_{\mu}^{\prime}\right) \psi^{\prime-i \alpha}\left(\partial_{\mu}+i g A_{\mu}\right) \psi \quad e^{-i \alpha}\left[\partial_{\mu} \psi+i\left(\partial_{\mu} \alpha\right) \psi+i g A_{\mu}^{\prime} \psi\right] \\
\Rightarrow \quad A_{\mu}^{\prime}=A_{\mu}-\frac{1}{g} \partial_{\mu} \alpha
\end{gathered}
$$

Then

$$
\$_{0} \rightarrow \bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

is invariant under local symmetry transformation (local symmetry) The Lagrangian for gauge field is of the form,

$$
\$_{4}=-\frac{1}{4} F_{\mu v} F^{\mu v} \quad F_{\mu v}=\partial_{\mu} A_{v}-\partial_{\nu} A_{\mu} \quad \text { invariant }
$$

One useful relation is to write $F_{\mu v}$ in terms of covariant derivative,

$$
\begin{gathered}
D_{\mu} D_{v} \psi=\left(\partial_{\mu}+i g A_{\mu}\right)\left(\partial_{v}+i g A_{v}\right) \psi=\partial_{\mu} \partial_{v} \psi-g^{2} A_{\mu} A_{v} \psi+i g\left(A_{\mu} \partial_{v}+A_{\nu} \partial_{\mu}\right) \psi \\
+i g\left(\partial_{\mu} A_{v}\right) \psi
\end{gathered}
$$

$$
\begin{aligned}
& \quad \Rightarrow \quad\left(D_{\mu} D_{v}-D_{v} D_{\mu}\right) \psi=i g\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right) \psi=i g\left(F_{\mu v}\right) \psi \\
& \text { From }\left[\left(D_{\mu} D_{v}-D_{v} D_{\mu}\right) \psi\right]^{\prime-i \alpha}\left(D_{\mu} D_{v}-D_{v} D_{\mu}\right) \psi \Rightarrow F_{\mu v}^{\prime}=F_{\mu v}
\end{aligned}
$$

Thus the Lagrangian of the form

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi-m \bar{\psi} \psi-\frac{1}{4} F_{\mu v} F^{\mu v}
$$

is invariant under gauge transformation

$$
\begin{gathered}
\psi(x) \rightarrow \psi^{\prime-i \alpha(x)} \psi(x) \\
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)-\frac{1}{g} \partial_{\mu} \alpha(x)
\end{gathered}
$$

Remarks:
(1) $A_{\mu} A^{\mu}$ term is not gauge invariant \Rightarrow field massless.
(2) $D_{\mu} \psi=\left(\partial_{\mu}+i g A_{\mu}\right) \psi \Rightarrow$ minimal coupling determined by $\mathrm{U}(1)$ transformation universality.
(3) no gauge self coupling because A_{μ} does not carry $\mathrm{U}(1)$ charge.

Non-Abelian symmetry-Yang Mills fields
1954: Yang-Mills generalized $U(1)$ local symmetry to $\mathrm{SU}(2)$ local symm.
Consider an isospin doublet

$$
\psi=\binom{\psi_{1}}{\psi_{2}}
$$

Under SU(2) transformation

$$
\begin{gathered}
\psi(x) \rightarrow \psi^{\prime}(x)=\exp \left\{-\frac{i \vec{\tau} \cdot \vec{\theta}}{2}\right\} \psi(x) \quad \vec{\tau}=\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \text { Pauli matrices } \\
{\left[\frac{\tau_{i}}{2}, \frac{\tau_{j}}{2}\right]=i \epsilon_{i j k}\left(\frac{\tau_{R}}{2}\right)}
\end{gathered}
$$

Start with free Lagrangian

$$
\mathcal{L}_{0}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

Under local symmetry transformation,

$$
\psi(x) \rightarrow \psi^{\prime}(x)=U(\theta) \psi(x) \quad U(\theta)=\exp \left\{-\frac{i \vec{\tau} \theta \overrightarrow{(x})}{2}\right\}
$$

Derivative term

$$
\partial_{\mu} \psi(x) \rightarrow \partial_{\mu} \psi^{\prime}(x)=U \partial_{\mu} \psi+\left(\partial_{\mu} U\right) \psi
$$

Introduce gauge fields $\overrightarrow{A_{\mu}}$ to form covariant derivative,

$$
D_{\mu} \psi(x) \equiv\left(\partial_{\mu}-i g \frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right) \psi
$$

Require that

$$
\begin{gathered}
{\left[D_{\mu} \psi\right]^{\prime}=U\left[D_{\mu} \psi\right] \Rightarrow\left(\partial_{\mu}-i g \frac{\vec{\tau} \cdot \vec{A}_{\mu}{ }^{\prime}}{2}\right)(U \psi)=U\left(\partial_{\mu}-i g \frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right) \psi} \\
\text { or }-i g\left(\frac{\vec{\tau} \cdot \vec{A}_{\mu}^{\prime}}{2}\right) U+\partial_{\mu} U=U\left(-i g \frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right) \quad \frac{\vec{\tau} \cdot \overrightarrow{\vec{\mu}_{\mu}^{\prime}}}{2}=U\left(\frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right) U^{-1}-\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1}
\end{gathered}
$$

We can use covariant derivatives to construct field tensor

$$
\begin{gathered}
D_{\mu} D_{\nu} \psi=\left(\partial_{\mu}-i g \frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right)\left(\partial_{v}-i g \frac{\vec{\tau} \cdot \overrightarrow{A_{v}}}{2}\right) \psi=\partial_{\mu} \partial_{\nu} \psi-i g\left(\frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2} \partial_{\nu} \psi+\frac{\vec{\tau} \cdot \overrightarrow{A_{v}}}{2} \partial_{\mu} \psi\right) \\
-i g \partial_{\mu}\left(\frac{\vec{\tau} \cdot \overrightarrow{A_{v}}}{2}\right) \psi+(-i g)^{2}\left(\frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}\right)\left(\frac{\vec{\tau} \cdot \overrightarrow{A_{v}}}{2}\right) \psi
\end{gathered}
$$

Antisymmetrization

$$
\left(D_{\mu} D_{v}-D_{v} D_{\mu}\right) \psi \equiv i g\left(\frac{\vec{\tau} \cdot \overrightarrow{F_{\mu v}}}{2}\right) \psi \quad \frac{\vec{\tau} \cdot \overrightarrow{F_{\mu v}}}{2}=\frac{\vec{\tau}}{2} \cdot\left(\partial_{\mu} \overrightarrow{A_{v}}-\partial_{v} \overrightarrow{A_{\mu}}\right)-i g\left[\frac{\vec{\tau} \cdot \overrightarrow{A_{\mu}}}{2}, \frac{\vec{\tau} \cdot \overrightarrow{A_{v}}}{2}\right]
$$

$$
\text { or } \quad F_{\mu \nu}^{i}=\partial_{\mu} A_{v}^{i}-\partial_{\nu} A_{\mu}^{i}+\underline{g \epsilon^{i j k} A_{\mu}^{i} A_{v}^{k}} \rightarrow \text { new term }
$$

under gauge transformation.

$$
\vec{\tau} \cdot \overrightarrow{F_{\mu}} v^{\prime}=U\left(\vec{\tau} \cdot \overrightarrow{\mu_{\mu}} v\right) U^{-1}
$$

Infinitesmal transformation $\theta(x) \ll 1$

$$
\begin{gathered}
A^{i / \mu}=A^{\mu}+\epsilon^{i j k} \theta^{j} A_{\mu}^{k}-\frac{1}{g} \partial_{\mu} \theta^{i} \\
F_{\mu v}^{\prime i}=F_{\mu v}^{i}+\epsilon^{i j k} \theta^{j} F_{\mu v}^{k}
\end{gathered}
$$

Remarks
(1) Again $A_{\mu}^{a} A^{a \mu}$ is not gauge invariant \Rightarrow gauge boson massless \Rightarrow long range force
(2) A_{μ}^{a} carries that symmetry charge (e.g. color -)
$F^{a \mu \nu} \sim \partial A-\partial A+g A A \rightarrow$ term responsible for Asymptotic freedom.
Maxwell Equation

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \quad, \quad \vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0, \frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}=\epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\vec{J}
\end{gathered}
$$

Source free equations can be solved

$$
\begin{gathered}
\vec{B}=\nabla \times \vec{A}, \quad \Rightarrow \nabla\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0 \\
\vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t} \quad \partial^{\mu} A^{v}-\partial^{v} A^{\mu}=F^{\mu v} \quad F^{i j} \sim \epsilon^{i j k} B_{h} \quad F^{0 i} \sim E^{i}
\end{gathered}
$$

Gauge invariance

$$
\begin{aligned}
\phi & \rightarrow \phi-\frac{\partial \alpha}{\partial t} \quad \vec{A} \\
A^{\mu} & =\left(\frac{\phi}{c}, \vec{A}+\vec{\nabla} \alpha \quad A^{\mu} \rightarrow A^{\mu}-\partial^{\mu} \alpha\right.
\end{aligned}
$$

Schrodinger Eq for a charged particle

$$
\left[\frac{1}{2 m}\left(\frac{\hbar}{i} \vec{\nabla}-e \vec{A}\right)^{2}-e \phi\right] \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

To get gauge invariance, need to transform ψ

$$
\psi \rightarrow e^{i e \alpha / \hbar} \psi
$$

Spontaneous symmetry breaking

Spontaneous symmetry breaking--ground state does not have the symmetry of the Hamiltonian \Rightarrow If the symmetry is continuous one, there will be massless scalar fields
Example:ferromagnetism
$\bar{T}>T_{c}$ (Curie temp) all dipoles are randomly oriented-rotational invariant
$T<T_{c}$ all dipoles are oriented in some direction
Ginzburgh-Landau theory
Free energy as function of magnetization \vec{m} (averaged)

$$
\begin{gathered}
\mu(\vec{M})=\left(\partial_{t} \vec{M}\right)^{2}+\alpha_{1}(T) \vec{M} \cdot \vec{M}+\alpha_{2}(\vec{M} \cdot \vec{M})^{2} \\
\alpha_{2}>0, \quad \alpha_{1}(T)=\alpha\left(T-T_{c}\right) \quad \alpha>0 \\
\text { ground state } \quad \vec{M}\left(\alpha_{1}+2 \alpha_{2} \vec{M} \cdot \vec{M}\right)=0
\end{gathered}
$$

$T>T_{c}$ only solution is $\vec{M}=0$
$T<T_{c}$ non-trivial sol $|\vec{M}|=+\sqrt{\frac{\alpha_{1}}{2 \alpha_{2}}} \neq 0$
\Rightarrow ground state with \vec{M} in some direction is no longer rotational invariant.
Nambu-Goldstone theorem:
Noether's theorem: continuous symmetry \longrightarrow conserved charge Q
Suppose there are 2 local operator A, B with property

$$
[Q, B]=A \quad Q=\int d^{3} \times j_{0}(x) \quad \text { indep of time }
$$

Suppose $\langle 0| A|0\rangle=V \neq 0$ (symmetry breaking condition)

$$
\begin{gathered}
\Rightarrow 0 \neq\langle 0|[Q, B]| \rangle=\int d^{3} \times\langle O|\left[j_{0}(x), B J\right]|0\rangle \\
=\sum_{n}(2 \pi)^{3} \delta^{3}\left(\vec{P}_{n}\right)\left\{\langle 0| j_{0}(0)|n\rangle\langle n| B|0\rangle e^{-i E_{n} t}-\langle n| B|0\rangle\langle 0| j_{0}(0)|n\rangle e^{-i E_{n} t}\right\}=U
\end{gathered}
$$

Since $U \neg 0$ and time-independent, we need to a state such that

$$
E_{n} \rightarrow 0 \text { for } \vec{P}_{n}=0
$$

massless excitation. For the case of relativistic particle with energy momentum rotation $E=\sqrt{\vec{P}^{2}+m^{2}}$ this implies massless particle- Goldstone boson.
Discrete symmetry case

$$
\$=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{\mu^{2}}{2} \phi^{2}-\frac{\lambda}{4} \phi^{4} \quad \phi \rightarrow-\phi \text { symmetry }
$$

The Hamiltonian density

$$
H=\frac{1}{2}\left(\partial_{0} \phi\right)^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+\frac{\mu^{2}}{2} p h i^{2}+\frac{\lambda}{4} \phi^{4}
$$

Effective energy

$$
\mu(\phi)=\frac{1}{2}(\vec{\nabla} \phi)^{2}+V(\phi) \quad, \quad V(\phi)=\frac{\mu^{2}}{2} \phi^{2}+\frac{\lambda}{4} \phi^{4}
$$

For $\mu^{2}<0$ the ground state has $\phi= \pm \sqrt{\frac{-\mu^{2}}{\lambda}}$ classically. This means the quantum ground state $|0\rangle$ will have the property

$$
\langle 0| \phi|0\rangle=v \neq 0 \text { symmetry breaking condition }
$$

Define quantum field ϕ^{\prime} by $\phi^{\prime}=\phi-v$

$$
\text { then } \quad \$=\frac{1}{2}\left(\partial_{\mu} \phi^{\prime 2}-\left(-\mu^{2}\right) \phi^{\prime 2}-\lambda v \phi^{\prime 3}-\frac{\lambda}{4} \phi^{\prime 4}\right.
$$

No Goldstone boson--discrete symmetry
Abelian symmetry case

$$
\begin{gathered}
\$=\frac{1}{2}\left[\left(\partial_{\mu} \sigma\right)^{2}+\left(\partial_{\mu} \pi\right)^{2}\right]-V\left(\sigma^{2}+\pi^{2}\right) \\
\text { with } V\left(\sigma^{2}+\pi^{2}\right)=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2} \\
O(2) \text { symmetry }\binom{\sigma}{\pi} \rightarrow\binom{\sigma^{\prime}}{\pi^{\prime}}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{\sigma}{\pi} \\
\text { minimum } \sigma^{2}+\pi^{2}=\frac{\mu^{2}}{\lambda}=v^{2} \quad \text { circle in } \sigma-\pi \text { plane }
\end{gathered}
$$

$$
\text { For convenience choose } \quad\langle 0| \sigma|0\rangle=v \quad\langle 0| \pi|0\rangle=0
$$

New quantum field $\quad \sigma^{\prime}=\sigma-v, \quad \pi^{\prime}=\pi$
New Lagrangian $\$=\frac{1}{2}\left[\left(\partial_{\mu} \sigma^{\prime 2}+\left(\partial_{\mu} \pi\right)^{2}\right]-\mu^{2} \sigma^{\prime 2}-\lambda v \sigma^{\prime}\left(\sigma^{\prime 2}+\pi^{\prime 2}\right)-\frac{\lambda}{4}\left(\sigma^{\prime 2}+\pi^{\prime 2}\right)^{2}\right.$
no $\pi^{\prime 2}$ term, $\Rightarrow \pi^{\prime}$ massless Goldstone boson
Non-Abelian case- $\quad \sigma$ model

$$
\begin{gathered}
\$=\frac{1}{2}\left[\left(\partial_{\mu} \sigma^{\prime 2}+\left(\partial_{\mu} \vec{\pi}\right)^{2}\right]+\bar{N} i \gamma^{\mu} \partial_{\mu} N+g \bar{N}\left(\sigma+i t \vec{a} u \cdot \vec{\pi} \gamma_{5}\right) N-V\left(\sigma^{2}+\vec{\pi}^{2}\right)+\left(f_{\pi} m_{\pi}^{2} \sigma\right)\right. \\
V\left(\sigma^{2}+\vec{\pi}^{2}\right)=-\frac{\mu^{2}}{2}\left(\sigma^{2}+\vec{\pi}^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}\right)^{2} \\
\text { minimum } \quad \sigma^{2}+\vec{\pi}^{2}=v^{2}=\frac{\mu^{2}}{\lambda} \\
\text { choose }\langle\sigma\rangle=v,\langle\vec{\pi}\rangle=0
\end{gathered}
$$

Then $\vec{\pi}$ are Goldstone bosons.

Higgs Phenomena

When we combine spontaneous symmetry breaking with local symmetry, a very interesting phenomena occurs. This was discovered in the 60's by Higgs, Englert \& Brout, Guralnik, Hagen \& Kibble independently.
Abelian case
Consider the Lagrangian given by

$$
\begin{aligned}
& \$=\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)+\mu^{2} \phi^{\phi}-\lambda\left(\phi^{+} \phi\right)^{2}-\frac{1}{4} F_{\mu v} F^{\mu v} \\
& \text { where } \quad D^{\mu} \phi=\left(\partial^{\mu}-i g A^{\mu}\right) \phi \quad, \quad F_{\mu v}=\partial_{\mu} A_{v}-\partial_{v} A_{\mu}
\end{aligned}
$$

The Lagrangian is invariant under the local gauge transformation

$$
\begin{gathered}
\phi(x) \rightarrow \phi^{\prime-i \alpha(x)} \phi(x) \\
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)-\frac{1}{g} \partial_{\mu} \alpha(x)
\end{gathered}
$$

The spontaneous symm. breaking is generated by the potential

$$
V(\phi)=-\mu^{2} \phi^{+} \phi+\lambda\left(\phi^{+} \phi\right)^{2}
$$

which has a minimum at

$$
\phi^{+} \phi=\frac{v^{2}}{2}=\frac{1}{2}\left(\frac{\mu^{2}}{\lambda}\right)
$$

For the quantum theory, we can choose

$$
|\langle 0| \phi| 0\rangle \left\lvert\,=\frac{v}{\sqrt{2}}\right.
$$

Or if we write

$$
\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

this corresponds to

$$
\left\langle\phi_{1}\right\rangle=v,\left\langle\phi_{2}\right\rangle=0 \quad \phi_{2}: \text { Goldstone boson }
$$

Define the quantum fields by

$$
\phi_{1}^{\prime}=\phi_{1}-v, \quad \phi_{2}^{\prime}=\phi_{2}
$$

Covariant derivative terms gives

$$
\begin{gathered}
\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)=\left[\left(\partial_{\mu}+i g A_{\mu}\right) \phi^{+}\right]\left[\left(\partial^{\mu}-i g A^{\mu}\right) \phi\right] \\
\frac{-1}{2}\left(\partial_{\mu} \phi_{1}^{\prime}+g A_{\mu} \phi_{2}^{\prime}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}^{\prime}-g A_{\mu} \phi_{1}^{\prime}\right)^{2}+\frac{g^{2} v^{2}}{2} A^{\mu} A_{\mu}+\cdots \text { mass terms for } A^{\mu}
\end{gathered}
$$

Write the scalar field as

$$
\phi(x)=\frac{1}{\sqrt{2}}(v+\eta(x)) e^{i \xi(x) / v}
$$

"Gauge" transformation:

$$
\phi^{\prime-i \xi(x) / v} \phi(x) \quad, \quad B_{\mu}=A_{\mu}(x)-\frac{1}{g v} \partial_{\mu} \xi
$$

$\xi(x)$ disappears from the Lagrangian Roughly speaking, massless gauge field A_{μ} combine with Goldstone boson $\xi(x)$ to become massive gauge boson. As a consequence, two long range forces (from Goldstone boson $\xi(x)$ and $\left.A_{\mu}(x)\right)$ disappear.
Non-Abelian case
$\mathrm{SU}(2)$ group: $\phi=\binom{\phi_{1}}{\phi_{2}}$ doublet

$$
\begin{gathered}
\$=\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)-V(\phi)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad, \quad F_{\mu \nu}=\partial_{\mu} A_{v}-\partial_{v} A_{\mu} \\
V(\phi)=-\mu^{2}\left(\phi^{+} \phi\right)+\lambda\left(\phi^{+} \phi\right)^{2}
\end{gathered}
$$

Spontaneous symmetry breaking:

$$
\langle\phi\rangle_{0}=\frac{1}{\sqrt{2}}\binom{0}{v} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$

Define $\phi^{\prime}=\phi-\langle\phi\rangle_{0}$

From covariant derivative

$$
\begin{gathered}
\left(D_{\mu} \phi\right)^{+}\left(D^{\mu} \phi\right)=\left[\partial_{\mu}-i g \frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2}\left(\phi^{\prime}+\langle\phi\rangle_{0}\right)\right]^{+}\left[\partial^{\mu}-i g \frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2}\left(\phi^{\prime}+\langle\phi\rangle_{0}\right)\right] \\
\rightarrow \frac{1}{4} g^{2}\langle\phi\rangle_{0}\left(\vec{\tau} \cdot \vec{A}_{\mu}\right)\left(\vec{\tau} \cdot \vec{A}^{\mu}\right)\langle\phi\rangle_{0}=\frac{1}{2}(\text { fracg } v 2)^{2} \vec{A}_{\mu} \cdot \vec{A}^{\mu}
\end{gathered}
$$

All gauge bosons get masses

$$
M_{A}=\frac{1}{2} g v
$$

The symmetry is completely broken.

$$
\text { Write } \quad \phi(x)=\exp \left\{\frac{i \vec{\tau} \cdot \vec{\zeta}(x)}{v}\right\}\binom{0}{\frac{v+\eta(x)}{\sqrt{2}}}
$$

"gauge" transformation

$$
\begin{aligned}
& \phi^{\prime}(x)=U(x) \phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+\eta(x)} \\
& \frac{\vec{\tau} \cdot \vec{B}_{\mu}}{2}=U(x) \frac{\vec{\tau} \cdot \vec{A}_{\mu}}{2} U^{-1}-\frac{i}{g}\left[\partial_{\mu} U\right] U^{-1}(x) \\
& \text { where } \quad U(x)=\exp \left\{\frac{\vec{\tau} \cdot \vec{\xi}}{v}\right\}
\end{aligned}
$$

