
Quantum Field Theory

Ling-Fong Li

National Center for Theoretical Science

(Institute) Note 8 1 / 31



Group Theory
The tool for studying symmetry is the group theory. Will give a simple discussion
Elements of group theory
group G :collection of elements (a, b, c� � � ) with a multiplication laws satis�es;

1 Closure. If a, b 2 G , c = ab 2 G
2 Associative a(bc ) = (ab)c

3 Identity 9e 2 G 3 a = ea = ae 8a 2 G

4 Inverse For every a 2 G , 9a�1 3 aa�1 = e = a�1a

Examples

1 Abelian group � � group multiplication commutes, i.e. ab = ba 8a, b 2 G
e.g. cyclic group of order n, Zn , consists of a, a2, a3, � � � , an = E

2 Orthogonal group � � n � n orthogonal matrices, RRT = RT R = 1, R : n � n matrix
e. g. the matrices representing rotations in 2-dimesions,

R (θ) =
�
cos θ � sin θ
sin θ cos θ

�
3 Unitary group � � � � n � n unitary matrices,
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Built larger groups from smaller ones by direct product:
Direct product group � �Given two groups , G = fg1, g2 � � � g, H = fh1, h2 � � � g de�ne a
direct product group is de�ned as G �H = fgihjg with multiplication law

(gihj )(gmhn) = (gigm )(hjhn)
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Theory of Representation

group G = fg1 � � � gn � � � g. If for each group element gi ! D (gi ) ,n � n matrix such that

D (g1)D (g2) = D (g1g2) 8 g1, g2 2 G

then D 0s a representation of the group G (n-dimensional representation). If a non-singular
matric M such that matrices can be transformed into block diagonal form,

MD (a)M�1 =

0B@ D1(a) 0 0
0 D2(a) 0

0 0
. . .

1CA for all a 2 G .

D (a) is called reducible representation. Otherwiseit is irreducible representation (irrep)
Continuous group: groups parametrized by continuous parameters
Example: Rotations in 2-dimensions can be parametrized by 0 � θ < 2π
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SU(2) group
Set of 2� 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n � n unitary matrix U can be written as

U = e iH H : n � n hermitian matrix

From
detU = e iTrH

TrH = 0 if detU = 1

Thus n � n unitary matrices U can be written in terms of n � n traceless Hermitian matrices.

Note that Pauli matrices:

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
�i 0

�
, σ3 =

�
1 0
0 �1

�
complete set of 2� 2 hermitian traceless matrices.
De�ne Ji =

σi
2 then

[J1, J2 ] = iJ3 , [J2, J3 ] = iJ1 , [J3, J1 ] = iJ2

Lie algebra of SU (2) symmetry. exactly the same as commutators of angular momentum.
to construct the irrep of SU (2) algebra, de�ne

J2 = J21 + J
2
2 + J

3
2 , with property [J2, Ji ] = 0 , i = 1, 2, 3
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Also de�ne

J� � J1 � iJ2 then J2 =
1
2
(J+J� + J�J+) + J23 and [J+, J�] = 2J3

choose simultaneous eigenstates of J2, J3 ,

J2 jλ,mi = λjλ,mi , λ3 jλ,mi = mjλ,mi

From
[J+, J3 ] = �J+

we get
(J+J3 � J3J+)jλ,mi = �J+jλ,mi

Or
J3(J+jλ,mi) = (m + 1)(J+jλ,mi)

Thus J+ is called raising operator . Similarly, J� lowers m to m � 1,

J3(J�jλ,mi) = (m � 1)(J�jλ,mi)

Since
J2 � J23 , λ�m2 � 0
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m is bounded above and below. Let j be the largest value of m, then

J+jλ, ji = 0

Then
0 = J�J+jλ, ji = (J23 � J23 � J3)jλ, ji = (λ� j2 � j)jλ, ji

and
λ = j(j + 1)

Similarly, let j 0 be the smallest value of m, then

J�jλ, j 0i = 0 λ = j 0(j 0 � 1)

Combining these 2,

j(j + 1) = j 0(j 0 � 1) ) j 0 = �j and j � j 0 = 2j = integer

use j ,m to label the states. Assume the states are normalized,

hjmjjm 0i = δmm 0 Write J�jjmi = C�(jm)jj ,m � 1i

Then
hjmjJ�J+jjmi = jC+(j ,m)j2 !

= hj ,mj(J2 � J23 � J3)jjmi = j(j + 1)�m2 �m ) C+(j ,m) =
q
(j �m)(j +m + 1)
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Similarly

C�(j ,m) =
q
(j +m)(j �m + 1)

Summary: eigenstates jjmi have the properties

J3 jj ,mi = mjj ,mi J�jj ,mi =
q
(j �m)(j �m + 1)jjm � 1i , J2 jj ,mi = j(j + 1)jmi

J jj ,mi , m = �j ,�j + 1, � � � , j are the basis for irreducible representation of SU(2) group.
From these relations we can construct the representation matrices.
Example: j = 1

2 , m = � 1
2

J3 = j
1
2
,� 1
2
h= � 1

2
j 1
2
,� 1
2
i

J+j
1
2
,
1
2
i = 0 , J+j

1
2
,� 1
2
= j 1

2
,
1
2
i , J�j

1
2
,
1
2
= j 1

2
,� 1
2
i , J�j

1
2
,� 1
2
i = 0

If we write

j 1
2
,
1
2
i = α =

�
1
0

�
j 1
2
,� 1
2
i = β =

�
0
1

�
Then we can represent J 0s by matrices,

J3 =
1
2

�
1 0
0 �1

�
J+ =

�
0 1
0 0

�
J� =

�
0 0
1 0

�

J1 =
1
2
(J+ + J�) =

1
2

�
0 1
1 0

�
J2 =

1
2i
(J+ � J�) =

1
2

�
0 �i
i 0

�
Within a factor of 12 , these are just Pauli matrices
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Product representation
Let α be the spin-up and β the spin-down states. Then for 2 spin 1

2 particles, the total
wavefunction is product of wavefunctions of the form, α1α2, α1β2 � � �
De�ne ~J (1) acts only on particle 1 and ~J (2) acts only on particle 2.

~J = ~J (1) +~J (2)

Use
J3 = J

(1)
3 + J (2)3 , J3(α1α2) = (J

(1)
3 + J (2)3 )(α1α2) = (α1α2)

from

~J2 = (~J (1) +~J (2))2 = (~J (1))2 + (~J (2))2 + 2[
1
2
(J (1)+ J (2)� + J (1)� J (2)+ + J (1)3 J (2)3 ]

~J2(α1α2) = (
3
4
+
3
4
+
2
4
)jα1α2i = 2jα1α2i ) j = 1 state j1, 1i = α1α2

To get other j = 1 states, we can use the lowering operator

J�(α1α2) = (J
(1)
� + J (2)� )(α1α2) = (β1α2 + α1β2)

On the other hand

J�(α1α2) = J�j11i =
q
(1+ 1)(1� 1+ 1)j1, 0i =

p
2j1, 0i
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) j1, 0i = 1p
2
(β1α2 + α1β2)

Clearly j1, 0i = β1β2The The only state left-over is

1p
2
(α1β2 � β1α2) ) j0, 0istate

Summary:

1 Among the generator only J3 is diagonal, � SU(2) is a rank-1 group

2 Irreducible representation is labeled by j and the dimension is 2j + 1

3 Basis states jj ,mi m = j , j � 1 � � � (�j) representation matrices can be obtained from

J3 jj ,mi = mjj ,mi J�jj ,mi =
q
(j �m)(j �m + 1)jj ,m � 1i
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SU(2) and rotation group
The generators of SU (2) group are Pauli matrices

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
�i 0

�
, σ3 =

�
1 0
0 �1

�

Let
!
r = (x , y , z ) be arbitrary vector in R3 (3 dimensional coordinate space). De�ne a 2� 2

matrix h by

h = ~σ �!r =
�

z x � iy
x + iy �z

�
h has the following properties

1 h+ = h

2 Trh = 0

3 det h = �(x 2 + y 2 + z 2)

Let U be a 2� 2 unitary matrix with detU = 1. Consider the transformation

h ! h0 = UhU †

Then we have

1 h0+ = h0

2 Trh0 = 0
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det h0 = det h
, (3)

Properties (1)&(2) imply that h�can also be expanded in terms of Pauli matrices

h0 =~r 0 �~σ !
r = (x 0, y 0, z 0)

det h0 = det h ) x 02 + y 02 + z 02 = x 2 + y 2 + z 2

Thus relation between
!
r and

!
r
0
is a rotation. This means that an arbitrary 2� 2 unitary matrix

U induces a rotation in R3. This provides a connection between SU (2)and O (3) groups.
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Rotation group & QM
Rotation in R3 can be represented as linear transformations on

!
r (x , y , z ) = (r1, r2, r3) , ri ! r 0i = RijXj RRT = 1 = RT R

Consider an arbitary function of coordinates, f (
!
r ) = f (x , y , z ). Under the rotation, the change

in f
f (ri )! f (Rij rj ) = f

0(ri )

If f = f 0 we say f is invariant under rotation, eg f (γi ) = f (γ),γ =
p
x 2 + y 2 + z 2

In QM, we implement the rotation by

jψi ! jψ0i = U jψi, O ! O 0 = UOU †

so that
) hψ0jO 0jψ0i = hψjO jψi

If O 0+ = O , we say the operator O is invariant under rotation

! UO = OU [O ,U ] = 0

In terms of in�nitesimal generators

U = e�iθ~n�~J/�h

this implies [Ji ,O ] = 0, i = 1, 2, 3. For the case where O is the Hamiltonian H , this gives
[Ji ,H ] = 0.
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Let jψi be an eigenstate of H with eigenvaule E ,

H jψi = E jψi

then (JiH �HJi )jψi = 0 ) H (Ji jψi) = E (Ji jψi)

i .e jψi & Ji jψi are degenerate. For example, let jψi = jj ,mi the eigenstates of angular
momentum, then J�jj .mi are also eigenstates if jψi is eigenstate of H. This means
for a given j , the degeneracy is (2j + 1).
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Gauge Theory
Abelian gauge theory(QED)
Maxwell Equation

~r � ~E = ρ

ε0
, ~r � ~B = 0

~r� ~E + ∂~B
∂t
= 0 ,

1
µ0
~r� ~B = ε0

∂~E
∂t
+~J

Source free equations can be solved

~B = r�~A , ) r(~E + ∂~A
∂t
) = 0

~E = �rφ� ∂~A
∂t

∂µAν � ∂νAµ = F µν F ij � εijkBh F 0i � E i

Gauge invariance

φ ! φ� ∂α

∂t
~A ! ~A + ~rα

Aµ = (
φ

c
,~A) Aµ ! Aµ � ∂µα

Schrodinger Equation for a charged particle

[
1
2m
(
�h
i
~r� e~A)2 � eφ]ψ = i�h

∂ψ

∂t
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To get gauge invariance, need to transform ψ

ψ ! e ieα/�hψ

Consider the Lagrangian for a free electron �eld ψ(x )

L0 = ψ̄(x )(iγµ∂µ �m)ψ(x )

This has global U(1) symmetry,

ψ(x )! ψ0�iαψ(x ) α : constant

ψ̄(x )! ψ̄0(x ) = ψ̄(x )e iα

Suppose
α = α(x ) ψ0�iα(x )ψ(x ) , ψ̄0(x ) = ψ̄(x )e iα(x )

transformation of derivative

ψ̄(x )∂µψ(x ) ! ψ̄0(x )∂µψ0(x ) = ψ̄(x )∂µψ(x )� i (∂µα)(ψ̄ψ) not invariant

Introduce gauge �eld Aµ(x ) to form covariant derivative

Dµψ � (∂µ + igAµ)ψ(x )
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So that Dµψ transforms by a phase,

(Dµψ)0 = e�iα(x )(Dµψ)

This requires that

(∂µ + igA0µ)ψ
0�iα(∂µ + igAµ)ψ ! e�iα[∂µψ+ i (∂µα)ψ+ igA0µψ]

) A0µ = Aµ �
1
g

∂µα

Then
$0 ! ψ̄iγµ(∂µ + igAµ)ψ�mψ̄ψ

is invariant under local symmetry transformation (local symmetry)
The Lagrangian for gauge �eld is of the form,

$4 = �
1
4
FµνF µν Fµν = ∂µAν � ∂νAµ invariant

One useful relation is to write Fµν in terms of covariant derivative,

DµDνψ = (∂µ + igAµ)(∂ν + igAν)ψ = ∂µ∂νψ� g 2AµAνψ+ ig (Aµ∂ν + Aν∂µ)ψ

+ig (∂µAν)ψ
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) (DµDν �DνDµ)ψ = ig (∂µAν � ∂νAµ)ψ = ig (Fµν)ψ

From [(DµDν �DνDµ)ψ]
0�iα(DµDν �DνDµ)ψ ) F 0µν = Fµν

Thus the Lagrangian of the form

L = ψ̄iγµ(∂µ + igAµ)ψ�mψ̄ψ� 1
4
FµνF µν

is invariant under gauge transformation

ψ(x )! ψ0�iα(x )ψ(x )

Aµ(x )! A0µ(x ) = Aµ(x )�
1
g

∂µα(x )

Remarks:

1 AµAµ term is not gauge invariant ) �eld massless.

2 Dµψ = (∂µ + igAµ)ψ ) minimal coupling determined by U(1) transformation universality.

3 no gauge self coupling because Aµ does not carry U(1) charge.
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Non-Abelian symmetry-Yang Mills �elds
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symm.
Consider an isospin doublet

ψ =

�
ψ1
ψ2

�
Under SU(2) transformation

ψ(x )! ψ0(x ) = expf� i~τ �
~θ

2
gψ(x ) ~τ = (τ1, τ2, τ3) Pauli matrices

[
τi
2
,

τj
2
] = iεijk (

τR
2
)

Start with free Lagrangian
L0 = ψ̄(x )(iγµ∂µ �m)ψ

Under local symmetry transformation,

ψ(x )! ψ0(x ) = U (θ)ψ(x ) U (θ) = expf� i~τ
~θ(x )
2

g

Derivative term
∂µψ(x )! ∂µψ0(x ) = U∂µψ+ (∂µU )ψ
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Introduce gauge �elds ~Aµ to form covariant derivative,

Dµψ(x ) � (∂µ � ig
~τ � ~Aµ

2
)ψ

Require that

[Dµψ]0 = U [Dµψ]) (∂µ � ig
~τ � ~Aµ

0

2
)(Uψ) = U (∂µ � ig

~τ � ~Aµ

2
)ψ

or � ig (
~τ � ~Aµ

0

2
)U + ∂µU = U (�ig

~τ � ~Aµ

2
)

~τ� ~Aµ
0

2 = U (
~τ� ~Aµ

2 )U�1 � i
g (∂µU )U�1

We can use covariant derivatives to construct �eld tensor

DµDνψ = (∂µ � ig
~τ � ~Aµ

2
)(∂ν � ig

~τ � ~Aν

2
)ψ = ∂µ∂νψ� ig (

~τ � ~Aµ

2
∂νψ+

~τ � ~Aν

2
∂µψ)

�ig ∂µ(
~τ � ~Aν

2
)ψ+ (�ig )2(

~τ � ~Aµ

2
)(
~τ � ~Aν

2
)ψ

Antisymmetrization

(DµDν �DνDµ)ψ � ig (
~τ � ~Fµν

2
)ψ

~τ � ~Fµν

2
=
~τ

2
� (∂µ ~Aν � ∂ν ~Aµ)� ig [

~τ � ~Aµ

2
,
~τ � ~Aν

2
]
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or F iµν = ∂µAiν � ∂νAiµ + g εijkAiµA
k
ν ! new term

under gauge transformation.

~τ � ~Fµν
0
= U (~τ � ~Fµν)U�1

In�nitesmal transformation θ(x )� 1

Ai/µ = Aµ + εijk θjAkµ �
1
g

∂µθi

F /i
µν = F

i
µν + εijk θjF kµν

Remarks

1 Again AaµA
aµ is not gauge invariant)gauge boson massless)long range force

2 Aaµ carries that symmetry charge (e.g. color � )
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F aµν � ∂A � ∂A + gAA ! term responsible for Asymptotic freedom.
Maxwell Equation

~r � ~E = ρ

ε0
, ~r � ~B = 0

~r� ~E + ∂~B
∂t
= 0 ,

1
µ0
~r� ~B = ε0

∂~E
∂t
+~J

Source free equations can be solved

~B = r�~A , ) r(~E + ∂~A
∂t
) = 0

~E = �rφ� ∂~A
∂t

∂µAν � ∂νAµ = F µν F ij � εijkBh F 0i � E i

Gauge invariance

φ ! φ� ∂α

∂t
~A ! ~A + ~rα

Aµ = (
φ

c
,~A) Aµ ! Aµ � ∂µα

Schrodinger Eq for a charged particle

[
1
2m
(
�h
i
~r� e~A)2 � eφ]ψ = i�h

∂ψ

∂t
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To get gauge invariance, need to transform ψ

ψ ! e ieα/�hψ
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Spontaneous symmetry breaking
Spontaneous symmetry breaking� -ground state does not have the symmetry of the Hamiltonian
)If the symmetry is continuous one, there will be massless scalar �elds
Example:ferromagnetism
T > Tc (Curie temp) all dipoles are randomly oriented�rotational invariant
T < Tc all dipoles are oriented in some direction
Ginzburgh-Landau theory
Free energy as function of magnetization ~m (averaged)

µ(~M ) = (∂t ~M )2 + α1(T )~M � ~M + α2(~M � ~M )2

α2 > 0 , α1(T ) = α(T � Tc ) α > 0

ground state ~M (α1 + 2α2 ~M � ~M ) = 0

T > Tc only solution is ~M = 0

T < Tc non-trivial sol j~M j = +
q

α1
2α2

6= 0
) ground state with ~M in some direction is no longer rotational invariant.
Nambu-Goldstone theorem:
Noether�s theorem: continuous symmetry �! conserved charge Q
Suppose there are 2 local operator A,B with property

[Q ,B ] = A Q =
Z
d 3 � j0(x ) indep of time
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Suppose h0jAj0i = V 6= 0 (symmetry breaking condition)

) 0 6= h0j[Q ,B ]ji =
Z
d 3 � hO j[j0(x ),BJ ]j0i

= ∑
n
(2π)3δ3( ~Pn)fh0jj0(0)jnihnjB j0ie�iEn t � hnjB j0ih0jj0(0)jnie�iEn tg = U

Since U:0 and time-independent, we need to a state such that

En ! 0 for ~Pn = 0

massless excitation. For the case of relativistic particle with energy momentum rotation
E =

p
~P 2 +m2 this implies massless particle- Goldstone boson.

Discrete symmetry case

$ =
1
2
(∂µφ)2 � µ2

2
φ2 � λ

4
φ4 φ ! �φ symmetry

The Hamiltonian density

H =
1
2
(∂0φ)2 +

1
2
(~rφ)2 +

µ2

2
phi 2 +

λ

4
φ4

E¤ective energy

µ(φ) =
1
2
(~rφ)2 + V (φ) , V (φ) =

µ2

2
φ2 +

λ

4
φ4
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For µ2 < 0 the ground state has φ = �
q
�µ2

λ classically.This means the quantum ground state
j0i will have the property

h0jφj0i = ν 6= 0 symmetry breaking condition

De�ne quantum �eld φ0 by φ0 = φ� ν

then $ =
1
2
(∂µφ02 � (�µ2)φ02 � λνφ03 � λ

4
φ04

No Goldstone boson� -discrete symmetry
Abelian symmetry case

$ =
1
2
[(∂µσ)2 + (∂µπ)2 ]� V (σ2 + π2)

with V (σ2 + π2) = �µ2

2
(σ2 + π2) +

λ

4
(σ2 + π2)2

O (2) symmetry
�

σ
π

�
!
�

σ0

π0

�
=

�
cos α sin α
� sin α cos α

��
σ
π

�

minimum σ2 + π2 =
µ2

λ
= ν2 circle in σ� π plane

For convenience choose h0jσj0i = ν h0jπj0i = 0
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New quantum �eld σ0 = σ� ν , π0 = π

New Lagrangian $ =
1
2
[(∂µσ02 + (∂µπ)2 ]� µ2σ02 � λνσ0(σ02 + π02)� λ

4
(σ02 + π02)2 O (2)

no π02 term, ) π0 massless Goldstone boson
Non-Abelian case- σmodel

$ =
1
2
[(∂µσ02 + (∂µ~π)

2 ] + N̄ iγµ∂µN + g N̄ (σ+ i ~tau �~πγ5)N � V (σ2 +~π2) + (fπm2πσ)

V (σ2 +~π2) = �µ2

2
(σ2 +~π2) +

λ

4
(σ2 +~π2)2

minimum σ2 +~π2 = ν2 =
µ2

λ

choose hσi = ν , h~πi = 0

Then ~π are Goldstone bosons.
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Higgs Phenomena
When we combine spontaneous symmetry breaking with local symmetry, a very interesting
phenomena occurs. This was discovered in the 600s by Higgs, Englert & Brout, Guralnik, Hagen
& Kibble independently.
Abelian case
Consider the Lagrangian given by

$ = (Dµφ)+(Dµφ) + µ2φφ � λ(φ+φ)2 � 1
4
FµνF µν

where Dµφ = (∂µ � igAµ)φ , Fµν = ∂µAν � ∂νAµ

The Lagrangian is invariant under the local gauge transformation

φ(x )! φ0�iα(x )φ(x )

Aµ(x )! A0µ(x ) = Aµ(x )�
1
g

∂µα(x )

The spontaneous symm. breaking is generated by the potential

V (φ) = �µ2φ+φ+ λ(φ+φ)2

which has a minimum at

φ+φ =
ν2

2
=
1
2
(

µ2

λ
)
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For the quantum theory, we can choose

jh0jφj0ij = νp
2

Or if we write

φ =
1p
2
(φ1 + iφ2)

this corresponds to
hφ1i = ν , hφ2i = 0 φ2 : Goldstone boson

De�ne the quantum �elds by
φ01 = φ1 � ν , φ02 = φ2

Covariant derivative terms gives

(Dµφ)+(Dµφ) = [(∂µ + igAµ)φ
+][(∂µ � igAµ)φ]

�1
2
(∂µφ01 + gAµφ02)

2 +
1
2
(∂µφ02 � gAµφ01)

2 +
g 2ν2

2
AµAµ + � � � mass terms forAµ

Write the scalar �eld as

φ(x ) =
1p
2
(ν+ η(x ))e iξ(x )/ν
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"Gauge" transformation:

φ0�iξ(x )/νφ(x ) , Bµ = Aµ(x )�
1
g ν

∂µξ

ξ(x )disappears from the Lagrangian
Roughly speaking, massless gauge �eld Aµ combine with Goldstone boson
ξ(x ) to become massive gauge boson. As a consequence, two long range forces (from Goldstone
boson ξ(x ) and Aµ(x )) disappear.
Non-Abelian case

SU(2) group: φ =

�
φ1
φ2

�
doublet

$ = (Dµφ)+(Dµφ)� V (φ)� 1
4
FµνF µν , Fµν = ∂µAν � ∂νAµ

V (φ) = �µ2(φ+φ) + λ(φ+φ)2

Spontaneous symmetry breaking:

hφi0 =
1p
2

�
0
ν

�
ν =

r
µ2

λ

De�ne φ0 = φ� hφi0
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From covariant derivative

(Dµφ)+(Dµφ) = [∂µ � ig
~τ �~Aµ

2
(φ0 + hφi0)]+[∂µ � ig

~τ �~Aµ

2
(φ0 + hφi0)]

! 1
4
g 2hφi0(~τ �~Aµ)(~τ �~Aµ)hφi0 =

1
2
(fracg ν2)2~Aµ �~Aµ

All gauge bosons get masses

MA =
1
2
g ν

The symmetry is completely broken.

Write φ(x ) = expf i~τ �
~ξ(x )
ν

g
 

0
ν+η(x )p

2

!

"gauge" transformation

φ0(x ) = U (x )φ(x ) =
1p
2

�
0

ν+ η(x )

�
~τ � ~Bµ

2
= U (x )

~τ �~Aµ

2
U�1 � i

g
[∂µU ]U�1(x )

where U (x ) = expf~τ �
~ξ

ν
g
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