Homework set 7, Optional

1. As discussed in class a 2 x 2 unitary matrix U will induce a rotation in Rz through the connection,
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(a) Show that if U is diagonal the corresponding rotation about z—axis.
(b) Show that if U is real
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2. The quarks have spin 5 Construct 3 quarks states with spin 5 and 3 respectively.
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3. Consider a spin 5 Wave function

which transforms under the rotation as
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where o are Pauli matrices and « are arbitray real parameters. Let ¢ be a spin 1 wave function which
transforms under infinitemal rotation as
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(a) Show that the combination

is invariant under rotation.

(b) Show that for finite rotation we can write
> v_ul=. 2\t
c-¢9g=U(0c-¢|U
where U is an arbitrary 2 x 2 unitary matrix.

4. The generators of 3-dimensional rotation group O(3) can be taken as
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Ji = igijijk with M, = —1t <.’L‘78xk — xk&[’) , i,5,k=1,2,3
J
(a) Show that
[Ji, Jj] = ’L'Eiijk

(b) Extension to rotation group in 4-dimension O(4) can be achieved by extending the indices in M;; to
i =1,2,3,4, ie.

M = —1 <xjaik—xka(zj), 5, k=1,2,3,4
Again write
Ji = %Eijk;Mjk i,5,k=1,2,3
and define
K; = My
Compute the commutators
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(c) Define
A= Ji+Ki, Bi—=J —K,

Show that A}s and Bls each form a SU(2) algebra and

[4;,B;]=0



5. In Yang-Mills theory with isospin SU (2) symmetry, consider a SU(2) doublet of the form
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which transform as
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The covariant derivative is of the form

Dy = |0y —ig

Under the gauge transformation we have
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Show that A,transform as I =1 triplet.

6. Suppose the set of scalar fields (Z = (¢1, Pg, P3) transform as a vector in O (3). The self interaction of E is of

the form,
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(a) Find the minimum of V (g) .

where

(b) Find the combinations of ¢,s, which are Goldstone bosons.



