divergent, '’ cannot be made convergent no matter how many derivatives
operate on it, even though the overall superficial degree of divergence is zero.
However we have the lower-order counterterm — AT (0) corresponding to
the subtraction introduced at the one-loop level. This generates the
additional A* contributions of Fig. 2.12(b), (c) with I'tY oc ~ 23T (p)I'(0) and
'™ oc —A3T(0)['(p), respectively. :

P - N h P

123 h—p h—p I

(a)
(b) (¢) .

FIG. 2.12. s-channel A four-point functions. The black spots represent the counterterm
—A21(0).

Adding the three graphs, Fig. 2.12(a), (b), (c), we have

’ I®p) =T® + TP + T
= —2[TO0)]* + 2*[I'(p) — I (0)]? (2.68)
=T¥0) + T9(p).

Only the first term on the right-hand side is divergent and can be removed by
aA®counterterm of the form il (0)p*/4!. We see how, with the inclusion of the
lower-order counterterms, divergences take on the form of polynomials in the
external momenta. Thus for diagrams with more than one loop it is useful to
characterize a divergent contribution as being primitively divergent or not. A
primitively divergent graph has a non-negative overall superficial degree of
divergence but is convergent for all subintegrations. Thus, they are diagrams in

which the only divergence is caused by all of the loop momenta growing large -

together. In general only primitively divergent graphssuchasFig.2.13can have
their divergences isolated by direct Taylor-series expansion. For other cases,
diagrams with lower-order counterterm insertions must be included in order to

aggregate the divergences into the form of polynomials in the external
momenta.

AN

~

F1G. 2.13. A primitively divergent four-point function.

(3) In the above example of a two-loop, four-point function we have seen
how the overall divergence can be isolated when diagrams with lower-order
counterterms are included. For such cases where the divergent subinteg-

rations are disjoint this can be accomplished in a fairly direct manner.
Similarly, it is also relatively easy for cases with nested divergences, i.e. for
cases where one of each pair of divergent 1PI subgraphs is entirely contained
within the other (see the example in Fig. 2.14). After the subgraph divergence

FiG. 2.14. Nested divergences and a diagram with a lower-order counterterm which cancels the
subintegration divergence.

is removed by diagrams with lower-order counterterms (Fig. 2.14(b)), the
overall divergence is then renormalized by a 13 counterterm. Thus for both
disjoint and nested divergences the renormalization procedure is rather
straightforward. The difficult step in the proof of the convergence (to all
orders) involves disentangling the overlapping divergences, which are neither
disjoint nor nested divergent 1PI diagrams. Fig. 2.2(a) is an example of
overlapping divergence. Here it is difficult to see in a simple way how the
subintegration divergences can be removed in a systematic fashion because
they do not factorize in a simple manner. Nevertheless, this problem has been
overcome and we refer the interested reader to the literature (Hepp 1966;
Zimmermann 1970; Itzykson and Zuber 1980). The purpose of these
comments is to indicate how the proof of renormalizability generally involves
complicated graph classifications and combinatorial analysis.

2.3 Regularization schemes

In this section we will give detailed calculations of the various renormaliza-
tion constants in the renormalized perturbation theory described in the
previous sections. To make any meaningful mathematical manipulations on
the divergent integrals we must cut off, or regularize, the momentum
integration to make the integral finite. The divergent part will then be a
function of the cut-off A while the finite part will be cut-off-independent in
the limit A — co. The cut-off procedure must be chosen in such a way that it
maintains the Lorentz invariance and symmetry of the problem. There are
two commonly used regularization schemes: the covariant cut-off and
dimensional regularization. We shall iltustrate them in turn.

Covariant regularization
In this procedure (Pauli and Villars 1949) the propagator will be modified as
1 1 + Z a;
— —_—
P +ie P2 +ie P A ¥ ie (2.69)

where A7 » u? and the a;s are chosen in such a way that in the asymptotic



region the modified propagator will have a sufficient number of internal
momenta in the denominator so that the integral is convergent.

Let us start with the four-point function. The graph in Fig. 2.5(a) yields a
contribution (2.7)

(—id)? [ d¥ i i

I,=T(? = .
=T 2 @r*(—py —p+ie P —p® +ie

(2.70)

Clearly the replacement
1 1 I u—A?
— — =
P—y+ic P—p+ie P—AN+ic (P—p®+i)l% — A% +ie)

will be sufficient to render the integral finite. Eqn (2.70) then becomes
—A2A% [ a4 I
2 @m)* (L = p)* — p* + ie)(1* — p? + ie)(12 — A® + ig)
(2.71)

We choose to make the Taylor expansion around p? =0 (or to make
subtraction at p? = 0),

r(p?) =

L(p?*)=T©0)+T'(p?) (2.72)
with
—A2A? [ d¥ 1
0 =— Cr)* (2 — 12 + 02 — A% + i¢) (2.73)
—A2A2 [ d4 1
L(p?) =

2 @m)* (12 — 12 + ie)(? — A? + ig)

1 1
% [(1-—1))2 -y +ie _,12‘—;42+ia]
A2 [ d* 2l-p - p?
C 2 ]t (P - @ +ie)X (- p)? — 12 +de)
where in the last line we have taken the limit A — oo inside the integral

because I'(p?) is convergent. The standard method to evaluate these integrals
is to first use the identity to combine the denominator factors

1
1 dz, dz,...dz, s
=(n - H! _[(‘hﬁ 5<l - .Z z,-) (2.75)
0

(2.74)

n
aid, ... a, +a222+'-'anzn) i=1

where the z;s are called the Feynman parameters. We can also differentiate
with respect to a, to get
1

1 =”!J z,dz,dz, ... dz, 5<1_22i)_ 2.76)

. +
aa,...a azy + az, + ... a,z,)" ! ;
1“2 n

0

This formula has the advantage that one less Feynman parameter is needed
for the case where there are two identical factors in the denominator. Using

(2.76), we can combine the denominators in (2.74) to give

1
1 ! [0 —o)de
(P —p?+ie)> (| —p)? —p? +ie 2 EVEE 2.77)
) 0
where
A= (1 =) P —p?) +of(l - p)* — p2] +ie
=(l—ap)’ —d +ie
with
a* = p? — ol — a)p?.
Thus,
1
-~ d4[ 2[[7 _p2
r(P ) J\(l a) da f(zn)4 [(1 —_ ap)z -_— aZ + i8]3
(1]
1
d*/  (2u— 1)p?
_ j2 .
=1 J(l 0() da J‘(2ﬂ)4 ([2 _ a2 + i6)3 (278)
0

where we have changed the variable / to / + ap and have dropped the term
linear in / which will vanish upon symmetric integration. It is more
convenient to do the integration by the Wick rotation, which transforms the
Minkowski momentum to the Euclidean momentum. First we note that
d*/ = dl, dl, dl, d/; and

P +ie=0B-1P—d®+ic
=05 — [( + a®)'? —ig]?.

This shows that the integral (2.78) has poles in the complex /,-plane as shown
in Fig. 2.15.

le A

. C
y=—(1? +a2f+ic
r 1 Re [,

FiG. 2.15.

Using Cauchy’s theorem we then have

3§d10 o) =0 (2.79)

C



where
1

(55 — (@ + a7 —ig)2]*

Since f(ly) —» I5° as Iy — oo, the contribution from the circular part of
contour C vanishes. Eqn. (2.79) implies that

Jlo) =

f dl /(o) = f dly f(lo)

Thus, the integration along the real axis has been rotated to that along the
imaginary axis. Change the variable ly = il, so that /, is real and

+iao )
J dlo fllo) =i f dl, f(ily)
T GAEFEYES S S (2.80)

If' we define Euclidean momentum k= (I,,1,,15,1,) with k*= I3+
I3 + I3 + I3, then the results in eqns (2.79) and (2.80) may be written

d* ! . [d% 1
et P -a v e R+ a—ie)

(2.81)

where d*k = d/, d/, d/, dl,. Using polar coordinates in' four-dimensional
Euclidean space, we have

@ 2rn » n n
fd‘*k = f k3 dk f d¢ jsin 6do Jsin2 xdx (2.82)
[o] 0 0 0
and .
d*k 1 o2 k3 dk 1
n)* (k% + a* — i) (2m)* (k* + a® — ie)?
. 0
1 k* dk? 283
T 16n? | (k2 + a2 —ie)® (2.83)
0
Using the formula for beta functions
" lds 1 I'mI'(n —m)
(t + (12)" - (az)n—-m F(n) ’ (2'84)
1]
we obtain
d*k 1 1
(2.85)

Qn)* (k> + a® —ie)® ~ 32n%(a® — ie)

or the vertex function in eqn (2.78) becomes

. .

_—i2? [ da(l - a)2a — 1)p?

C32n? [P — (] — a)p? — ic]
0 .

T'(p?) (2.86)

Since 0 < o < 1 we get 42 — a(1 — a)p? > 0 for p? < 4u* and we can drop is
in the denominator. It is straightforward to evaluate the integral to give

N - iA? 4p* — s\t ‘
T'(p?) =T(s) = ;M {2 + < : tlsl s) In[{(4p? — 5)*

D =9+ @) o <o

i 7 (4t —s\t s\t ,
= Tnz {2 + 2< B tan Zlﬁ“_s for 0<s< 4/,{ 4

iA? s—dpP\E et (s —4p?)t)
= 352 {2 + ( . ) In I:S% T 40y +in
for s> 4u%. (2.87)

With the same procedure, the diQergent term I'(0) given in eqn (2.73) can be
calculated

1

iA2AZ o da
0 =32 ja(m R A (2:88)
0
For large A2, this gives
iA? A2
FO)~ gl s (289)

Thus the one-loop contribution to the four-point function is
T0p(s, £, u) = 30(0) + £(s) + Tt) + Tw) (2.90)

where the cut-off-dependent I"(0) is given by eqn (2.89) and the finite I'(s) is
given by eqn (2.87). We have to add the counterterm (3il'(0)/4)¢* to cancel
these divergences. By (2.36) this corresponds to the renormalization constant
300) 31 . A2
=1- In—-
+ A 3202 u?
Having cancelled the divergénces, the total four-point function up to this
order is then given by (2.42) :

TG, t,u) = —id + T(s) + T(r) + (). (2.92)

For the two-point function of eqn (2.6), corresponding to the graph in Fig.
2.4, we have

Zi'=1

(2.91)

—id [ d¥ i

—iX(p?) = .
X (77550 e

(2.93)



This is a quadratically divergent integral and it can be regularized by
choosing a; and a, in eqn (2.69) such that

1 + a; a, 1
o
P—p?+ic P —Al4ic P—Al+ic I8

as > > .

It is not difficult to see that we need’

2 2 2 __
ﬂ —Az A
G=prar ad a=ge Az'

Then the modified propagator becomes
1 a, .az
P +is E—Al+ie E_Altic
A=A =) A*
P i) = ADE =AY~ (= @) — A%
for A; and A, both approach a large A. The regularized self-energy is

/1 d4l A*
—iZ(p?
) = o P T @ — A s i)
1
B —ilA* ada
327 ) aA?+ (1 — a)u?

0

[AZ — 4 A—Z:I (2.94)
T 3202 I ‘

Since it is independent of the external momentum p, the Taylor expansion is
trivial,

A

2(p?) = Z(0) 2

A%, . (2.95)

As we have mentioned before, this p-independence is a special property of the
one-loop approximation in A¢* theory. For a more general self-energy
graph, XZ(p) will have a nontrivial dependence on p and the Taylor series
around p? = 0 will be

%(p*) = Z(0) + p?Z'(0) + Z(p?) (2.96)

where Z(0) and Z'(0) are cut-off-dependent and £(p?) is finite. And we have
to add 3Z(0)¢? and 3X'(0)(9,4)* counterterms to cancel these divergences.
To summarize, the total Lagrangian up to one loop has the form

FY = O L APD (2.97)
where
1 A
L0 = [O8) — 12T - 1 ¢*

31F(0)

ALW = ¢t + = 2(0)¢2+ >3(0)(6,‘<1b)2

Combining terms of the same structure, we can write (2.97) as

7 2 S 2y A2 AZ .
P _ 7¢ (0,4)* — gﬁ___zﬂ—)qs —- 4_"1 ot (2.98)
with
Z,=1+Z0),
AZ7Y = A+ 3i0(0),
s = (0). (2.99)

The values of these renormalization constants in the one-loop approximation
are
Zy=1 since X'(0)=0,
30 . A
ZA = 1 + 3_2;2‘ ln P:

2
Su2 =
K =352

(2.100)

If we express everything in terms of the bare quantities through egns (2.49),
(2.50), and (2.51), we find

1 A
L0 =2 [@ho)” — Hot3] - 52 0%

which is exactly the same as the unrenormalized Lagrangian (2.1) as it should
be.

Finally we comment on the convention used in making the Taylor series
expansions (2.72) and (2.96) around p; = 0 to fix the finite part of the Green’s
function. An. equivalent way to state the same convention is to specify the
normalization conditions of Green’s function. From (2.96), the finite part of
the self-energy has the properties

£(p?),20 =0 (2.102)
and
9Z(p?) _
WPEO—O. (2.103)

These properties imply that the full propagator

i

i 2y = : - 2.104
iAr(p®) p? — 2 — S(p?) + ie ( )
will satisfy the normalization conditions
AR (PH)lprmo = — 1 (2.105)
and :
AR !
— =1. 2.106
61’2 p2=0 ( )

Similarly from (2.72) and thus from ['(0) =0, we have from (2.92) the

@2.101) AS



normalization condition for the vertex function
r{n0,0,0).= —il. ' (2.107)

(Remark: Although (2 104) was originally derived with a Taylor expansion of
2(p?) around p? = u? it also holds for the present p®> = 0 expansion as a
derivation entirely similar to eqns (2.14)-(2.22) will show.)

In short, one can use conditions (2.105), (2.106), and (2.107) to replace the
prescription ‘Taylor expansion around p; = 0’ to fix the finite part of Green’s
function.

In this connection we observe that the renormalized coupling constant
defined by (2.107) differs from that defined by eqn (2.41) where a Taylor
expansion has been made around the symmetric point s, = #, = u, = 4u2/3
It implies condition (2.33)

(50, 10, o) = —il (2.108)

to be contrasted with (2.107). Thus, different Taylor expansions or
subtraction points yield different definitions of the coupling constant. This
leads to the concept of a running coupling constant (see Chapter 3). Clearly
the physics should not depend on the choice of subtraction point which is
purely a convention. In practice how is this apparent difference taken care
of? Consider the two-body scattering cross-sections calculated using two
different definitions of the coupling constant. The calculated cross-sections
may appear to be different by an overall constant (the angular distributions
are identical). But this is immaterial because we need to define the coupling
constant operationally as the value of the cross-section at some kinematical
point. Thus the difference is only apparent and the two seemingly different
calculations really yield the same result.

Dimensional regularization

The basic idea of this scheme ("t Hooft and Veltman 1972; Bollini and
Giambiagi 1972; Ashmore 1972; Cicuta and Montaldi 1972) is that, since the
ultraviolet divergences in Feynman diagrams come from the integration of
internal momenta in four-dimensional space, the integrals can be made finite
by lowering the dimensionalities of the space-time. Then the Feynman
integrals can be defined as analytic functions of the space—time dimension .
The ultraviolet divergences will manifest themselves as singularities as n — 4.
As before, the finite part can be obtained by subtracting out the first few
terms in the Taylor expansion. This regularization scheme has the important
advantage that it will not destroy any algebraic relations among Green’s
functions that do not depend on space-time dimensions. In particular, the
Ward identities, which are relations among Green’s functions resulting from
the symmetries of the theory, can be maintained in this dimensional
regularization scheme. For a review see Leibrandt (1975).

We will illustrate this method with an example. Consider the one-loop
four-point Green’s function in eqn (2.7) corresponding to the diagram in Fig.

2.5(a). It is proportional to the integral

“ 1 1
_Jd l(l—p)z—uz—f—ig P—p?+ie (2.109)
which is logarithmically divergent. To define the integral in n-dimensional
space, we take the internal momentum to have » components:
l,=(Uo, 1, ..., 1,_), while the external momentum has four nonvanishing
components: p, = (pg, s, P2, P3,0...0). The integral in n-dimensional space
is then defined as

1 1
= d"
f) J RS vl g (2.110)

which is convergent for n < 4. To define this integral for non-integer values
of n, we first combine the denominators using Feynman parameters and
make the Wick rotation (eqn (2.75)),

1

dnl
fn) = Jd“ J[(l — ) — @ + i)

1
. dm
0

with a* = p? — a(1 — a)p?.
The integrand is now independent of the angles of the integration
momentum, which can then be integrated out

o] 2n T k14
jd"lzjl"‘l dljd@lfsinedeZJSinz 0,do, ...
[0} 0

0

sin""?6,_,df,_,

‘ X
o o

2 nf2 7
" f "=t 2.112)
0

)

where we have used the formula
- 1/21—<m + 1)
2
Jsin’"@d@:———‘ (2.113)
4]

m+ 2
)
Thus eqn (2.111) may be written

nf2 n—1
Iy = 2% f J [lzl a__ 2.114)

() + a? - ie)?



The dependence on n is now explicit. For complex n, the integral is well-
defined as long as 0 < Re(n) < 4; the lower bound results from the apparent
divergence of the integral at the /= 0 limit. This infrared divergence is
actually an artefact of our procedure as it is cancelled by the singularity in
['(3n) as n — 0. We can extend this domain of analyticity by integration by
parts n

.y

1 L N S VAR 1
n\) [I*+a*—ie]* _/n dI\[P +a —ie)?
r(5)s r(z+1)3

(2.115)
where we have used
ZZ =Tz + 1). (2.116)

The integral is now well defined for —2 < Re(n) < 4. If we repeat this
procedure v times, the analyticity domain is extended to —2v < Re(n) < 4
and eventually to Re(n) — — oo. Thus the integral given in eqn (2.114) can be
taken as an analytic function for Re(n) < 4. To see what happens as n — 4,
we use (2.84) to evaluate the integral for »n < 4,

1
. n do
I(n) = in /2F<2—§>jm. (2.117)
0

Using formula (2.116)

= - as n—4,

we see that the singularity at n = 4 is a simple pole. If we now expand
everything around n = 4

2 4—n
At =1+m-4Hna+..., (2.119)

r(z—f>=—2—+A+(n—4)B+... (2.118)

where 4 and B are some constants, we obtain the limit
1

— in? Jda In[p? — a1l — a)p®] +in%4.  (2.120)
0

With the one-loop contribution of (2.7) (I' = 121/32n*), we have

1

. 2
I(n) —»

n—+4

A2 2i . ! .
T(®) ~ 55 {4—;7, ~i Jdo; In[® — a(l ~ o)p?] +1A}- (2.121)

0o

i

The Taylor expansion around p? = 0 gives

[(p?) =T0) + I'(p?) (2.122)
where
A2 [ 2
o2
© 327r2<4—n tnp i >
iA2
& 2.123
1672(4 — n) (2.123)
and
1
N p = a(l — a)p’
I'(p*) = 92 Jda ln[—~———#2

0

1
—iA? [da(l — a)(2a — 1)p?
"2 | TP = —wpty 21

0

where we have performed an integration by parts. Clearly the finite part is
exactly the same as that given by the method of covariant regularization in
eqn (2.86). Thus the finite part of Green’s function is independent of the
regularization schemes as it should be and only depends on the subtraction
point. The I'(0) term diverges as a simple pole at n = 4 corresponding to the
In A term (2.89) in the covariant regularization calculation.

The one-loop self-energy (Fig. 2.4) is given by eqn (2.6) which in the
dimensional-regularization scheme becomes

R 1
=3 ey Tk

weor{1-2)
T 129

Since, from eqn (2.116),
’ (2.126)

the quadratic divergent term (2.95) has poles at n = 4 and also at n = 2. For
n — 4 we have

it (1
42(0):%(41_")- | (2.127)

To compare the two regularization methods we list the results for the
divergences in Table 2.1. Thus divergent Feynman integrals when evaluated
in n-dimensional space appear as poles of the resulting I" function at



n=4,...etc., keeping in mind that the quadratic divergence also has a pole
at n = 2, see eqn (2.126).

TABLE 2.1
Covariant Dimensional
regularization regularization
3 12 AZ 112
) o (2
. 2% P 3272\4 —n
2
2(0) L e (=2
. 327? 2n2\4 —n

2.4 Power counting and renormalizability

In the previous sections the renormalization procedure in A¢* theory has
been illustrated in some detail. Here we will discuss the problem of
renormalization for the more general types of interaction. The BPH
renormalization procedure will be followed in this discussion. In a later part

of this section, renormalization of composite operators will also be
examined. '

Theories with fermion and scalar particles

For §imp_1icity we shall first concentrate on theories with spin-1/2 and spin-0
particles only. For the Lagrangian density, & = Lo + X &, where %, is
the free Lagrangian quadratic in the fields and the s are the interaction

ten:ns (fOI' examplea gi = gl‘p})pl// aud)s gz(‘ﬁ‘ﬂ)z, 93';!//(1)’ g4¢37 954)49 . ')7 fOf
a given graph we can define the quantities

n; = number of ith type vertices;

b; = number of scalar lines in the ith type vertex;
J; = number of fermion lines in the ith type vertex;
d; = number of derivatives in the ith type vertex;
B = number of external scalar lines:

F = number of external fermion lines;
IB = number of internal scalar lines;

IF = number of internal fermion lines.

Thus for %, =g,y 0*¢ we have b, = 1, f, =2, d; = 1. From the
structure of the graph we have relations like that of (2.58)

B +2(B) = ¥ nb; (2.129a)
F+2(F) = ¥ nf, (2129b)

JusP as in (2.59), the number of loop_integratiolns L can be calculated

L=(IB)+ (IF)—n+ 1 (2.130)

where

n=Yn. (2.131)

The superficial degree of divergence D is then given by

D = 4L — 2(IB) - (IF) + ¥ nid,
=4+ 2(B) + 3(IF) + ¥ m(d; — 4). (2.132)

Using (2.129) we can eliminate /B and [IF,
D=4—-B—-3F+) né; (2.133)

where
6;i=b+3fi+d —4 (2.134) .

is called the index of divergence of the interaction .%;. For 1¢* theory, § = 0
and (2.133) reduces to (2.61). In general §; can be related to the dimension of
the coupling constant in units of mass. Knowing that the Lagrangian density
has dimension four and that the scalar field, the fermion field, and the
derivative have dimensions 1, 3/2, and 1, respectively, the dimension of the
coupling constant is given by

dim(g) =4 — b, —3f —d = —4.. (2.135)

From (2.133) we see that, for a fixed number of external lines, the superficial
degree of divergence will have different behaviour for the following three
cases.

(1) g; has positive dimension (or §; < 0). Then D decreases with the number
of ith type vertices. In this case %, is called a super-renormalizable interaction
and the divergences are restricted to a finite number of graphs. For example,
consider the graphs for the two-point Green’s functions in the super-
renormalizable A¢> theory. The one-loop diagram in Fig. 2.16(a) is divergent
while the two-loop one in Fig. 2.16(b) is not.

—O—  —(D—

) (b)
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(2) g; is dimensionless (or §; = 0). Here D is independent of the number of
ith type vertices. The divergences are present in all higher-order diagrams of

.a finite number of Green’s functions. .&; = g,¢*, g,y¢ are such examples,

and they are called renormalizable interactions.

(3) g has negative dimension (or §; > 0). In this case, D increases with the
number of ith type vertices and all Green’s functions are divergent for
sufficiently large ;. These types of interactions are non-renormalizable, and

are exemplified by &; = g,y ¥ 0“0, g,(Y)?, 930>, ... etc.



