

Quantum Field Theory II

Homework set 2, Due Tu Apr 12

1. In Yang-Mills theory with isospin $SU(2)$ symmetry, consider a $SU(2)$ doublet of the form

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

which transform as

$$\psi \rightarrow \psi' = U(\theta) \psi, \quad \text{with} \quad U(\theta) = \exp \left(-i \frac{\vec{\tau} \cdot \vec{\theta}(x)}{2} \right)$$

The covariant derivative is of the form

$$D_\mu \psi = \left(\partial_\mu - ig \frac{\vec{\tau} \cdot \vec{A}_\mu}{2} \right) \psi$$

Under the gauge transformation we have

$$\frac{\vec{\tau} \cdot \vec{A}'_\mu}{2} = U \left(\frac{\vec{\tau} \cdot \vec{A}_\mu}{2} \right) U^{-1} - \frac{i}{g} (\partial_\mu U) U^{-1}$$

Show that \vec{A}_μ transform as $I = 1$ triplet if U is a global transformation.

2. Suppose the set of scalar fields $\vec{\phi} = (\phi_1, \phi_2, \phi_3)$ transform as a vector in $O(3)$. The self interaction of $\vec{\phi}$ is of the form,

$$L = \frac{1}{2} \left(\partial_\mu \vec{\phi} \right)^2 - V \left(\vec{\phi} \right)$$

where

$$V \left(\vec{\phi} \right) = -\frac{\mu^2}{2} \left(\vec{\phi} \cdot \vec{\phi} \right) + \frac{\lambda}{4} \left(\vec{\phi} \cdot \vec{\phi} \right)^2$$

(a) Find the minimum of $V \left(\vec{\phi} \right)$.

(b) Find the combinations of ϕ'_i 's, which are Goldstone bosons.

3. The $SU(n)$ group consist of $n \times n$ unitary unimodular matrices, $UU^\dagger = U^\dagger U = 1$. For infinitesimal transformation, we can write

$$U_{jk} = \delta_{jk} + \varepsilon_{jk}$$

where ε is a Hermitian matrix,

$$\varepsilon_{jk} = \varepsilon_{kj}^*$$

It is more convenient to use upper or lower indices so that

$$\varepsilon_{jk} \equiv \varepsilon_j^k$$

and complex conjugation interchanges upper and lower indices,

$$\varepsilon_j^k = \left(\varepsilon_k^j \right)^*$$

Then the hermiticity condition becomes

$$\varepsilon_j^k = \varepsilon_j^k$$

The n-dimensional vector ϕ_i and its complex conjugate ϕ^i have the following transformation,

$$\phi_i \longrightarrow \phi'_i = \phi_i + i \varepsilon_i^k \phi_k, \quad \phi^i \longrightarrow \phi'^i = \phi^i - i \varepsilon_j^i \phi^k$$

For the fields in a joint representation ϕ_i^j , we have

$$\phi_i^j \longrightarrow \phi'^j_i = \phi_i^j + i \varepsilon_i^k \phi_k^j - i \varepsilon_k^j \phi_i^k$$

(a) Construct the covariant derivative for ϕ_i and ϕ^i , respectively. Show that the transformation for the gauge field boson is

$$W_{\mu i}^j \longrightarrow W'_{\mu i}^j = W_{\mu i}^j + i\varepsilon_i^k W_{\mu k}^j - i\varepsilon_k^j W_{\mu i}^k - \frac{1}{g} \partial_\mu \varepsilon_i^j$$

(b) Construct the field strength tensor $F_{\mu\nu j}^i$ for the gauge field $W_{\mu i}^j$.

(c) Construct the covariant derivative for scalar fields in the adjoint representation.

4. Consider the Lagrangian for scalar QED with Higgs phenomena,

$$\mathcal{L} = (D_\mu \phi)^\dagger (D^\mu \phi) + \frac{\mu^2}{2} \phi^\dagger \phi - \frac{\lambda}{4} (\phi^\dagger \phi)^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

with

$$(D^\mu \phi) = (\partial^\mu - ie A^\mu) \phi, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$

Consider the static case where $\partial_0 \phi = \partial_0 \vec{A} = 0$ and $A_0 = 0$.

(a) Show that the equation of motion for \vec{A} is of the form,

$$\vec{\nabla} \times \vec{B} = \vec{J}, \quad \text{with } \vec{J} = ie \left[\phi^\dagger (\vec{\nabla} - ie \vec{A}) \phi - ((\vec{\nabla} + ie \vec{A}) \phi^\dagger) \phi \right]$$

(b) Show that with spontaneous symmetry breaking, in the classical approximation $\phi = v = \sqrt{\frac{\mu^2}{\lambda}}$, the current is of the form

$$\vec{J} = e^2 v^2 \vec{A}, \quad \text{London equation}$$

and thus

$$\nabla^2 \vec{B} = e^2 v^2 \vec{B}, \quad \text{Meissner effect}$$

(c) The resistivity ρ for the system is defined as

$$\vec{E} = \rho \vec{J}$$

Show that, in the case of spontaneous symmetry breaking, $\rho = 0$, and we have superconductivity.

5. The σ -model Lagrangian is of the form,

$$\mathcal{L} = \frac{1}{2} [(\partial_\mu \sigma^2 + (\partial_\mu \vec{\pi})^2) + \bar{N} i \gamma^\mu \partial_\mu N + g \bar{N} (\sigma + i \vec{\tau} \cdot \vec{\pi} \gamma_5) N - V(\sigma^2 + \vec{\pi}^2)]$$

with

$$V(\sigma^2 + \vec{\pi}^2) = -\frac{\mu^2}{2} (\sigma^2 + \vec{\pi}^2) + \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2$$

(a) Show that it has the following symmetries, in the infinitesimal forms,

$$\left\{ \begin{array}{l} \sigma \longrightarrow \sigma' = \sigma \\ \vec{\pi} \longrightarrow \vec{\pi}' = \vec{\pi} + i \vec{\alpha} \times \vec{\pi} \\ N \longrightarrow N' = N - i \frac{\vec{\alpha} \cdot \vec{\tau}}{2} N \end{array} \right.$$

and

$$\left\{ \begin{array}{l} \sigma \longrightarrow \sigma' = \sigma + \vec{\beta} \cdot \vec{\pi} \\ \vec{\pi} \longrightarrow \vec{\pi}' = \vec{\pi} - \vec{\beta} \sigma \\ N \longrightarrow N' = N - i \frac{\vec{\beta} \cdot \vec{\tau}}{2} \gamma_5 N \end{array} \right.$$

where $\vec{\alpha}$ and $\vec{\beta}$ are arbitrary parameters.

(b) Compute the charges corresponding to these symmetries and their commutators.