
1 Deep Inelastic Scattering

Introduction
Many important development in high energy physics comes from the stud-

ies of the properties of the proton which has mass Mp = 938.3 Mev/c2. The
diffi culty in the study of proton comes from the fact the proton is a hadron
where the strong interaction is very hard to study. The reason is that in strong
interaction the coupling is intrinsically strong and can not be handled by pertur-
bation theory which has been quite successful in the electromagnetic interaction.
Futhermore in earlier days we do not even know what the right theory looks
like. In the 60’s there were many attempts to abandon the field theory frame-
work and advocate S-matrix theory which is not as simple as field theory. It
is remarkable that a series of experiments in late 60’s and early 70’on elecron
proton scatterings has led to the formulation of strong interaction in the form of
QCD. Even though QCD works quite well in high energies, it is still hampered
by large coupling constants at low erengies.

1.1 Structure of proton

Electron proton scattering
One of the most useful tools to study the structure of proton is the electron

proton scattereing where we can probe the unknown structure of proton with
electron which can be described very well by Quantum Electrodynamics. It
is clear that to reveal the structure of the proton on some scale depends on
the wavelength or energy of the probe, in our case is the electron. The higher
the energy the finer the structure probed. Here we list in the in the order of
increasing enegy the description used to describe this reaction.

1. Rutherford formula

Here the electron energy is low enough that it can be treated as non-
relativistic particle. Also the proton can be treated as a point particle
and we can neglect the recoil of the proton. The differential cross section
is of the simple form,(

dσ

dΩ

)
Ruth erf ord

=
α2

4E2 sin4 θ2

E : incident energy. θ : scattering angle. α: fine structure constant

This is derived from classcial mechanics. In fact, Rutherford used the
deviation from this formula to infer that the atom is not a point particle
but has a structure.

2. Mott fromula

Take into account the spin of electron and relativistic nature of electron,
we get Mott cross section(

dσ

dΩ

)
Mott

=

(
dσ

dΩ

)
Ruth erf ord

(
1− β2 sin2

θ

2

)
Here proton is still treated as a point particle with no structure.
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3. Rosenbluth formula

As the energy of electron is large enough we need to take into account
the strong interaction of the proton. In this simple situation, actually
we can parametrize the strong interaction effect of the proton in terms
of form factors because the electromagnetic current of proton is local and
the initial and final state are simple. We will describe this as follows.

If proton were a pointed particle, the interaction of proton with photon is
simply, 〈

p′|Jemµ |p
〉

= ū(p′)γµu(p)

If we include the strong interaction of the proton, we can parametrize this
interaction as

〈p′|Jemµ |p〉 = ū(p′)

[
γµF1(q

2) + i
σµνq

ν

2m
F2(q

2)

]
u(p)

where we have used the Lornetz covariance and current conservation to
deduce thie simple form. Here q = p−p′, and F1(q2), F2(q2) are functions
of q2 which parametrize the strong interaction effect are usuall called
form factors. As was described in Note 6 , the differential cross section
can be written as,

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
G2E(Q2) + τG2M (Q2)

1 + τ
+ 2τG2M (Q2) tan2

θ

2

]
,

This is usually called the Rosenbluth formula. Here τ = Q2

4M2 and Q2 =
−q2. In this formula, the combinations

GE(q2) = F1 + τF2

GM (q2) = F1 + F2

are called electric and magnetic form factors repectively and they satisfy

GE(0) = F1(0) = 1 total charge

GM (0) = F1(0) + F2(0) = 1 + F2(0) magnetic moment

Experimental measurements give

GpM (0) = 2.79µN , GnM (0) = −1.91µN , with µN =
e

2Mp
nuclear magneton

which are usually referred to as the anomalous magnetic moments of the
nucleons,

GpE(Q2) =
GPM (q2)

2.79
=
GMn (Q2)

−1.91
≈ 1

(1− q2/0.7Gev2)2

These behaviors are known as the dipole form factor. Form factor F1
(
q2
)

can be related to Fourier transform of charge distribution,

F (q2) =

∫
ei~q·~xρ(x)d3x −→ ρ(x) =

∫
d3q

(2π)3
ei~q·~xF (q2)
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The measurement of form factor will give information about the charge
distribution. For spherical charge distribution, we can write

F (q2) = 1− 1

6
~q2〈r2〉+ · · ·

where

〈r2〉 = 4π

∫ ∞
0

r2f(r)r2dr, charge radius,

For proton
〈r2〉proton ' (0.86 fm)2

Note that for −q2 large, form factors decrease very fast ∼ 1

q4

Summary:

1. Proton is not a point particle and has structure

2. The structure of proton can be described by two form factors F1
(
q2
)
,

F2
(
q2
)

3. The charge distribution of proton gives charge radius about 0.86 fm.

1.2 Deep Inelastic ep scattering

As the energy of electron gets larger and larger, the inelastic channels become
more and more important. As the number of particles in the final state increase
in the inelastic channels the analysis become very complicate and the form
factors approach is no longer useful. It is very remarkable development that the
description becomes simple when we add up all the hadronic final states in the
inelastic channels and eventually leads to the formulation of strong interaction
in the form of QCD. To describe this, wrtie the inelastic scattering as

e+ p→ e+X

where X denotes some generic final state which contain one or more particles.
The cross section where the final states are summed over is called the inclusive
cross section. For example, the inclusive differential cross section is of the
form,

d2σ

dΩdE′
(inclusive) =

∑
X

d2σ

dΩdE′
(e+ p→ e+X)

where E′ is the energy of the final state electron. Denote the momenta of this
reaction as

e (k) + p (p)→ e (k) +X (pn)
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Deifne kinematic variables by

q = k − k′, ν =
p · q
M

, W 2 = p2n = (p+ q)
2

In the lab-frame, we have

pµ = (M, 0, 0, 0) , kµ = (E,
→
k ), k

′

µ = (E′,
→
k
′
)

Then
ν = E − E′

is the energy lost of the lepton and, when the lepton mass is neglected

q2 = (k − k′)2 = −4EE′ sin2
θ

2
≤ 0, Q2 = −q2

where θ is the scattering angle. The scattering amplitude can be written as,

Tn = e2
_
u(k′, λ′)γµu(k, λ)

1

q2
〈
n
∣∣Jemµ ∣∣ p, σ〉

where we have used the hadronic electromagnetic current operator Jemµ to denote
the interaction of photon with hadronic states. From the Feynman rule for QED,
summing over spins we get the unpolarized differential cross section,

dσn =
1∣∣∣→v ∣∣∣ 1

2M

1

2E

d3k′

(2π)
3

2k
′
0

n∏
i=1

[
d3pi

(2π)
3

2pi0

]

×1

4

∑
σλλ′

|Tn|2 (2π)
4
δ4 (p+ k − k′ − pn)

where pn =
∑n
i=1 pi. If we sum over all possible hadronic final states n, we get

the inclusive cross section

d2σ

dΩdE′
=
α2

q4

(
E′

E

)
lµνWµν

The leptonic tensor lµν is of the form,

lµν =
1

2
tr
(
/k′γµ /kγν

)
= 2

(
kµk

′
ν + k′µkν +

q2

2
gµν

)
and the hadronic tensor Wµν can be written as

Wµν (p, q) =
1

4M

∑
σ

∑
n

∫ n∏
i=1

[
d3pi

(2π)
3

2pi0

] 〈
p, σ

∣∣Jemµ ∣∣n〉 〈n |Jemν | p, σ〉 (2π)
3
δ4 (pn − q − p)

=
1

4M

∑
σ

∫
d4x

2π
eiq·x

〈
p, σ

∣∣Jemµ (x) Jemν (0)
∣∣ p, σ〉

where we have used completeness in last step. It is more convenient to cast this
in the form of matrix element of a commutator. To achieve this we note that
the term with two current operators in reverse order can be written in the form,∫
d4x

2π
eiq·x

〈
p, σ

∣∣Jemν (0) Jemµ (x)
∣∣ p, σ〉 =

∑
n

(2π)
3
δ4 (pn + q − p) 〈p, σ |Jemν |n〉

〈
n
∣∣Jemµ ∣∣ p, σ〉
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The δ − function reqires the intermediate state |n〉 to have enegy with En =
M − q0 in order to have nonzero result. But since q0 > 0 and the proton is
stable, we can not satisfy the δ − function constraint and this matrix element
is zero. We can therefore write the structure functions in terms of commutator
of currents,

Wµν (p, q) =
1

4M

∑
σ

∫
d4x

2π
eiq·x

〈
p, σ

∣∣[Jemµ (x) , Jemν (0)
]∣∣ p, σ〉

From current conservation ∂µJemµ = 0, we get

qµ
〈
n
∣∣Jemµ ∣∣ p, σ〉 = 0

which implies that
qµWµν (p, q) = qνWµν (p, q) = 0

From the fact thatWµν is a second rank Lorentz tensor and depends on momenta
p, q, one can deduce its covariant decomposition as„

Wµν (p, q) =

[
−W1

(
gµν −

qµqν
q2

)
+
W2

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)]
where W1(q

2, ν) , W2(q
2, ν) are Lorentz invariant structure functions of the

target proton. It is straightforward to compute the differential cross section in
terms of the structure functions,

d2σ

dΩdE′
=

α2

4E′2 sin4
θ

2

(
2W1 sin2

θ

2
+W2 cos2

θ

2

)

By measuring differential cross section at different angles and energies, we can
extract the structure functions, W1 and W2.In the laboratory frame, ν = E −
E′ is the energy loss of lepton

1. Bjorken scatting
As we mentioned before the elastic ep scattering falls off very rapidly as
the momentum transfer −q2 increases due to the compositness of proton.
If this feature persists for other hadronic final state, we would expect
the total inelastic cross section to fall off rapidly as well. The surprise is
that experimentally these cross section seem to be quite sizable instead of
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falling off rapidly for large q2.

Define the dimensionless scaling variable

x =
−q2
2Mv

=
Q2

2Mv
, Q2 = −q2

The range for x is
0 ≤ x < 1

coming from the fact that the invariant mass of final hadronic state is

W 2 = (p+ q)
2

= q2 + 2Mν +M2 ≥M2

Also define

y =
ν

E
= 1− E′

E

the fraction of initial energy transfered to the hadrons. Define

MW1(Q
2, ν) = F1(x, q

2/M2)

νW2(Q
2, ν) = F2(x, q

2/M2)

We can write the inclusive cross section as

d2σ

dxdy
=

8πα2

MEx2y2

[
xy2F1 +

(
1− y − M

2E
xy

)
F2

]
Bjorken scaling is the statement that in the large Q2 limit the F ′is are
functions of x only, ,It turns out that all structure functions have the
limit behavior

lim
|q2|→∞, x fixed

Fi(x, q
2/M2) = Fi(x)

Experimentally for Q2 ≥ 2GeV 2 Bjorken scaling seems to be a good ap-
proximation. This seems to suggest that there are point-like constituents
inside the proton.
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Neutrino-nucleon scattering
Here we consider a very similar reaction,

νl (k) +N (p) −→ l− (k′) +X (pn)

where instead of photon we have weak interaction with

Leff = −GF√
2
JλJ

λ + h.c.

where GF is the Fermi constant. The charged weak current Jλ cna be separated
into leptonic and hadronic parts,

Jλ = Jλl + Jλh

The leptonic part is

Jλl =
_
νeγ

λ (1− γ5) e+
_
νµγ

λ (1− γ5)µ

It is straightforward to work out the differential cross sections

d2σ(ν)

dΩdE′
=
G2F
2π

E′2
(

2 sin2
θ

2
W

(ν)
1 + cos2

θ

2
W

(ν)
2 − (E + E′)

M
sin2

θ

2
W

(ν)
3

)
d2σ(

_
ν)

dΩdE′
=
G2F
2π

E′2
(

2 sin2
θ

2
W

(
_
ν)

1 + cos2
θ

2
W

(
_
ν)

2 +
(E + E′)

M
sin2

θ

2
W

(
_
ν)

3

)
where the structure functions are defined as

W (ν)
µν (p, q) =

1

4M

∑
σ

∫
d4x

2π
eiq·x

〈
p, σ

∣∣∣[Jhµ (x) , J†hν (0)
]∣∣∣ p, σ〉

= −W (ν)
1 gµν +

W
(ν)
2 pµpν
M2

− iW (ν)
3

εαβµνp
αqβ

M2
+
W

(ν)
4 qµqν
M2

+
W

(ν)
5 (pµqν + qµpν)

M2
+ i

W
(ν)
6 (pµqν − qµpν)

M2

Here we have more structure functions because the V−A current is not conserved
and violates parity. Bjorken Scaling for these structure functions are in the form,

MW
(ν)
1 (q2, ν) −→ F

(ν)
1 (x)

νW
(ν)
2 (q2, ν) −→ F

(ν)
2 (x)

νW
(ν)
3 (q2, ν) −→ F

(ν)
3 (x)

It is useful to use the structure functions with definite helicities. In the labora-
tory frame, choose the z-axis such that

pµ = (M, 0, 0, 0), qµ = (q0, 0, 0, q3)

The longitudinal polarization of the virtural photon is then

ε(s)µ =
1√
−q2

(q3, 0, 0, q0)
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and the corresponding structure function is

Ws = ε(s)∗µ Wµνε(s)µ = −W1 −
q23

q2W2
=

(
1− ν2

q2

)
W2 −W1

The right- and left-handed polarization vectors are

ε(R)µ =
1√
2

(0, 1, i, 0) , ε(L)µ =
1√
2

(0, 1,−i, 0)

and their structure functions are

WR = W1 +
1

2M

√
ν2 − q2W3, WL = W1 −

1

2M

√
ν2 − q2W3

In the scaling limit we get,

2MWs −→ FS =
1

x
F2 − 2F1

MWL −→ F2 −
1

2
F3

MWR −→ F2 +
1

2
F3

The differential cross sections can be written as

d2σ(ν)

dxdy
= G2F

MEx

π

[
(1− y)F

(ν)
S + F

(ν)
L + (1− y)

2
F
(ν)
R

]
d2σ(

_
ν)

dxdy
= G2F

MEx

π

[
(1− y)F

(
_
ν)

S + F
(
_
ν)

R + (1− y)
2
F

(
_
ν)

L

]
Note that the cross sections increase linearly with energy.
Parton model
Feynman (1969) suggests that deep inelastic scattering can be viewed as due

to incoherent elastic scattering from point-like constitents inside the neucleon :
Parton.
Assuming that parton has spin 1/2 and carries a fraction of proton momen-

tum, ξp with 0 ≤ ξ ≤ 1. Then the contribution to hadronic tensor is

Kµν (ξ) = Wµν (p, q) =
1

4ξM

∑
σσ′

∫ [
d3p′

(2π)
3

2p
′
0

] 〈
ξp, σ

∣∣Jemµ ∣∣ p′, σ′〉 〈p′, σ′ |Jemν | ξp, σ〉 (2π)
3
δ4 (p′ − q − ξp)

=
1

4ξM

∑
σσ′

_
u (ξp, σ) γµu (p′, σ′)

_
u (p′, σ′) γνu (ξp, σ) δ (p′0 − q0 − ξp0) /2p′0
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The δ-function can be written as

δ (p′0 − q0 − ξp0) /2p′0 = θ (p′0) δ
[
p′2 − (q − ξp)2

]
= θ (q0 + ξp0) δ

(
2Mνξ + q2

)
= θ (q0 + ξp0)

δ (ξ − x)

2Mν

For the spin sum, we have

1

2

∑
σσ′

_
u (ξp, σ) γµu (p′, σ′)

_
u (p′, σ′) γνu (ξp, σ)

=
ξ

2
tr
[
/pγµ (ξ /p+ /q) γν

]
= 2ξ

[
pµ (ξp+ q)ν + pν (ξp+ q)µ − p · (ξp+ q) gµν

]
= 4M2ξ2

(pµpν
M2

)
− 2Mνξgµν + · · ·

where we have neglected the parton mass. The parton tensor is then,

Kµν (ξ) = δ (ξ − x)

(
ξpµpν
M2ν

− 1

2M
gµν + · · ·

)
Let f (ξ) dξ be the number of partons with momentum between ξ and ξ + dξ
(weighted by the squared charges). Then hadronic tensor is

Wµν =

∫ 1

0

f (ξ)Kµν (ξ) dξ

=
xf (x)

ν

pµpν
M2

− f (x)

2M
gµν + · · ·

From this we can read out the structure functions,

MW1 → F1 (x) =
1

2
f (x) (1)

νW2 → F2 (x) = xf (x) (2)

Thus the scaling functons F1,2 are the measures of momentum distribution of
the partons insdie the target proton.
Note that Eqs (1,2) implies that

2xF1 (x) = F2 (x)

which is known as Callan-Gross relation and is a direct consequence of the

assumption that partion has spin
1

2
.

Note that for the case of spin 0 parton, we would have

Kµν ∝
〈
xp
∣∣Jemµ ∣∣xp+ q

〉
〈xp+ q |Jemν |xp〉

∝ (2xp+ q)µ (2xp+ q)ν

Since there is no gµν term, this implies

F1 (x) = 0

In terms of helicity structure functions these imply

FS = 0 for a spin 1/2 parton
FT = 0 for a spin 0 parton

There is a simple explanation for this.
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1.3 Sum rules and application of parton model

It is tempting to identiy the parton with the quarks which as we will discuss later
are believed to be the constituents of the proton. The quarks are supposed to be
bound togather by interacting with gluons. Suppose we start with a primitive
model of 3 free quarks inside the proton, the structure function is essentially a

delta function at x = 1/3, f (x) ˜δ

(
x− 1

3

)
. As we turn on the interacton this

distribution will be smeared and the gluons can produce q
_
q pairs and quarks

can bremsstrahlung gluons. All these processes will produce a "q
_
q” at small x.

Working with quark model. Working with quark with only 3 light quarks, we
write th electromagnetic current as

Jemµ =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs

Then the structure function is

F ep1 (x) =
4

9
(u+ ū) +

1

9
(d+ d̄) +

1

9
(s+ s̄)

here qi(x) denotes the probability of finding a parton with longitudinal momen-
tum fraction x carrying the quantum member of quark q in the proton. (Parton
distribution function). From isospin symmetry, we get en structure functions
by u↔ d

F en1 (x) =
4

9
(d+ d̄) +

1

9
(u+ ū) +

1

9
(s+ s̄)

These parton distribution functions are contraineed by the quantum numbers
of the proton. For example for isospin we get

Isospin:
1

2

∫ 1

0

{
[u (x)− ū (x)]−

[
d (x)−

_

d (x)
]}

dx =
1

2

Strangeness:
∫ 1

0

[
s (x)−

_
s (x)

]
= 0

Charge:
∫ 1

0

2

3
[u (x)− ū (x)]−1

3

∫ 1

0

[
d (x)−

_

d (x)
]
−1

3

∫ 1

0

[
s (x)−

_
s (x)

]
dx = 1

Neutrino deep inelastic scattering

νµ +N → µ+X

νe +N → e+X

JWµ ≈ cos θcūγ
µ(1− γ5)d+ sin θcūγ

µ(1− γ5)s+ · · ·

Here structure functions can also be expressed in terms of parton distribution
functions qi(x)
All data are consistent with partons carrying quark quantum numbers.
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2 Light-cone Singularity and Bjorke Scaling

It turns out that the Bjorken scaling is intimately connecte with the light-cone
behavior in field theory. Recall that the hadronic tensors can be written as

Wµν (p, q) =
1

4M

∑
σ

∫
d4x

2π
eiq·x

〈
p, σ

∣∣[Jemµ (x) , Jemν (0)
]∣∣ p, σ〉 (3)

The scalar product in the exponential can be written as

q · x =
(q0 + q3)√

2

(x0 − x3)√
2

+
(q0 − q3)√

2

(x0 + x3)√
2

−→q T ·
→
xT

where
→
q T = (q1, q2) ,

→
xT = (x1, x2) . In the rest frame of the nucleon,

pµ = (M, 0, 0, 0), qµ = (ν, 0, 0,
√
ν2 − q2)

In the scaling limit −q2, ν →∞ with −q2/2Mν fixed we see that

q0 + q3 ∼ 2ν, q0 − q3 ∼
q2

2ν

We expect that the dominant contribution to the integral in Eq(3) comes from
regions with less rapid oscillations i.e. q · x = O (1) , which implies that

x0 − x3 ∼ O
(

1

ν

)
, and x0 + x3 ∼ O

(
1

xM

)
Or

x20 − x23 ∼ O
(

1

−q2

)
Thus x2 = x20 − x23 −

→
x
2

T ≤ x20 − x23 ∼ O

(
1

−q2

)
which vanishes as −q2 → ∞.

In other words, in the scaling limitwe are probing the current product near the
light cone.

2.1 Free Field Light-cone Singularity

1) Product of fields
In free field theory, the product of fields, such as commutator or propa-

gator are singular on the light-cone
(
x2 ≈ 0

)
and the leading singularities are

indepenet of masses. Consider the free propagator of a scalar field,

〈0 |T (φ (x)φ (0)| 0〉 = i∆F (x) = i

∫
d4k

(2π)
4

e−ikx

k2 −m2 + iε

It is possible to carry out the integration to give

∆F (x) =
−1

4π
δ
(
x2
)
+

m

8π
√
x2
θ
(
x2
) [
J1

(
m
√
x2
)
− iN1

(
m
√
x2
)]
− im

4π2
√
x2
θ
(
−x2

)
K1

(
m
√
−x2

)
where Jn, Nn and Kn are Bessel functions. For x2 ≈ 0, we have

∆F (x) =
i

4π2
1

(x2 − iε) +O
(
m2x2

)
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One can also show that for the commutator we have

[φ (x) , φ (0)] = i∆ (x) =
1

(2π)
3

∫
d4ke−ik·xε (k0) δ

(
k2 −m2

)
=
−i
2π
ε (x0) δ

(
x2
)

for x2 ≈ 0

Setting m2 → 0, we get the relation,

i

∫
d4ke−ik·xε (k0) δ

(
k2
)

= (2π)
2
ε (x0) δ

(
x2
)

Thus the light-cone singularties of the commutator ∆ (x) and that of the prop-
agator function ∆F (x) are directly related,

∆ (x) = 2ε (x0) Im (i∆F (x))

This reflects the singular function identity

1

−x2 + iε
− 1

−x2 − iε = −2πiε (x0) δ
(
x2
)

which is a special case of the general identity(
1

−x2 + iε

)n
−
(

1

−x2 − iε

)n
= − 2πi

(n− 1)!
ε (x0) δ

(n−1) (x2)
In the following calculation we shall obtain the commuator singularities from
those of propagators by the replacement,(

1

−x2 + iε

)n
−→ 2πi

(n− 1)!
ε (x0) δ

(n−1) (x2)
For the fermions the results are summarized as{

ψα (x) ,
_

ψβ (y)
}

= iSαβ (x− y) , Sαβ (x) = (iγ · ∂ +m)αβ ∆ (x)〈
0
∣∣∣T (ψα (x) ,

_

ψβ (y)
∣∣∣ 0〉 = iSFαβ (x− y) , SFαβ (x) = (iγ · ∂ +m)αβ ∆F (x)

For x2 ≈ 0, we have

Sαβ (x) ≈ (iγ · ∂)αβ

[
1

2π
ε (x0) δ

(
x2
)]

SFαβ (x) ≈ (iγ · ∂)αβ

[
1

2π

1

x2 − iε

]
2) Product of scalar currents
Now we consider the composite operators like currents. For simplicity we

consider the scalr current of the form,

J (x) =: φ2 (x) :

12



Note the normal ordering is to remove the singularities which occur in the
product in the product φ (x+ ζ)φ (x− ζ) as ζµ → 0. The singularities in the
product of the currents can be worked out by using Wick’s therem,

T (J (x) J (0)) = T (: φ2 (x) :: φ2 (0) :) = 2 [〈0 |T (φ (x)φ (0))| 0〉]2

+4 〈0 |T (φ (x)φ (0))| 0〉 : φ (x)φ (0) : + : φ2 (x)φ2 (0) :

= −2 [∆F (x,m)]
2

+ 4i∆F (x,m) : φ (x)φ (0) : + : φ2 (x)φ2 (0) :

Hence for x2 ≈ 0, we get

T (J (x) J (0)) ≈ 1

8π4 (x2 − iε)2
− : φ (x)φ (0) :

π2 (x2 − iε) + : φ2 (x)φ2 (0) :

Note that in this expansion the singularitis as x2 ≈ 0 are all contained in the
c-number functions which are independent of the initial or final states. If we
take this between 2 arbitrary states,

〈A |T (J (x) J (0))|B〉 ≈ 〈A|B〉
8π4 (x2 − iε)2

−〈A |: φ (x)φ (0) :|B〉
π2 (x2 − iε) +

〈
A
∣∣: φ2 (x)φ2 (0) :

∣∣B〉
which corresponds to diagrams below.

Free Field Singularities and Scaling
Consider the electromagnetic current given by

Jµ (x) =:
_

ψ (x) γµQψ (x) :

where Q is the electric charge operator. We will first calculate the time-
ordered product by Wick’s theorem,

T (Jµ (x) Jν (0)) = T
(

:
_

ψ (x) γµQψ (x) ::
_

ψ (0) γνQψ (0) :
)

(4)

= Tr
[
iSF (−x) γµiSF (x) γνQ

2
]

+ :
_

ψ (x) γµQSF (x) γνQψ (0) :

+ :
_

ψ (0) γνQSF (−x) γµQψ (x) : + :
_

ψ (x) γµQψ (x)
_

ψ (0) γνQψ (0) :

Using the identity

γµγνγ = (Sµνλρ + iεµνλρ) γ
ρ, where Sµνλρ = gµνgλρ + gµρgνλ − gµλgνρ

13



we can write Eq(4) in the limit x2 ≈ 0 as

T (Jµ (x) Jν (0)) ≈
(
trQ2

) (x2gµν − xµxν)
π4 (x2 − iε)4

+
ixα

2π2 (x2 − iε)2{
Sµανβ

[
V β (x, 0)− V β (0, x)

]
+ iεµανβ

[
Aβ (x, 0)−Aβ (0, x)

]}
+ :

_

ψ (x) γµQψ (x)
_

ψ (0) γνQψ (0) :

where
V β (x, y) =:

_

ψ (x) γβQ2ψ (y) :

Aβ (x, y) =:
_

ψ (x) γβγ5Q
2ψ (y) :

If we write

x2gµν − 2xµxν

(x2 − iε)4
=

2

3

gµν

(x2 − iε)3
− 1

12
∂µ∂ν

1

(x2 − iε)2

and
xα

(x2 − iε)2
= −1

2
∂α
(

1

x2 − iε

)
we get for the commutator,

[Jµ (x) , Jν (0)] ≈ itrQ2

π3

{
2

3
gµνδ”

(
x2
)
ε (x0) +

1

6
∂µ∂ν

[
δ′
(
x2
)
ε (x0)

]}
(5)

+
{
Sµανβ

[
V β (x, 0)− V β (0, x)

]
+ iεµανβ

[
Aβ (x, 0)−Aβ (0, x)

]}
∂α
[
δ
(
x2
)
ε (x0)

]
2π

:
_

ψ (x) γµQψ (x)
_

ψ (0) γνQψ (0) :

We can then apply these to the cross sections of e+e− annihilation and inelastic
eN scattering.

1. e+e−→ hadrons
Following the same procedure as in the discussion of inelastic eN scatter-
ing, it is straightforward to show that the total hadronic cross section for
e+e− annihilation can be written as a current commutator,

σ
(
e+e− → hadrons

)
=

8π2α2

3 (q2)
2

∫
d4xeiq·x 〈0 |[Jµ (x) , Jµ (0)]| 0〉

The most singular light-cone term comes from the first term on the right-
handed side of Eq (5) and we get from this term

σ
(
e+e− → hadrons

)
≈

8π2α2i
(
trQ2

)
3π3 (q2)

2

∫
d4xeiq·x

{
8

3
δ”
(
x2
)
ε (x0) +

1

6
∂2
[
δ′
(
x2
)
ε (x0)

]}
in the large q2 limit. Using the identity

i

∫
d4xe−iq·xε

(
q0
)
δ
(
q2
)

= (2π)
2
ε
(
x0
)
δ
(
x2
)

14



we get

σ
(
e+e− → hadrons

)
≈

8π2α2i
(
trQ2

)
3π3 (q2)

2

[
8

3

q2

4
− q2

6

]
ε
(
q0
)
δ
(
q2
)

=
4πα2

3q2
tr
(
Q2
)

Recall that

σ
(
e+e− → µ+µ−

)
=

4πα2

3q2

Thus we get the simple result

σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
= tr

(
Q2
)

This justify the simple naive picture that in the deep inelastic limit, q2 →
∞, the virtural photon will first produce quarks where is coupling is point
like and then quarks trun into hadrons through some strong interaction
which is diffi cult to compute.

2. Lepton-hadron scattering
For deep inelastic lN scattering the first term on the right-handed side of
Eq (5) will not contribute since it is a c-number and the non-trivial leading
singular term will be the second term which for convenience is written in
the form,

[
Jµ

(x
2

)
, Jν

(
−x

2

)]
≈

 Sµανβ

[
:
_

ψ
(x

2

)
γβQ2ψ

(
−x

2

)
: − :

_

ψ
(
−x

2

)
γβQ2ψ

(x
2

)
:
]

+iεµανβ

[
:
_

ψ
(x

2

)
γβγ5Q

2ψ
(
−x

2

)
: − :

_

ψ
(
−x

2

)
γβγ5Q

2ψ
(x

2

)
:
]  ∂α

[
δ
(
x2
)
ε (x0)

]
2π

(6)
We can expand the bilocal operator

_

ψ
(x

2

)
ψ
(
−x

2

)
=

_

ψ (0)

[
1 +

←
∂ µ1

xµ1

2
+

1

2!

←
∂ µ1

←
∂ µ2

xµ1

2

xµ2

2
+ · · ·

]
×[

1− xν1

2

→
∂ ν1 +

1

2!

xν1

2

xν2

2

→
∂ ν1
→
∂ ν2 + · · ·

]
ψ (0)

=
∑
n

1

n!

xµ1

2

xµ2

2
· · · x

µn

2

_

ψ (0)
↔
∂ µ1

↔
∂ µ2 · · ·

↔
∂ µnψ (0)

to get[
Jµ

(x
2

)
, Jν

(
−x

2

)]
=

∑
n= odd

1

n!

xµ1

2

xµ2

2
· · · x

µn

2
O
(n+1)
βµ1µ2···µn (0)Sµανβ∂

α

[
δ
(
x2
)
ε (x0)

]
2π

+
∑

n=even

1

n!

xµ1

2

xµ2

2
· · · x

µn

2
O
′(n+1)
βµ1µ2···µn (0) iεµανβ∂

α

[
δ
(
x2
)
ε (x0)

]
2π

where
O
(n+1)
βµ1µ2···µn (0) =

_

ψ (0)
↔
∂ µ1

↔
∂ µ2 · · ·

↔
∂ µnγβQ

2ψ (0)

O
′(n+1)
βµ1µ2···µn (0) =

_

ψ (0)
↔
∂ µ1

↔
∂ µ2 · · ·

↔
∂ µnγβγ5Q

2ψ (0)
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To calculate the structure function we write,

1

2

∑
σ

〈
pσ
∣∣∣O(n+1)βµ1µ2···µn (0)

∣∣∣ pσ〉 = A(n+1)pβpµ1pµ2 · · · pµn + trace terms

where A(n+1) is some constant and trace terms contain one or more gµiµj
factors. Also O′(n+1) tetm will not contribute to the spin average structure
functions due to the antisymmetric property of εµανβ . We then have for
the structure function,

Wµν (p, q) ≈ 1

2M

∫
d4x

2π
eiq·x

∞∑
odd n

(x · p
2

)n pβ
n!
A(n+1)Sµανβ∂

α

[
δ
(
x2
)
ε (x0)

]
2π

Define
∞∑

odd n

(x · p
2

)n A(n+1)
n!

=

∫
dξeix·ξpf (ξ)

then

Wµν (p, q) ≈ 1

2M

∫
d4x

2π
eiq·x

∫
dξeix·ξpf (ξ)Sµανβ (q + ξp)

α
pβ
[
δ
(
x2
)
ε (x0)

]
2π

Using the identity,

i

∫
d4x

2π
eix·(q+ξp)δ

(
x2
)
ε (x0) = δ

(
(q + ξp)

2
)
ε (q0 + ξp0)

we have

Wµν (p, q) ≈ 1

M

∫
dξf (ξ) δ

(
q2 + 2Mνξ

)
(gµαgβν + gµβgαν − gµνgαβ) (q + ξp)

α
pβ

=
1

2M2ν

∫
dξf (ξ) δ

(
ξ +

q2

2Mν

)
(−Mνgµν + 2ξpµpν + · · · )

= f (x)
[
− gµν

2M
+
x

ν

pµpν
M2

+ · · ·
]

for x = − q2

2Mν
. Thus we recover the parton modle results

MW1 −→ F1 (x) =
1

2
f (x)

νW2 −→ F2 (x) = xf (x)

This implies that the assumption of canonical free-field light-cone structure is
equivalent to that of parton model.

16


