
1 QCD

1.1 Quark Model

1. Isospin symmetry
In early studies of nuclear reactions, it was found that, to a good approxi-
mation, nuclear force is independent of the electromagnetic charge carried
by the nucleons – charge independence. In other words, strong interac-
tion has an SU(2) symmetry which transforms n into p and vice versa.
These SU(2) generators T1, T2, T3 satisfy the commutation similar to that
of angular momenta,

[Ti, Tj ] = iεijkTk

Acting on n or p we have

T3|p〉 =
1

2
|p〉, T3|n〉 = −1

2
|n〉, T+|n〉 = |p〉, T−|p〉 = |n〉 · · ·

This means that n or p form a doublet under isospin transformation.
Isospin invariance simply means that

[Ti, Hs] = 0

where Hs is the strong interation Hamiltonian.

We can extend the isospin assignments to other hadrons by assuming
isospin invariant in their productions. For example we get the following
isospin multiplets,

(π+, π0, π−) I = 1, (K+,K0), (K̄0,K−) I =
1

2
, η , I = 0

(Σ+,Σ0,Σ−) I = 1, (Ξ0,Ξ−), I =
1

2
, Λ, I = 0

(ρ+, ρ0, ρ−) I = 1, (K+∗,K0∗), (K̄0∗,K∗−) I =
1

2
· · ·

If isospin symmetry were exact, then all particles in the same multiplets
have same masses, which is not the case in nature. But the mass difference
within the isospin multiplets seems to be quite small.

mn −mp

mn +mp
∼ 0.7× 10−3,

mπ+ −mπ0

mπ+ +mπ0
∼ 1.7× 10−2 · · ·

Thus we can treat the isospin symmetry as approximate one and maybe
it is good to few %.

2. SU(3) symmetry and Quark Model

When Λ andK particles were discovered, they were produced in pair (asso-
ciated production) with longer life time. It was postulated that these new
particles possessed a new additive quantum number, called strangeness
S , conserved by strong interaction but violated in decays,

S(Λ0) = −1, S(K0) = 1 · · ·
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Extension to other hadrons systematically, we can get a general relation,

Q = T3 +
Y

2

where Y = B + S is called hyperchargee, and B is the baryon number.
This is known as Gell-Mann-Nishijima relation.

Eight-fold way : Gell-Mann, Neeman

When we group mesons or baryons with same spin and parity, we see that

we see that they form a patterns of 8 or 10 as shown in the figure. These
are the same as some irreducible representations of SU(3) group. This
can be extended to other hadrons which are either in octet or decouplet
representations of SU (3) . Thus the spectra of hadrons seem to show some
pattern of SU (3) symmetry. But this symmetry is lots worse than isospin
symmetry of SU (2) because the mass splitting within the SU (3) multi-
plets is about 20% at best. Nevertheless, it is still useful to classify hadrons
in terms of SU (3) symmetry. This is known as the eight-fold way.

Quark Model

One peculiar feature of the eight fold way is that octet and decuplet are not
the fundamental representation of SU(3) group. In 1964, Gell-mann and
Zweig independently propose the quark model, in which all hadrons are
built out of spin 1

2 quarks which transform as members of the fundamental
representation of SU(3), the triplet,

qi =

 q1

q2

q3

 =

 u
d
s


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with the quantum numbers

Q T T3 Y S B
u 2/3 1/2 +1/2 1/3 0 1/3
d −1/3 1/2 −1/2 1/3 0 1/3
s −1/3 0 0 −2/3 −1 1/3

In this scheme, mesons are qq̄ bound states. For examples,

π+ ∼ d̄u π0 ∼ 1√
2

(ūu− d̄d). π− ∼ ūd

K+ ∼ s̄u K0 ∼ s̄d , K− ∼ ūs. η0 ∼ 1√
6

(ūu+ d̄d− 2s̄s)

and baryons are qqq bound states,

p ∼ uud , n ∼ ddu

Σ+ ∼ suu , Σ0 ∼ s
(
ud+ du√

2

)
, Σ− ∼ sdd

Ξ0 ∼ ssu , Ξ− ∼ ssd , Λ0 ∼ s(ud− du)√
2

.

It seems that the quantum numbers of the hadrons are all carried by the
quarks. But we do not know the dynamics which bound the quarks into
hadrons. Since quarks are the fundamental constituent of hadrons it is
important to find these particles. But over the years none have been
found.

Paradoxes of simple quark model

(a) Quarks have fractional charges while all observed particles have in-
teger charges. At least one of the quarks is stable. None has been
found.

(b) Hadrons are exclusively made out qq̄, qqq bound states. In other
word, qq, qqqq states are absent.

(c) The quark content of the baryon N∗++ is uuu. If we chose the spin

state to be

∣∣∣∣32 , 3

2

〉
then all quarks are in spin-up state~ α1α2α3

which is totally symmetric. If we assume that the ground state has
l = 0, then spatical wave function is also symmetric. This will leads
to violation of Pauli exclusion principle.

Color degree of freedom

One way to get out of these problems, is to introduce color degrees of
freedom for each quark and postulates that only color singlets are physical
observables. 3 colors are needed to get antisymmetric wave function for
N∗++ and remains a color singlet state. In other words each quark comes
in 3 colors,

uα = (u1, u2, u3) , dα = (d1, d2, d3) · · ·
All hadrons form singlets under SU(3)color symmetry, e.g.

N∗++ ∼ uα(x1)αβ(x2)uγ(x3)εαβγ
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Futhermore, color singlets can not be formed from the combination qq,
qqqq and they are absent from the observed specrum. Needless to say
that a single quark is not observable.

Gell-Mann Okubo mass formula

Since SU(3) is not an exact symmetry, we want to see whether we can
understand the pattern of the SU(3) breaking. Experimentally, SU(2)
seems to be a good symmetry, we will assume isospin symmetry to set
mu = md. We will assume that we can write the hadron masses as linear
combinations of quark masses.

(a) o− mesons
Here we assume that the meson masses are linear functions of quark
masses,

m2
π = λ(mo + 2mu)

m2
k = λ (mo +mu +ms)

m2
η = λ

[
mo +

2

3
(mu + 2ms)

]
where λ and m0 are some constants with mass dimension. Eliminate
the quark masses we get

4m2
k = m2

π + 3m2
η

This known as the Gell-Mann Okubo mass formula. Experimentally,
we hav LHS = 4m2

k ' 0.98(Gev)2 while RHS = m2
π + 3m2 '

0.92(Gev)2 This seems to show that this formula works quite well.

(b) 1
2

+
baryon

The masses of 1
2

+
baryons can be written as,

mN = m0 + 3mu

mΣ = mo + 2mu +ms

mΞ = mo +mu + 2ms

mΛ = mo + 2mu +ms

The Gell-Mann-Okubo mass formula takes the form,

mΣ + 3mΛ

2
= mN +mΞ

Expermentally,
mΣ + 3mΛ

2
' 2.23 Gev, and mN +mΞ ' 2.25 Gev .

(c) 3
2

+
baryon

The mass relation here is quite simple,

mΩ −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −mN∗

This sometimes is referred to as equal spacing rule. In fact when this
relation is derived the particle Ω has not yet been found and this
relation is used to predicted the mass of Ω and subsequent discovery
gives a very strong support to the idea of SU (3) symmetry.
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ω − φ mixing
For the 1− mesons, the situation seems to be quite different. If we make
an analogy with o− mesons, we would get the Gell-Mann Okubo mass
relation in the form,

3m2
ω = 4m2

K∗ −m2
ρ

Using mK∗ = 890 Mev and mρ = 770 Mev we would get mω = 926.5
Mev from this. But experimentally, we havemω = 783 Mev which is qiute
far away. On the other hand, there is a φmeson with massmφ = 1020Mev
and has same SU(2) quatntum number as ω. In principle, when SU(3)
symmetry is broken, ω − φ mixing is possible. Suppose for some reason
there is a significant ω − φ mixing we want to see whether this can save
the mass relation.

Denote the SU(3) octet state by V8 and singlet state by V1

V8 =
1√
6

(ūu+ d̄d− 2s̄s) , V1 =
1√
3

(ūu+ d̄d+ s̄s)

Write the mass matrix as

M =

(
m2

88 m2
18

m2
18 m2

11

)
Assume that the octet mass is that predicted by Gell-Mann Okubo mass
relation, i.e.

3m2
88 = 4m2

K∗ −m2
ρ

After diagonalizing the mass matrix M , we get

R+MR = Md =

(
m2
ω 0

0 m2
φ

)
, with R =

(
cos θ sin θ
− sin θ cos θ

)
Thus (

cos θ sin θ
− sin θ cos θ

)(
m2
ω 0

0 m2
φ

) (
cos θ − sin θ
sin θ cos θ

)
=

(
m2
φ sin2 θ +m2

ω cos2 θ m2
φ cos θ sin θ −m2

ω cos θ sin θ

m2
φ cos θ sin θ −m2

ω cos θ sin θ m2
φ cos2 θ +m2

ω sin2 θ

)
and we get

sin θ =

√
(m2

88 −m2
ω)

(m2
φ −m2

ω)

The mass eigenstates are

ω = cos θV8 − sin θV1

φ = sin θV8 + cos θV1

Using m88 = 926.5Mev from Gell-Mann Okubo mass formula, we get

sin θ = 0.76
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This is very close to the ideal mixing sin θ =
√

2
3 = 0.81 where mass

eigenstates have a simple form,

ω =
1√
2

(ūu+ d̄d)

φ = s̄s

This means that the physical φ meson is mostly made out of s quarks in
this scheme.

Zweig rule

Since ω and φ have same quantum numbers under SU(2), one expects they
have similar decay widths. Experimentally, ω → 3π mostly, but φ → 3π
is very suppressed relative to φ→ KK channel even though φ→ KK has
very small phase space since mφ = 1020 Mev and mk ≈ 494 Mev.

B(φ→ KK) ≈ 85% , B(φ→ πππ) ∼ 28%

Quark diagrams
In term quarks contents, the decays of φ meson proceed as following dia-
grams indicate φ→ K+K−

Zweig rule postulates that processes involving quark-antiquark annihila-
tion are highly suppressed for some reason. This explains why φ has a
width Γφ ≈ 4.26 Mev smaller than Γω ≈ 8.5 Mev.
Note that the Zweig rule is very qualitative and is hard to make it more
quantitive.

J/ψ and charm quark
In 1974 the ψ/J(3100) particle was discovered with unusually narrow
width, Γ ∼ 70 kev as compared to Γρ ∼ 150Mev,and ΓW ∼ 10Mev.
A simple explanation is that ψ/J is a bound state of c̄c and is below the
threshold of decaying into 2 mesons containing charm quark. Thus it can
only decay by cc̄ annihilation in the initial state. By Zweig rule, these
decays are highly suppressed and have very narrow width.

6



2 Asymptotic freedom

1. λφ4 theory
The Lagrangian is

L =
1

2
[(∂µφ)2 −m2φ2]− λ

4!
φ4

Effective coupling constant λ̄ satisfies the differential equation

dλ̄

dt
= β(λ̄) , β(λ) ≈ 3λ2

16π2
+O(λ3)

It is not asymptotically free. The generalization to more than one scalar
fields is the replacement,

λφ4 → λijklφiφjφkφl , λijkl is totally symmetric

Then the differential equations are of the form,

βijkl =
dλijkl
dt

=
1

16π2
[λijmnλmnkl + λikmnλmnjl + λilmnλmnjk]

For the special case, i = j = k = l = 1, we wee thatβ1111 = 3
16π2λiimnλmn11 >

0
and theory is not asymptotically free.

2. Yukawa interaction
Here we need to include the scalar self interaction λφ4 in order to be
renormalizable

L = ψ̄(iγµ∂µ −m)ψ +
1

2
[(∂µφ)2 − µ2φ2]− λφ4 + fψ̄ψφ

Now we have a coupled differential equations,

βλ =
dλ

dt
= Aλ2 +Bλf2 + Cf4, A > 0

βf =
df

dt
= Df3 + Eλ2f, D > 0

To get βλ < 0 , with A > 0 , we need f2 ∼ λ. This means we can drop
E term in βf . With D > 0, Yukawa coupling f is not asymptotically free.
Generalization to the cases of more than one fermion fields or more scalar
fields will not change the situation.

3. Abelian gauge theory(QED)

The Lagrangian is of the usual form,

L = ψ̄iγµ(∂µ − ieAµ)ψ −mψ̄ψ − 1

4
FµνF

µν

The effective coupling constant
_
e satisfies the equation,

d
_
e

dt
= βe =

_
e

3

12π2
+O(e5)
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For the scalar QED we have

d
_
e

dt
= β′e =

_
e

3

48π2
+O(e5)

Both are not asymptotically free.

4. Non-Abelian gauge theories
It turns out that only non-Abelian gauge theories are asymptotically free.
Write the Lagrangian as

L = −1

2
Tr(FµνF

µν)

where
Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], Aµ = TaA

a
µ

and
[Ta, Tb] = ifabcTc , Tr(Ta, Tb) =

1

2
δab

The evolution of the effective coupling constant is governed by

dg

dt
= β(g) = − g3

16π2
(
11

3
)t2(V ) < 0

The graphs which contribute to the β−function are listed below.

Since β(g) < 0 for small g, this theory is asymptotically free. Here

t2(V )δab = tr[Ta(V )Tb(V )] t2(V ) = n for SU(n)

If gauge fields couple to fermions and scalars with representation matrices,
T a(F ) and T a(s) respectively, then

βg =
g3

16π2

[
−11

3
t2(V ) +

4

3
t2(F ) +

1

3
t2(s)

]
where

t2(F )δab = tr(T
a(F )T b(F ))

t2(S)δab = tr(T
a(S)T b(S))

8



3 QCD

Quark model needs colors symmetry to overcome paradoxes of simple quark
model. On the other-hands, Bjroken scaling in deep inelastic scattering seems
to require asymptotically free theory. Since only the non-Abelian gauge theories
are asymptotically free, it is then natural to make this color symmetry of the
quarks into a local symmetry. The resulting theory is the Quantum chromody-
namics. It is straight forward to write down the Lagrangin for this theory

LQCD = −1

2
tr(GµνG

µν) +
∑
k

q̄k(iγµDµ −mk)qk

where

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

Dµqk = (∂µ − igAµ)qk , Aµ = Aaµ
λa

2

The β function to lowest order in g is of the form,

βg =
−1

16π2
(11− 2

3
nf ) = −bg3 nf : number of flavors

and the equation for the effective coupling constant is

dḡ

dt
= −bḡ3, with t = lnλ

The solution is

ḡ2(t) =
g2

1 + 2bg2t
where g = ḡ(g, 0)

For large momenta, λφi, λ large, ḡ
2(t) decreases like lnλ

Conveient to define

αs(Q
2) =

ḡ2(t)

4π

then we can write

αs(Q
2) =

αs(µ
2)

1 + 4πbαs(µ2) ln(Q2/µ2)

Introduce Λ2 by the relation,

ln Λ2 = lnµ2 − 1

4πb αs(µ2)

then effective coupling constant can be written as

αs(Q
2) =

4π

(11− 2
3nf ) lnQ2/Λ2

Thus the effective coupling constant αs(Q2) decreases slowly ∼ 1
lnQ2 . QCD can

make prediction about scaling violation (small) in the forms of integral over
structure functions.
Quark confinements
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Since αs(Q2) is small for large Q2 , it is reasonable to believe that αs(Q2)
is large for small Q2 . If αs(Q2) is large enough between quarks so that quarks
will never get out of the hadrons. This is called quark confinement. It is most
attractive way to "explain" why quarks cannot be detected as free particles.
QCD and Flavor symmetry
QCD Lagrangian is of the form

LQCD = −1

2
tr(GµνG

µν) +
∑
k

q̄kiγ
µDµqk +

∑
k

q̄kmkqk

where

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , Aµ = Aaµ
λa

2
Dµqk = (∂µ − igAµ)qk , qk = (u, d, s · · · )

Consider the simple case of 3 flavors,

qk = (u, d, s)

LQCD = −1

2
tr(GµνG

µν)+(ūiγµDµu+d̄iγµDµd+s̄iγµDµs)+muūu+mdd̄d+mss̄s

In the limit mu = md = ms = 0, LQCD , is invariant under SU(3)L × SU(3)R
transformations u

d
s


L

→ UL

 u
d
s


L

,

 u
d
s


R

→ UR

 u
d
s


R

where UL and UR are 3 × 3 unitary matrices. However, hadron spectra shows
only approximate SU(3) symmetry, not SU(3) × SU(3) symmetry. We can
reconcile this by the scheme SU(3)× SU(3) is broken spontaneously to SU(3)
so that particles group into SU(3) multiplet. This would require 8 Goldstone
bosons, which are massless. However in real world quark masses are not zero,
these Goldstone bosons are not exactly massless. But if this symmetry break-
ing makes sense at all, these Goldstone bosons should be light. Thus we can
identify them as pseudoscalar mesons. In other worlds, pseudoscalar mesons are
”almost”Goldstone bosons. We can identify them with the pseudoscalar octet
mesons, π,K and η.
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