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1 Path Integral Quantization of Gauge Theory

Canonical quantization of gauge theory is diffi cult because the gauge invariance implies that not all com-
ponents of gauge fileds are real physical degree of freedom. To eliminate those components which are
dependent, it is eaiser to use path integral quantization
To see the diffi culty, consider for simplicity, SU(2) Yang-Mills fields,

L = −1

4
F aµνF

aµν a = 1, 2, 3

where
F aµν = ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν

We can write the generating functional as

W [J ] =

∫
[dAµ]ei

∫
d4x[L+

→
J µ·

→
A
µ

]

The free-field part is then

W0[J ] =

∫
[dAµ] exp{i

∫
d4x[L0 +

→
J µ ·

→
A
µ

]}

Write the free Lagrangian part as,∫
d4xLo(x) = −1

4

∫
d4x(∂µA

a
ν − ∂νAaµ)(∂µA

aν − ∂νAaµ)

=
1

2

∫
d4xAaµ(x)(gµν∂2 − ∂µ∂ν)Aaν(x)

The general formula for the Gaussian integral is of the form,∫
[dφ]exp[−1

2
〈φKφ〉+ 〈J φ〉] ∼ 1√

detK
exp

〈
JK−1J

〉
However, in our case the operator K

Kνµ(x− y) = (gµν∂2 − ∂µ∂ν)δ4(x− y)

has the property of the projection operator, i.e.∫
d4yKµν(x− y)Kν

λ(y − z) ∝ Kνλ(x− z)

and has no inverse. This means that the Gaussian intergral diverges. The reason that W0(J) is singular is
due to the gauge invariance which projects out the transverse gauge fields. In the path integeral for W0(J)
we have summed over all field configurations, including "orbits" that are related by gauge transformation.
This over-counting is the root of the divergent integral. Thus we have to remove this "volume" of the orbit
in the quantization.



Volume factor in gauge theory

1.0.1 Simple example

We shall use a 2-dimensional integral to illustrate the strategy to factor out the volume factor. Take a
simple integral of the form,

W =

∫
dxdyeiS(x,y) =

∫
d2reiS(

→
r ) (1)

where
→
r = (r, θ). Suppose S(

→
r ) is invariant under rotation,

S(
→
r ) = S(

→
r φ), with

→
r φ = (r, θ + φ) (2)

Thus S(
→
r ) is constant over (circular) orbit and the integral W is proportional to the length of the orbit.

So if we only wish to sum over contribution from inequivalent S(
→
r )′s we can simply divide out the volume

factor corresponding to polar integration
∫
dθ = 2π. We will use a more complicate prodedure which can

be generalized to more general cases. Insert an identity,

1 =

∫
dφδ (θ − φ)

into W given in Eq(1)

W =

∫
dφ

∫
d2reiS(

→
r )δ (θ − φ) =

∫
dφWφ

Use the invarinat property S(
→
r ) = S(

→
r φ), we see that

Wφ = Wφ′ , =⇒ Wφ is independent of φ

and

W =

∫
dφWφ = Wφ

∫
dφ = 2πWφ

We can impose more complicate constraint,
g(
→
r ) = 0 (3)

which intersects each orbit only once. We need to compute
[
∆g

(→
r
)]
defined by

1 =

∫
dφ

[
∆g

(→
r
)]
δ
[
g(
→
r φ)
]

Write [
∆g

(→
r
)]−1

=

∫
dφ δ

[
g(
→
r φ)
]

We can show that ∆g (r) is rotational invariant,[
∆g

(→
r φ′
)]−1

=

∫
dφ δ

[
g(
→
r φ+φ′)

]
=

∫
dφ” δ

[
g(
→
r φ”)

]
=
[
∆g

(→
r
)]−1



Integrating over φ, we get

∆g

(→
r
)

=
∂g(
→
r )

∂θ

∣∣∣∣∣
g=0

(4)

The integral is then

W =

∫
dφWφ with Wφ =

∫
d2reiS(

→
r )δ
[
g(
→
r φ)
]

∆g

(→
r
)

(5)

Again, Wφ is rotational invariant and we can remove the voulume factor in Eq(5),

Wφ′ =

∫
d2reiS(

→
r )δ
[
g(
→
r φ′)

]
∆g

(→
r
)

=

∫
d2r′eiS(

→
r
′
)δ
[
g(
→
r φ′)

]
∆g(

→
r′) with

→
r′ =

(
r, φ′

)
1.0.2 Volume factor in Gauge Theories

In the case of gauge theory the situation is much mor complicate. But the principle is the same and it is
useful to think of the local gauge symmetry as the generalization of the rotational symmetry in the simple
example we describe before.

Under the gauge transformation we have
→
Aµ →

→
A
θ

µ, where

→
Aµ ·

→
τ

2
−→

→
A
θ

µ ·
→
τ

2
= U(θ)[(

→
Aµ ·

→
τ

2
) +

1

ig
U−1(θ)∂µU(θ)]U−1(θ)

where

U(θ) = exp[
−i
→
θ ·→τ
2

]

This is analogous to the rotational transformation given in Eq(2). We restrict the path integration to
hypersurface which intersects each orbit once. If we choose the hypersurface as

fa(
→
Aµ) = 0, a = 1, 2, 3 (6)

so that the equation

fa(
→
A
θ

µ) = 0

has a unique solution for θ for a given
→
Aµ.This is analogous to Eq (3). In the neighborhood of identity, we

can write

U(θ) = 1 + i

→
θ ·→τ

2
+O(θ2)

The integration over group space can be chosen as

[dθ] =

3∏
a=1

dθa

Define

∆−1f [
→
Aµ] =

∫
[dθ(x)]δ[fa(

→
A
θ

µ)]

then

∆f [Af ] = det Mf where (Mf )ab =
δfa
δθb



This is the generalization of the formula,∫
dx δ (f (x)) =

1

df/dx

∣∣∣∣
f=0

Recall that the infinitesimal gauge transformation is of the form,

Aθaµ = Aaµ + εabcθbAcµ −
1

g
∂µθ

a

and the responce of the function f is written as

fa(
→
A
θ

µ) = fa(
→
Aµ) +

∫
d4y[Mf (x, y]abθb(y) +O(θ2)

Again ∆f [
→
Aµ] is gauge invariant, as illustrated by the following simple calculation. From

∆−1f [
→
Aµ] =

∫
[dθ′(x)]δ[fa(

→
A
θ′

µ )]

we get

∆−1f [
→
A
θ

µ] =

∫
[dθ′(x)]δ[fa(

→
A
θθ′

µ )] =

∫
[d(θ(x)θ′(x)]δ[fa(

→
A
θθ′

µ )]

=

∫
[dθ”(x)]δ[fa(

→
A
θ”

µ )] = ∆−1f [
→
Aµ]

The path integral is then∫
[d
→
Aµ] exp{i

∫
L(x)d4x} =

∫
[dθ(x)]

[
d
→
Aµ

]
∆f (

→
Aµ)δ[fa(

→
A
θ

µ)] exp{i
∫
L(x)d4x}

=

∫
[dθ(x)]

[
d
→
Aµ

]
∆f (

→
Aµ)δ[fa(

→
Aµ)] exp{i

∫
L(x)d4x}

We can now drop the "volume factor"
∫

[dθ(x)] to write the generating functional as

Wf [ ~J ] =

∫
[d
→
Aµ](detMf )δ[fa(

→
Aµ)] exp{i

∫
d4x[L(x) +

→
J µ ·

→
A
µ

]}

This is calles Faddeev-Popov ansatz and the factor detMf is called the Faddeev-Popov determinant. This
is the path integral suitable for quantization.

1.0.3 Faddeev-Popov Ghost

The factor detMf can be written as

(detMf ) ∼
∫

[dc][dc+]exp{i
∫
d4xd4y

∑
c+a (x)[Mf (x, y)]abcb(y)}

where ca, c
†
b are Grassman fields and are called Faddeev-Popov ghost, because they are not real physical

degrees of freedoms. In this form, we can treat the Faddeev-Popov determinant as an additional term in
the Lagrangian and adaptable for the perturbative calculation. We also want to convert δ[fa(Aµ)] into
some effective Lagrangian form. Suppose we choose the gauge fixing term to be instead of Eq(6),

[fa(
→
Aµ)] = Ba(x)



where Ba(x) is some arbitrary function. Then the integral∫
[dθ(x)]∆f [

→
Aµ]δ[fa(

→
A
θ

µ)−Ba(x)] = 1

will give the same ∆f [Aµ] as before. Note that∫
[dBa(x)]exp{− i

2ξ

→
B
2

(x)} ∼ constant, ξ is arbitrary

We can then write

W [J ] =

∫
[dAaµ][dBa(x)](detMf )δ[fa(

→
Aµ)−Ba] exp{i

∫
d4x[L(x)−

→
J
µ

·
→
Aµ −

1

2ξ

→
B
2

(x)]}

=

∫
[dAaµ](detMf ) exp{i

∫
d4x[L(x)−

→
J
µ

·
→
Aµ −

1

2ξ
[fa(Aµ)]2]},

Put all these together we can write

W [J ] =

∫
[dAaµ][dc(x)][dc†(x)] exp{iSeff [ ~J ]}

where the effective action is of the form,

Seff [ ~J ] = S[ ~J ] + Sgf + SFPG

Here Sgf is the gauge fixing term,

Sgf =
1

2ξ

∫
d4x{fa[Aµ(x)]}2

and SFPG is the Faddev-Popov ghost term,

SFPG =

∫
d4xd4y

∑
a,b

c†a(x)[Mf (x, y)]abcb(y)

Covariant gauge

One of the most common choice of the gauge fixing term is that which leads to covariant gauge

fa(Aµ) = ∂µAaµ = 0

We can compute the Faddev-Popov determinan as follows. Under infinitesimal gauge transformation,

U(θ(x)) = 1 +
i
→
θ ·→τ

2
+O(θ2)

we get

Aaθµ = Aaµ + εabcθb(x)Acµ(x)− 1

g
∂µθ

a

Then

fa(Aθµ) = fa(Aµ) + ∂µ[εabcθb(x)Acµ(x)− 1

g
∂µθ

a(x)] = fa(Aµ) +

∫
d4y[Mf (x, y]abθ

b(y)

with
[Mf (x, y)]ab = −1

g
∂µ[δab∂µ − gεabcAcµ]δ4(x− y)

Then

Sgf = − 1

2ξ

∫
d4x(∂µAµ)2

SFPG =
1

g

∫
d4x

∑
a,b

c+a (x)∂µ[δab∂µ − gεabcAcµ]cb(x)

In this form we can generate Feynman rule and do the calculation perturbatively if applicable.


