
Note 7 Grand Unification

June 16, 2011

Ling-Fong Li

1 Grand Unification Theory

The standard model of electroweak and strong interactions based on the gauge
group SU (3)C × SU (2)L × U (1)Y seems to work quite well. Since these in-
teractions are all based on gauge theory, it is desirable to have more unified
theory which can combine all these interactions as components of a single force;
a theory with only one guage coupling.
1974 Georgi and Glashow proposed a SU (5) model which is the simplest

unification model.

1.1 SU(5) Model

A general representation under an SU (5) transformation may be expressed in
tensor notation as,

ψij···kl··· −→ U imU
j
nU

s
kU

t
l · · ·ψmn···st···

where indices run from 1 to 5 and

[U ]
i
m = [exp (iαaλa/2)]

i
m

is a 5× 5 unitary matrix and {λa} , a = 0, 1, 2, · · · , 23 is a set of 5× 5 hermitian
traceless matrices with normalization,

T (λaλb) = 2δab

For example,

λ3 =


0

0
0

1
−1

 , λ0 =
1√
15


2

2
2
−3

−3


To obtain the SU (3)C × SU (2)L content of a representation, we identify first
3 of SU (5) indices as color indices and the other 2 as SU (2)L indices,

i = (α, r), with α = 1, 2, 3 r = 1, 2 (1)

Fermion content
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In the standard model with one generation, the fermion content with respect
to SU (3)C × SU (2)L are given by,

(νe, e)L ∼ (1,2) , e+
L ∼ (1,1) ,

(uα, dα)L ∼ (3,2) , ucαL ∼ (3∗,1) , dcαL ∼ (3∗,1)

where we have used the relaitons

ψc = Cγ0ψ∗, (ψR)
c

= (ψc)L ≡ ψ
c
L

The SU (3)C × SU (2)L contents of the simple SU (5) representations are ;

lowest rep ψi 5 = (3,1) + (1,2)

lowest conjugate ψi 5∗= (3∗,1) + (1,2)
anti-symm ψij 10 = (3∗,1) + (3,2) + (1,2)

Comparing these with first generation fermions, we see that they can be acco-
modated as 5∗+10 representation of SU (5) ,

5∗ :
(
ψi
)
L

=
(
dc1, dc2, dc3, e−, ν

)
L

and

10 :
(
χij
)
L

=
1√
2


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ −0


Charge Quantization
One immediate consequence of the SU (5) unification is a simple explana-

tion for the experimentally observed charge quantization. In general, if the
unification group is simple, the charge quantization follows. This is because the
eigenvalues of a non-Abelian group are discrete while those corresponding to
the Abelian U (1) group are continuous. Note that in SU (3)C ×SU (2)L model
the electric charge operator can be written as

Q = T3 +
Y

2

It is useful to express this relation in terms of the generators of SU (5) . Write

Q = T3 + cT0

It is straightforward to see that

c = −
√

5

3

1.2 Gauge bosons

The SU (5) adjoint representation Aji has dimension 52 − 1 = 24 and the
SU (3)C × SU (2)L decomposition is

24 = (8,1) + (1,3) + (1,1) + (3,2) + (3∗,2)
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Use the index convention given in Eq(1), we can interpret this as

Aαβ (8,1) SU (3)C color gluons
Ars (1,3) SU (2)L weak bosons

Aαα −Arr (1,1) U(1) weak boson
Arα (3,2) Lepto-quark
Aαr (3∗,2) Lepto-quark

The leptoquark

Arα = (Xα, Yα), Aαr =

(
Xα

Y α

)
have fractional charges

Q (X) = −4

3
, Q (Y ) = −1

3

and will play an important role in the Baryon number violation. If we put all
SU(5) gauge bosons in 5× 5 matrix

Aµ =

23∑
a=0

Aaµ
λa

2

we get

A =


G1

1 G1
2 G1

3 X1 Y1

G2
1 G2

2 G2
3 X2 Y2

G3
1 G3

2 G3
3 X3 Y3

X1 X2 X3 W 3 +B W+

Y 1 Y 2 Y 3 W− −W 3 +B

 (2)

1.3 Spontaneous symmetry breaking

The spontaneous symmetry breaking is supposed to take place in two stages,
characterized by two mass scales, v1 and v2

SU(5)
v1−→ SU (3)C × SU (2)L × U (1)Y

v2−→ SU (3)C × U (1)EM

where v1 � v2. This corresponds to X,Y masses being superheavy, MX,Y �
MW,Z . This can be achieved with scalars inin adjoint

(
Hi
j

)
and vector (φi)representations.

The general SU (5)−invariant 4-th order potential is,

V (H,φ) = V1 (H) + V2 (φ) + λ4tr
(
H2
) (
φ†φ

)
+ λ5

(
φ†H2φ

)
with

V1 (H) = −m2
1tr
(
H2
)

+ λ1

[
tr
(
H2
)]2

+ λ2tr
(
H4
)

V2 (φ) = −m2
2

(
φ†φ

)
+ λ3

(
φ†φ

)2

Here H is 5 × 5 a traceless hermitian matrix and we have imposed a discrete
symmetry H → −H and φ → −φ to get rid of various cubic terms. For

3



simplicity, we first minimize the potential V1 (H) . It can be shown that, for

λ2 > 0 and λ1 > −
7

30
, V1 (H) has an extremum at H = 〈H〉 with

〈H〉 = v1


2

2
2
−3

−3


where

v2
1 =

m2
1

[60λ1 + 14λ2]

With V EV the pattern for the symmetry breaking is

SU (5) −→ SU (3)× SU (2)× U (1)

and gauge bosons X, and Y obtain masses ∝ v1. As we will see later v1 could
be of order of 1015 Gev or so.

The fact H develops V EV also effects the φ system through the cross cou-
plings λ4, λ5. The color triplet φt : (3,1) and flavor doublet φd : (1,2) compo-
nents of φ = (φt, φd) acquires respective mass terms,

m2
t = −m2

2 + (30λ4 + 4λ5) v2
1 (3)

m2
d = −m2

2 + (30λ4 + 9λ5) v2
1 (4)

Thus after the first stage of symmetry breaking all particle masses are expected
to be of order of v1 which should be superheavy. For the second stage of sym-
metry breaking we need a SU (2) doublet to break the symmetry at energy of
order of 250 Gev. Here we assume that "somehow" the m2

d in Eq (4) is much
smaller than v2

1 and will survive to low energy(∼ 250 Gev) as the superheavy
particle (with masses of order v1) decouple. The relevant physics is described
by the effective potential,

Veff (φd) = −m2
d

(
φ†dφd

)
+ λ3

(
φ†dφd

)2

which produce symmetry breaking

SU (2)× U (1) −→ U (1)

φd =
1√
2

(
0
v2

)
, v2 =

√
m2
d

λ3
∼ 250 Gev

This feature where v1 � v2 is usually called the gauge hierachy.

1.4 Coupling constant unification

The standard model describes elecromagnetic, weak and strong interactions for
energies ≤ 102Gev with 3 different coupling constants: gs, g, and g′ for the gauge
groups, SU (3)C , SU (2)L and U (1)Y respectively. The grand unified theory
unifies these into one coupling constant corresponding to unified gauge group.
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The possibility of different couplings for the various subgroups arises because of
spontaneous symmetry breaking; X,Y gauge bosons of SU (5) acquire masses
and decouple from the coupling constant renormalization. Note that since the
energy dependence of coupling constants is only logarithmic, and since in the
energy region ' 102Gev, g, g′,and gs are quite different the unification scaleMX

is expected to be many orders of magnitude larger than 102Gev.
The covariant derivative for SU (5) is

Dµ = ∂µ + ig5

23∑
a=0

Aaµ
λa

2

and for SU (3)C × SU (2)L × U (1)Y

Dµ = ∂µ + igs

8∑
a=1

Gaµ
λa

2
+ ig

3∑
r=1

W r
µ

λr

2
+ ig′Bµ

Y

2

The definition of coupling constants depends on the normalization of the gener-
ators. All non-Abelian groups here are normalized as Tr(λaλb) = 2δab and we
have

g5 = g3 = g2 = g1 (5)

with
g3 = gs, g2 = g

The coupling g1 is that of the Abelian U (1) subgroup. Thus

ig1λ
0A0

µ = ig′Y Bµ

and A0
µ is identified with Bµ gauge field. Note that

Y =



−2

3

−2

3

−2

3
1
−1


From this we get

Y = −
√

5

3
λ0, g′ = −

√
3

5
g1

The weak mixing angle is then

sin2 θW =
g′2

g2 + g′2
=

3

8
(6)

The relations given Eqs (5,6) are valid at unification scale. To compare them
with experimental data we need to evolve them down to low energy ∼ 102Gev.
The evolution of the SU (n) coupling constant is of the form,

dgn
d (lnµ)

= −bng3
n
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where
bn =

1

48π2
(11n− 2NF ) for n ≥ 2

b1 = − NF
24π2

Then we get

bn − b1 =
11n

48π2

In our case, the solution for the effective coupling constants are

1

g2
1 (µ)

=
1

g2
1 (µ0)

+ 2b1 ln

(
µ

µ0

)
1

g2
2 (µ)

=
1

g2
2 (µ0)

+ 2b2 ln

(
µ

µ0

)
1

g2
3 (µ)

=
1

g2
3 (µ0)

+ 2b3 ln

(
µ

µ0

)
In terms of more familiar parameters,

g2
1 (µ)

4π
=

(
5

3

)
α (µ)

cos2 θW
,

g2
2 (µ)

4π
=

α (µ)

sin2 θW
,

g2
3 (µ)

4π
= αs (µ)

we get
1

αs (µ)
=

1

α5
+ 8πb3 ln

(
µ

MX

)
sin2 θW
α (µ)

=
1

α5
+ 8πb2 ln

(
µ

MX

)
3

5

cos2 θW
α (µ)

=
1

α5
+ 8πb1 ln

(
µ

MX

)
where we have used

g1 (MX) = g2 (MX) = g2 (MX) = g5, and
g2

5

4π
= α5

Taking a linear combination to eliminate ln

(
µ

MX

)
to get

2

αs
− 3

α
sin2 θW +

3

5α
cos2 θW = 8π [2 (b3 − b1)− 3 (b2 − b1)] ln

(
µ

MX

)
= 0

This implies

sin2 θW =
1

6
+

5α (µ)

9αs (µ)

Using the measured values of α (µ) and αs (µ) we get

sin2 θW ' .21

and
MX ' 4× 1014Gev
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Or using the measured values of sin2 θW , we get

This shows that these 3 coupling constants do not unify very well. It turns out
that if we use supersymmetric version of unification we get

This has become one of the motivation for supersymmetry.

1.5 Baryon number violation

The gauge couplings of 5∗+10 fermions
(
ψi, χij

)
, coming from their covariant

derivative, are of the form, Using the gauge boson matrix in Eq (2)

g
_

ψγµATµψ + trg
_
χγµ{Aµ, χ} = −

√
1

2
gW †µ

(_
νγµe+

_
uαγ

µeα
)

+

√
1

2
gXa

µα[εαβγ
_
uαγ

µqβa + εab(
_
qαbγ

µe+ −
_

l bγ
µdcα)]

Note that X bosons couple to two-fermion channels with different baryon num-

bers. In one case, they couple to quarks and leptons (B =
1

3
); in other case
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they transform quarks to antiquark (B =
2

3
). Consequently , through media-

tion of X − boson, a B = −1

3
channel can be converted into a B =

2

3
one, a

baryon number violation process. Since MX is very heavy we can write down
the effective 4-fermion local interaction for the baryon violating processes,

L∆B=1 =
g2

2M2
X

εαβγεab(
_
u
c
αγ

µqβa)(
_

d
c

αγµlb +
_
e

+
γµqαb)

This will give rise to the following decays of the proton,

p −→ e+π0, e+ω, · · ·

To calculate these decay rates one needs to renormalize these effective La-
grangian from MX down to energy of order of 1 Gev and use some hadronic
model to compute the hadronic matrix elements. One of the most important
feature here is the factor M2

X in the denominator which the decay rates very
small because MX ∼ 1015Gev or more.
In the 80’s the proton decay experiments have been actively pursued and

none has been found. The best limit is

τ(p −→ e+π0) ≥ 1.6× 1033 years

Baryon number asymmetry in the universe
Observationally, the universe seems to be made out of mostly matter and

very little anti-matter. In the standard hot Big Bang Model, the matter and
anti-matter are produced in equal amount. Question is then how this matter-
antimatter symmetric situation can evolve into matter- antimatter asymmetric
universe we observe today. One quantitative measure of this asymmetry is the
ratio of baryon number density nB to the Cosmic Background Radiation (CMB)
photon density nγ ,

η =
nB
nγ
' (6.1± 0.2)× 10−10

Saharov has studied this problem and came up with 3 conditions needed to
generate this asymmetry,

1. Baryon number violation
If the baryon number were conserved by all processes, then the initial
situation of nB = 0 of hot Big Bang model can not change as the universe
evolves.
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2. C and CP violations
For a baryon violating reaction involving baryon, X −→ qq, there will
also be a mirror processes

_
X −→

_
q
_
q for the corresponding anti-baryon

that can creat exactly negative amount of nB , no net baryon number can
be generated if these two processes can occur with same rate. Thus C
and CP violations are needed to get a different rates for the particle and

anti-particle processes, i.e., Γ (X −→ qq) 6= Γ
(_
X −→

_
q
_
q
)
.

3. Out of thermal equilibrium
Heuristically, we can understand this by recalling that CPT invariance
requires particle and anti-particle to have the same mass, hence to be
equally weighted in the Boltzmann distribution; thus no CPT invariant
interactions can generate a non-zero baryon number density.

GUTs, such as SU(5), togather with expansion of the universe can satisfy
all these conditions. Unfortunately the CP violation in the Standard Model is
not large enough to account for observed aymmetry η ∼ 1010.
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