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Group Theory
The tool for studying symmetry is the group theory. Will give a simple discussion
Elements of group theory
group G :collection of elements (a, b, c� � � ) with a multiplication laws satis�es;

1 Closure. If a, b 2 G , c = ab 2 G
2 Associative a(bc ) = (ab)c

3 Identity 9e 2 G 3 a = ea = ae 8a 2 G

4 Inverse For every a 2 G , 9a�1 3 aa�1 = e = a�1a

Examples

1 Abelian group � � group multiplication commutes, i.e. ab = ba 8a, b 2 G
e.g. cyclic group of order n, Zn , consists of a, a2, a3, � � � , an = E

2 Orthogonal group � � n � n orthogonal matrices, RRT = RT R = 1, R : n � n matrix
e. g. the matrices representing rotations in 2-dimesions,

R (θ) =
�
cos θ � sin θ
sin θ cos θ

�
3 Unitary group � � � � n � n unitary matrices,
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Built larger groups from smaller ones by direct product:
Direct product group � �Given two groups , G = fg1, g2 � � � g, H = fh1, h2 � � � g de�ne a
direct product group is de�ned as G �H = fgihjg with multiplication law

(gihj )(gmhn) = (gigm )(hjhn)
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Theory of Representation

group G = fg1 � � � gn � � � g. If for each group element gi ! D (gi ) ,n � n matrix such that

D (g1)D (g2) = D (g1g2) 8 g1, g2 2 G

then D 0s a representation of the group G (n-dimensional representation). If a non-singular
matric M such that matrices can be transformed into block diagonal form,

MD (a)M�1 =

0B@ D1(a) 0 0
0 D2(a) 0

0 0
. . .

1CA for all a 2 G .

D (a) is called reducible representation. Otherwiseit is irreducible representation (irrep)
Continuous group: groups parametrized by continuous parameters
Example: Rotations in 2-dimensions can be parametrized by 0 � θ < 2π
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SU(2) group
Set of 2� 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n � n unitary matrix U can be written as

U = e iH H : n � n hermitian matrix

From
detU = e iTrH

TrH = 0 if detU = 1

Thus n � n unitary matrices U can be written in terms of n � n traceless Hermitian matrices.

Note that Pauli matrices:

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�
is a complete set of 2� 2 hermitian traceless matrices.
De�ne Ji =

σi
2 then

[J1, J2 ] = iJ3 , [J2, J3 ] = iJ1 , [J3, J1 ] = iJ2

Lie algebra of SU (2) symmetry. same as commutators of angular momentum.
To construct the irrep of SU (2) algebra, de�ne

J2 = J21 + J
2
2 + J

3
2 , with property [J2, Ji ] = 0 , i = 1, 2, 3

(Institute) Note 8 5 / 36



Also de�ne

J� � J1 � iJ2 then J2 =
1
2
(J+J� + J�J+) + J23 and [J+, J�] = 2J3

choose simultaneous eigenstates of J2, J3 ,

J2 jλ,mi = λjλ,mi , J3 jλ,mi = mjλ,mi

From
[J+, J3 ] = �J+

we get
(J+J3 � J3J+)jλ,mi = �J+jλ,mi

Or
J3(J+jλ,mi) = (m + 1)(J+jλ,mi)

Thus J+ is called raising operator . Similarly, J� lowers m to m � 1,

J3(J�jλ,mi) = (m � 1)(J�jλ,mi)

Since
J2 � J23 , λ�m2 � 0
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m is bounded above and below. Let j be the largest value of m, then

J+jλ, ji = 0

Then
0 = J�J+jλ, ji = (J2 � J23 � J3)jλ, ji = (λ� j2 � j)jλ, ji

and
λ = j(j + 1)

Similarly, let j 0 be the smallest value of m, then

J�jλ, j 0i = 0 λ = j 0(j 0 � 1)

Combining these 2,

j(j + 1) = j 0(j 0 � 1) ) j 0 = �j and j � j 0 = 2j = integer

use j ,m to label the states. Assume the states are normalized,

hjmjjm 0i = δmm 0

Write
J�jjmi = C�(jm)jj ,m � 1i
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Then
hjmjJ�J+jjmi = jC+(j ,m)j2 !

LHS = hj ,mj(J2 � J23 � J3)jjmi = j(j + 1)�m2 �m

Then

C+(j ,m) =
q
(j �m)(j +m + 1)

Similarly

C�(j ,m) =
q
(j +m)(j �m + 1)
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Summary: eigenstates jjmi have the properties

J3 jj ,mi = mjj ,mi J�jj ,mi =
q
(j �m)(j �m + 1)jjm � 1i , J2 jj ,mi = j(j + 1)jmi

jj ,mi, m = �j ,�j + 1, � � � , j are the basis for irreducible representation of SU(2) group. From
these we can construct the representation matrices.
Example: j = 1

2 , m = � 1
2

J3 =

���� 12 ,� 12
�
= � 1

2
j 1
2
,� 1
2
i

J+j
1
2
,
1
2
i = 0 , J+j

1
2
,� 1
2
>= j 1

2
,
1
2
i , J�j

1
2
,
1
2
>= j 1

2
,� 1
2
i , J�j

1
2
,� 1
2
i = 0

If we write

j 1
2
,
1
2
i = α =

�
1
0

�
j 1
2
,� 1
2
i = β =

�
0
1

�
Then we can represent J 0s by matrices,

J3 =
1
2

�
1 0
0 �1

�
J+ =

�
0 1
0 0

�
J� =

�
0 0
1 0

�
Taking linear combinations,

J1 =
1
2
(J+ + J�) =

1
2

�
0 1
1 0

�
J2 =

1
2i
(J+ � J�) =

1
2

�
0 �i
i 0

�
these are just Pauli matrices.
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Product representation
Let α be the spin-up and β the spin-down states. For 2 spin 1

2 particles, the total wavefunction
is , α1α2, α1β2 � � �
De�ne ~J (1) acts only on particle 1 and ~J (2) on particle 2.

~J = ~J (1) +~J (2)

Use
J3 = J

(1)
3 + J (2)3 , J3(α1α2) = (J

(1)
3 + J (2)3 )(α1α2) = (α1α2)

From
~J2 = (~J (1) +~J (2))2 = (~J (1))2 + (~J (2))2 + 2[

1
2
(J (1)+ J (2)� + J (1)� J (2)+ + J (1)3 J (2)3 ]

~J2(α1α2) = (
3
4
+
3
4
+
2
4
)jα1α2i = 2jα1α2i

j1, 1i = α1α2 These means that jα1α2i is a j = 1 state. Use lowering operator to get other
j = 1 states

J�(α1α2) = (J
(1)
� + J (2)� )(α1α2) = (β1α2 + α1β2)

On the other hand

J�(α1α2) = J�j11i =
q
(1+ 1)(1� 1+ 1)j1, 0i =

p
2j1, 0i
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Thus

j1, 0i = 1p
2
(β1α2 + α1β2)

Clearly j1, 0i = β1β2The The only state left-over is

1p
2
(α1β2 � β1α2)

This is a j0, 0i state
Summary:

1 Among the generator only J3 is diagonal, � SU(2) is a rank-1 group

2 Irreducible representation is labeled by j and the dimension is 2j + 1

3 Basis states jj ,mi m = j , j � 1 � � � (�j) representation matrices can be obtained from

J3 jj ,mi = mjj ,mi J�jj ,mi =
q
(j �m)(j �m + 1)jj ,m � 1i
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SU(2) and rotation group
The generators of SU (2) group are Pauli matrices

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 �i
i 0

�
, σ3 =

�
1 0
0 �1

�

Let
!
r = (x , y , z ) be arbitrary vector in R3 (3 dimensional coordinate space). De�ne a 2� 2

matrix h by

h = ~σ �!r =
�

z x � iy
x + iy �z

�
h has the following properties

1 h+ = h

2 Trh = 0

3 det h = �(x 2 + y 2 + z 2)

Let U be a 2� 2 unitary matrix with detU = 1. Consider the transformation

h ! h0 = UhU †

Then we have

1 h0+ = h0

2 Trh0 = 0

3 det h0 = det h
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Properties (1)&(2) imply that h�can also be expanded in terms of Pauli matrices

h0 =~r 0 �~σ !
r = (x 0, y 0, z 0)

det h0 = det h ) x 02 + y 02 + z 02 = x 2 + y 2 + z 2

Thus relation between
!
r and

!
r
0
is a rotation.

An arbitrary 2� 2 U induces a rotation in R3 . This is a connection between SU (2)and O (3)
groups. Note that U and �U correspon to the same rotation.
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Rotation group & QM
Rotation in R3 can be represented as

!
r = (x , y , z ) = (r1, r2, r3) , ri ! r 0i = RijXj RRT = 1 = RT R

Consider an arbitary function of coordinates, f (
!
r ) = f (x , y , z ). Under the rotation, the change

in f
f (ri )! f (Rij rj ) = f

0(ri )

If f = f 0 we say f is invariant under rotation, e.g. f (
!
r ) = f (r ), r =

p
x 2 + y 2 + z 2

In QM, implement the rotation by

jψi ! jψ0i = U jψi, O ! O 0 = UOU †

so that
hψ0jO 0jψ0i = hψjO jψi

If O 0+ = O , we say the operator O is invariant under rotation

UO = OU [O ,U ] = 0

In terms of in�nitesimal generators

U = e�iθ~n�~J/�h

this implies [Ji ,O ] = 0, i = 1, 2, 3. If O is the Hamiltonian H , this gives [Ji ,H ] = 0.
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Let jψi be an eigenstate of H with eigenvaule E ,

H jψi = E jψi

then
(JiH �HJi )jψi = 0 ) H (Ji jψi) = E (Ji jψi)

i .e jψi & Ji jψi are degenerate. For example, let jψi = jj ,mi the eigenstates of angular
momentum, then J�jj .mi are also eigenstates if jψi is eigenstate of H. This means
for a given j , the degeneracy is (2j + 1).
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Gauge Theory
Abelian gauge theory(QED)
Maxwell Equation

~r � ~E = ρ

ε0
, ~r � ~B = 0

~r� ~E + ∂~B
∂t
= 0 ,

1
µ0
~r� ~B = ε0

∂~E
∂t
+~J

Source free equations can be solved by

~B = r�~A , ~E = �rφ� ∂~A
∂t

In Minkowski space

∂µAν � ∂νAµ = F µν F ij � εijkBh F 0i � E i

!
E and

!
B are unchanged under the transformation

φ ! φ� ∂α

∂t
, ~A ! ~A + ~rα

Or

Aµ ! Aµ � ∂µα, where Aµ = (
φ

c
,~A)
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This is called gauge invariance.
Schrodinger Equation for a charged particle

[
1
2m
(
�h
i
~r� e~A)2 � eφ]ψ = i�h

∂ψ

∂t

To get same physics, need to transform ψ

ψ ! e ieα/�hψ α = α (x )

This provides a connection between gauge transformation with symmetry transformation.
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More general construction, start with a free electron �eld Lagrangian,

L0 =
_
ψ(x )(iγµ∂µ �m)ψ(x )

This has global U(1) symmetry,

ψ(x )! ψ = e�iαψ(x ) α : constant

ψ̄(x )! ψ̄0(x ) = ψ̄(x )e iα

Suppose
α = α(x ) ψ0 = e�iα(x )ψ(x ) , ψ̄0(x ) = ψ̄(x )e iα(x )

transformation of derivative

ψ̄(x )∂µψ(x ) ! ψ̄0(x )∂µψ0(x ) = ψ̄(x )∂µψ(x )� i (∂µα)(ψ̄ψ) not invariant

Introduce gauge �eld Aµ(x ) to form covariant derivative

Dµψ � (∂µ + igAµ)ψ(x )

So that Dµψ transforms same way asψ,

(Dµψ)0 = e�iα(x )(Dµψ)
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This requires that
(∂µ + igA0µ)ψ

0 = e�iα(∂µ + igAµ)ψ

and

A0µ = Aµ �
1
g

∂µα

Then
L = ψ̄iγµ(∂µ + igAµ)ψ�mψ̄ψ

is invariant under local symmetry transformation (local symmetry)
Lagrangian for gauge �eld is ,

L = � 1
4
FµνF µν Fµν = ∂µAν � ∂νAµ

This is invariant under gauge transformation.
We can write Fµν in terms of covariant derivative,

DµDνψ = (∂µ + igAµ)(∂ν + igAν)ψ

= ∂µ∂νψ� g 2AµAνψ+ ig (Aµ∂ν + Aν∂µ)ψ+ ig (∂µAν)ψ

The antisymmetric combination is

(DµDν �DνDµ)ψ = ig (∂µAν � ∂νAµ)ψ = ig (Fµν)ψ

(Institute) Note 8 19 / 36



From
[(DµDν �DνDµ)ψ]

0 = e�iα(DµDν �DνDµ)ψ

we see
F 0µν = Fµν

is gauge invariant.
The complete Lagrangian

L = ψ̄iγµ(∂µ + igAµ)ψ�mψ̄ψ� 1
4
FµνF µν

is invariant under gauge transformation

ψ(x )! ψ0�iα(x )ψ(x )

Aµ(x )! A0µ(x ) = Aµ(x )�
1
g

∂µα(x )

Remarks:

1 AµAµ term is not gauge invariant ) �eld massless.

2 Dµψ = (∂µ + igAµ)ψ the coupling is universal

3 no gauge self coupling

Recipe for the construction of theory with local symmetry

1 Write down a Lagrangian with local symmetry
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2 Replace ∂µφ by covariant derivative Dµφ �
�

∂µ � igAaµta
�

φ where guage �elds Aaµ have

been introduced.

3 Use
�
DµDν �DνDµ

�
φ � F aµνφ to construct the �eld tensor F aµν and add �

1
4
F aµνF

aµν to

the Lagrangian density

(Institute) Note 8 21 / 36



Non-Abelian symmetry-Yang Mills �elds
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symm.
Consider isospin doublet

ψ =

�
ψ1
ψ2

�
Under SU(2) transformation

ψ(x )! ψ0(x ) = expf� i~τ �
~θ

2
gψ(x ),

where ~τ = (τ1, τ2, τ3) are Pauli matrices, with

[
τi
2
,

τj
2
] = iεijk (

τR
2
)

Start with free Lagrangian which is invariant under SU (2) symm,

L0 = ψ̄(x )(iγµ∂µ �m)ψ

Under local symmetry transformation,

ψ(x )! ψ0(x ) = U (θ)ψ(x ) with U (θ) = expf� i~τ
~θ(x )
2

g
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As usual for local symmetry, the derivative term does not transform linearly,

∂µψ(x )! ∂µψ0(x ) = U∂µψ+ (∂µU )ψ

Introduce gauge �elds ~Aµ to form covariant derivative,

Dµψ(x ) � (∂µ � ig
~τ � ~Aµ

2
)ψ

Require that Dµψ transforms as ψ(x )

[Dµψ]0 = U [Dµψ]

which requires

(∂µ � ig
~τ � ~Aµ

0

2
)(Uψ) = U (∂µ � ig

~τ � ~Aµ

2
)ψ

Or

� ig (
~τ � ~Aµ

0

2
)U + ∂µU = U (�ig

~τ � ~Aµ

2
)

~τ � ~Aµ
0

2
= U (

~τ � ~Aµ

2
)U�1 � i

g
(∂µU )U�1
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Use covariant derivatives to construct �eld tensor

DµDνψ = (∂µ � ig
~τ � ~Aµ

2
)(∂ν � ig

~τ � ~Aν

2
)ψ = ∂µ∂νψ� ig (

~τ � ~Aµ

2
∂νψ+

~τ � ~Aν

2
∂µψ)

�ig ∂µ(
~τ � ~Aν

2
)ψ+ (�ig )2(

~τ � ~Aµ

2
)(
~τ � ~Aν

2
)ψ

Antisymmetrization

(DµDν �DνDµ)ψ � ig (
~τ � ~Fµν

2
)ψ

~τ � ~Fµν

2
=
~τ

2
� (∂µ ~Aν � ∂ν ~Aµ)� ig [

~τ � ~Aµ

2
,
~τ � ~Aν

2
]

Or
F iµν = ∂µAiν � ∂νAiµ + g εijkAiµA

k
ν

The the term quadratic in A is new in Non-Abelian symmetry.
Under gauge transformation.

~τ � ~Fµν
0
= U (~τ � ~Fµν)U�1

In�nitesmal transformation θ(x )� 1

Ai/µ = Aµ + εijk θjAkµ �
1
g

∂µθi

F /i
µν = F

i
µν + εijk θjF kµν

Remarks
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1 Again AaµA
aµ is not gauge invariant)gauge boson massless)long range force

2 Aaµ carries that symmetry charge (e.g. color � )

3 F aµν � ∂A � ∂A + gAA ! term responsible for Asymptotic freedom.

(Institute) Note 8 25 / 36



Spontaneous symmetry breaking
Spontaneous symmetry breaking� -symm of ground state 6= symmetry of the Hamiltonian
)If symmetry is continuous, =) massless scalar �elds�Goldstone boson
Example:ferromagnetism
T > Tc (Curie temp) all dipoles are randomly oriented� � rotational invariant
T < Tc all dipoles are oriented in some direction
Ginzburgh-Landau theory
Free energy as function of magnetization ~M (averaged)

µ(~M ) = (∂t ~M )2 + α1(T )~M � ~M + α2(~M � ~M )2

take α2 > 0 so that free energy is positive for large M and α1(T ) = α(T � Tc ) α > 0 so that
there is a transition going throughTc . Ground state is governed by

~M (α1 + 2α2 ~M � ~M ) = 0

For T > Tc only solution is ~M = 0 and T < Tc non-trivial sol j~M j = +
q

α1
2α2

6= 0
) ground state with ~M in some direction is no longer rotational invariant.
Nambu-Goldstone theorem
Noether�s theorem: a continuous symmetry =) conserved charge Q. Suppose 2 local operators
A,B with property

[Q ,B ] = A Q =
Z
d 3x j0(x ) indep of time
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Suppose h0jAj0i = v 6= 0 (symmetry breaking condition)

0 6= h0j[Q ,B ]j0i =
Z
d 3x h0j[j0(x ),B ]j0i

= ∑
n
(2π)3δ3( ~Pn)fh0jj0(0)jnihnjB j0ie�iEn t � hnjB j0ih0jj0(0)jnie�iEn tg = v

Since V 6= 0 and time-independent, we need to a state such that

En ! 0 for ~Pn = 0

massless excitation. For relativistic particle E =
p
~P 2 +m2 ,this implies massless particle�

Goldstone boson.
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Discrete symmetry case

L = 1
2
(∂µφ)2 � µ2

2
φ2 � λ

4
φ4 , φ ! �φ symmetry

The Hamiltonian density

H =
1
2
(∂0φ)2 +

1
2
(~rφ)2 +

µ2

2
φ2 +

λ

4
φ4

E¤ective energy

µ(φ) =
1
2
(~rφ)2 + V (φ) , V (φ) =

µ2

2
φ2 +

λ

4
φ4

For µ2 < 0 the ground state has φ = �
q
�µ2

λ classically.
This means the quantum ground state j0i will have the property

h0jφj0i = ν 6= 0 symmetry breaking condition

De�ne quantum �eld φ0 by φ0 = φ� ν

then L = 1
2
(∂µφ02 � (�µ2)φ02 � λνφ03 � λ

4
φ04

No Goldstone boson� -discrete symmetry
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Abelian symmetry case

L = 1
2
[(∂µσ)2 + (∂µπ)2 ]� V (σ2 + π2)

with

V (σ2 + π2) = �µ2

2
(σ2 + π2) +

λ

4
(σ2 + π2)2

This system has O(2) symmetry,�
σ
π

�
!
�

σ0

π0

�
=

�
cos α sin α
� sin α cos α

��
σ
π

�
The minimum is located at

σ2 + π2 =
µ2

λ
= ν2

This is a circle in σ� π plane . For convenience choose h0jσj0i=ν h0jπj0i=0.
New quantum �eld

σ0 = σ� ν , π0 = π

The new Lagrangian is

L = 1
2
[(∂µσ02 + (∂µπ)2 ]� µ2σ02 � λνσ0(σ02 + π02)� λ

4
(σ02 + π02)2

Note that there is no π02 term, ) π0 massless Goldstone boson
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Non-Abelian case
σ�model

L = 1
2
[(∂µσ2 + (∂µ~π)

2 ] + N̄ iγµ∂µN + g N̄ (σ+ i~τ �~πγ5)N � V (σ2 +~π2)

with

V (σ2 +~π2) = �µ2

2
(σ2 +~π2) +

λ

4
(σ2 +~π2)2

It has the following symmetries, in the in�nitesmal forms,

8>><>>:
σ �! σ0 = σ

!
π �! !

π
0
=
!
π + i

!
α �!

π

N �! N 0 = N � i
!
α �!τ
2

N

and 8>>><>>>:
σ �! σ0 = σ+

!
β �!π

!
π �! !

π
0
=
!
π �

!
β σ

N �! N 0 = N � i
!
β �!τ
2

γ5N

where
!
α and

!
β are arbitrary parameters. The symmetry is of the form, SU (2)� SU (2) . This

Lagrangian has been used in 1960�s to describe the interaction between pions and nucleons.
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Note that the nucleon is massless due to the symmetry under the axial transformation. As for
the spontaneous symmetry breaking, it is easy to see that the minimum is located at

σ2 +~π2 = ν2 =
µ2

λ

If we choose
hσi = ν , h~πi = 0

The ~π are Goldstone bosons. The symmetry is broken from SU (2)� SU (2) to SU (2) . Note
that the spontaneous symmetry also give mass to the nucleon,

MN = gv .
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Higgs Phenomena
Combine spontaneous symmetry breaking with local symmetry=) Higgs Phenomena.
Discovered in the 600s by Higgs, Englert & Brout, Guralnik, Hagen & Kibble independently
Abelian case
Consider the Lagrangian

L = (Dµφ)†(Dµφ) + µ2φφ† � λ(φ†φ)2 � 1
4
FµνF µν

where
Dµφ = (∂µ � igAµ)φ , Fµν = ∂µAν � ∂νAµ

This is invariant under the local gauge transformation

φ(x )! φ0 = e�iα(x )φ(x )

Aµ(x )! A0µ(x ) = Aµ(x )�
1
g

∂µα(x )

The spontaneous symm. breaking is generated by the potential

V (φ) = �µ2φ†φ+ λ(φ†φ)2

minimum at

φ†φ =
ν2

2
=
1
2
(

µ2

λ
)
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In quantum theory, choose

jh0jφj0ij = νp
2

Write

φ =
1p
2
(φ1 + iφ2)

With the choice
hφ1i = ν , hφ2i = 0

φ2 corresponds to Goldstone boson. De�ne quantum �elds by

φ01 = φ1 � ν , φ02 = φ2

Covariant derivative terms gives

(Dµφ)+(Dµφ) = [(∂µ + igAµ)φ
+][(∂µ � igAµ)φ]

�1
2
(∂µφ01 + gAµφ02)

2 +
1
2
(∂µφ02 � gAµφ01)

2 +
g 2ν2

2
AµAµ + � � �

Here we have mass terms for Aµ. Write the scalar �eld as

φ(x ) =
1p
2
(ν+ η(x ))e iξ(x )/ν
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"Gauge" transformation:

φ �! φ0 = e�iξ(x )/νφ(x ) , Bµ = Aµ(x )�
1
g ν

∂µξ

ξ(x ) disappears from the Lagrangian
Roughly speaking, massless gauge �eld Aµ combine with Goldstone boson ξ(x ) to become
massive gauge boson. As a consequence, two long range forces (from Goldstone boson ξ(x ) and
Aµ(x )) disappear.
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Non-Abelian case

SU(2) group: φ =

�
φ1
φ2

�
doublet

L = (Dµφ)†(Dµφ)� V (φ)� 1
4
FµνF µν , Fµν = ∂µAν � ∂νAµ

V (φ) = �µ2(φ†φ) + λ(φ†φ)2

Spontaneous symmetry breaking:

hφi0 =
1p
2

�
0
ν

�
ν =

r
µ2

λ

De�ne φ0 = φ� hφi0
From covariant derivative

(Dµφ)†(Dµφ) = [∂µ � ig
~τ �~Aµ

2
(φ0 + hφi0)]†[∂µ � ig

~τ �~Aµ

2
(φ0 + hφi0)]

! 1
4
g 2hφi0(~τ �~Aµ)(~τ �~Aµ)hφi0 =

1
2
(
gv
2
)2~Aµ �~Aµ

All gauge bosons get masses

MA =
1
2
g ν
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The symmetry is completely broken. Write

φ(x ) = expf i~τ �
~ξ(x )
ν

g
 

0
ν+η(x )p

2

!

Use "gauge" transformation

φ0(x ) = U (x )φ(x ) =
1p
2

�
0

ν+ η(x )

�

~τ � ~Bµ

2
= U

~τ �~Aµ

2
U�1 � i

g
[∂µU ]U�1

where U (x ) = expf~τ �
~ξ

ν
g

to transform away ~ξ(x ).
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