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Group Theory

The tool for studying symmetry is the group theory. Will give a simple discussion
Elements of group theory

group G :collection of elements (a, b, c---) with a multiplication laws satisfies;

@ Closure. Ifabe G, c=abcG
@ Associative a(bc) = (ab)c
@ lIdentity JdJe€eG > a=ea=ae VaeG

@ Inverse Foreveryac€ G ,3a! > aal=e=ala
Examples

@ Abelian group —- group multiplication commutes, i.e. ab=ba Va,be G
e.g. cyclic group of order n, Z,, consists of a, a2, a3, a"=E

@ Orthogonal group —— n x n orthogonal matrices, RRT = RTR =1, R: nx n matrix
e. g. the matrices representing rotations in 2-dimesions,

cosf —sinf
R(G)_< sinff  cosf >

© Unitary group ———— n X n unitary matrices,
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Built larger groups from smaller ones by direct product:
Direct product group —— Given two groups , G = {g1,82---}, H={h1,ha---} define a
direct product group is defined as G x H = {gjh;} with multiplication law

(gihj)(gmhn) = (gigm)(hjh")
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Theory of Representation

group G = {g1---gn - }. If for each group element g; — D (g;) ,n X n matrix such that

D(g1)D(g2) = D(g182) V g1.82€G

then D’s a representation of the group G (n-dimensional representation). If a non-singular
matric M such that matrices can be transformed into block diagonal form,

MD(a)yM™! = for all a € G.

D (a) is called reducible representation. Otherwiseit is irreducible representation (irrep)
Continuous group: groups parametrized by continuous parameters
Example: Rotations in 2-dimensions can be parametrized by 0 < 6 < 27
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SU(2) group
Set of 2 X 2 unitary matrices with determinant 1 is called SU (2) group.
In general, n X n unitary matrix U can be written as

U=e" H :n X n hermitian matrix

From )
detU = '™

TrH =0 if detU =1

Thus n X n unitary matrices U can be written in terms of n X n traceless Hermitian matrices.

Note that Pauli matrices:

0 1 0 —i 1 0
1= 1 0) > 27i o) 7o 4

is a complete set of 2 X 2 hermitian traceless matrices.
Define J; = % then
(N, hl=its , [hBl=ih , [J5,4h]=ik

Lie algebra of SU (2) symmetry. same as commutators of angular momentum.
To construct the irrep of SU (2) algebra, define

P =24+ 2+3 , with property [J2,J]=0, i=1,23
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Also define

Jr=h+ih then 2= (U +J_J)+J2 and [Jy, J-] =21

N| —

choose simultaneous eigenstates of J2, J3,

PA,m)y=AAm) ,  JlA,m)=mlA, m)

From
[(J+, B3] = —Js
we get
(J+J3 - J3J+)|)L, m) = 7J+|)L, m)
Or

S3(J+|A, m)) = (m+1)(J¢[A, m))

Thus J4 is called raising operator. Similarly, J_ lowers m to m — 1,
J3(J-[A,m)) = (m—1)(J-[A, m))

Since
S2>2 , A=-m?>0
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m is bounded above and below. Let j be the largest value of m, then
JilAg) =0

Then
0=J Ji|AJ) = (P = = B)IAJ) = (A= =))IA))

and
A=jl+1)

Similarly, let j/ be the smallest value of m, then

J_

Ajy=0 A=j("-1)
Combining these 2,
G+ =j("~-1) = j=—j and j—j =2j=integer
use j, m to label the states. Assume the states are normalized,
(jm|jm") = &

Write

Jxljm) = Cx(jm)]j, m + 1)
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Then

Then

Similarly

(Institute)

(jm|J-Jyljm) = [Cy(j, m)]> —

LHS = (j, m[(J*> = J5 = J3)|jim) = j(i +1) = m* —m

Ce(Gom) = U—m(+m+1)

C-Uom)=yU+mi-—m+1)

Note 8
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Summary: eigenstates |jm) have the properties

Jsljym) = mlj,m)  Jeljym) =\/(GFm)(Em+1)jm=1) , Slj,m)=j(+1)jm)

Y, m=—j,—j+1,---,j are the basis for irreducible representation of SU(2) group. From
these we can construct the representation matrices.
Example:j:% , m::t%
1 1 11 1
k= ’5 £3)=*317%3)
1 1 11 11 1 1 1 1
J =0, Ji|lz,—=z>=|z,2) , Joz.=z>=|z.—%2) , J-|z,—2)=0
3 ) A AL LS =

If we write

Then we can represent J's by matrices,

1/1 0 0 1 0 0
J3*§<0 —1> J+*(o o) J—*(l 0)

Taking linear combinations,

1 1 0 1 1 1 0 —i
=5Us )= §<1 O) J2—E(J+*Jf)—§<,- 0)

these are just Pauli matrices.

V)
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Product representation

Let « be the spin-up and B the spin-down states. For 2 spin % particles, the total wavefunction
is, a1, 1P, - -
Define JM) acts only on particle 1 and J@ on particle 2.

-

J=30 43

+2 . Bma) = (K + ) () = (man)

From
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- 3 3 2
Jz(zxmg) = (Z + 7 + Z)|0610¢2> = 2|a1a)

|1,1) = ayap These means that |aja,) is a j = 1 state. Use lowering operator to get other

j =1 states
J-(maz) = (S + S (@1a0) = (Byz + 1)
On the other hand

J_(map) = J_|11) = /(1 +1)(1 = 1+ 1)|1,0) = v/2|1,0)
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Thus
R

V2

1,0) = B, B, The The only state left-over is

1,0) = —=(Bya2 + a1 B,)

Clearly

%(‘Xlﬁz — pia2)

This is a |0,0) state
Summary:

@ Among the generator only J3 is diagonal, — SU(2) is a rank-1 group
@ Irreducible representation is labeled by j and the dimension is 2j + 1

© Basis states |j,m) m=j,j—1---(—j) representation matrices can be obtained from

Sljym) =mljym) Jeljym) =\/(GFm)(Em+1)[j,m+1)
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SU(2) and rotation group
The generators of SU(2) group are Pauli matrices

(0 1 (0 —i (1 0
1={1 0) 2= o c =10 1

Let r = (x,y,z) be arbitrary vector in R3 (3 dimensional coordinate space). Define a 2 x 2

matrix h by
_=. 7 z X — iy
h=a-r (x-i—iy -z )

h has the following properties
Q rt=n
Q Trh=0
@ det h=—(x>+y>+2?)

Let U be a 2 X 2 unitary matrix with detU = 1. Consider the transformation
h— h' = UnUt

Then we have
g Wt = n
Q@ T =0
@ deth’ =deth
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Properties (1)&(2) imply that h' can also be expanded in terms of Pauli matrices

deth' =deth = x2+y?+7%=x>4y>+7

. — —/, .
Thus relation between r and r is a rotation.

An arbitrary 2 x 2 U induces a rotation in R3. This is a connection between SU(2)and O(3)

groups. Note that U and —U correspon to the same rotation.
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Rotation group & QM
Rotation in R3 can be represented as

r=(xy,z)=(nrnm) , n—>r=RX; RRT=1=RTR
Consider an arbitary function of coordinates, f(?) = f(x,y,z). Under the rotation, the change
in f
f(l’,‘) — f(RUrJ) = f’(r,-)
If f = £ we say f is invariant under rotation, e.g. (1) =f(r), r= /X2 +y2 + 22
In QM, implement the rotation by

ly) — [¢') = Uly), 0 — 0" =uvoU’
so that
(¢'[0"]y") = (plOly)
If O'* = O, we say the operator O is invariant under rotation

Uo=0uU [0,U]=0

In terms of infinitesimal generators
U = e i6J/n

this implies [J;, 0] =0, i =1,2,3. If O is the Hamiltonian H, this gives [J;, H] = 0.
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Let i) be an eigenstate of H with eigenvaule E,

Hly) = Ely)

then
(JiH=HI)p) =0 = H(Jilp)) = E(Ji|$))

i.e |¢) & Ji|p) are degenerate. For example, let |p) = |j, m) the eigenstates of angular
momentum, then Ji|j.m) are also eigenstates if |i) is eigenstate of H. This means
for a given j , the degeneracy is (2j +1).
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Gauge Theory
Abelian gauge theory(QED)
Maxwell Equation

€0
. . 0B 1o = JE -
VXE+—=0, —VXxB=¢—=—+J
ot Ho ot
Source free equations can be solved by

- L Y

B = A E=-V¢— —

VxA, V¢ 5%

In Minkowski space

FAY—'AF = F FU~ kB, FO ~ E
E and B are unchanged under the transformation
3 oL L
¢ — ¢ — a—‘:, A—A+Va

Or
A AP —Fa,  where  AF = (?Z\)

(Institute) Note 8
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This is called gauge invariance.
Schrodinger Equation for a charged particle

1 he - . op
= (EV —eA)? — — ih=L
om 7V A —eplp =it

To get same physics, need to transform ¢

1/1 _ eiea/‘hlp § = DL(X)

This provides a connection between gauge transformation with symmetry transformation.
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More general construction, start with a free electron field Lagrangian,

Lo = () (i7", — m)p(x)

This has global U(1) symmetry,

Suppose
a=alx) ¢ =e ®Wpx) , P (x) = P(x)e®

transformation of derivative
POd(x) — F ()3 (x) = P)3p(x) — i(0e) (F) ot invariant
Introduce gauge field A, (x) to form covariant derivative
Dup = (9 + igAp)p(x)
So that Dy transforms same way asi,
(Dpp) = e ™) (D)
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This requires that )
(8;4 + ’IgA;)‘zbl = eim(ay + igA,,)l,b

and

Then
L = iyt (9 + igAu)p — mpy

is invariant under local symmetry transformation (local symmetry)
Lagrangian for gauge field is ,

1
L= g FuF™  Fu=3uA - 3A,

This is invariant under gauge transformation.
We can write FIW in terms of covariant derivative,

DuDyp = (9 +igAu) (0 + igAy)y
= 0y — g2AUAY + ig (Audy + Avdy) Y + ig (0, A)) Y

The antisymmetric combination is

(DyDy — DyDy)Yp = ig(9uAy — 0vA) Y = ig (Fun )Y

(Institute) Note 8
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From

[(DVDV - DVDIl)l”, = eim(DyDv - DI/D}l)llJ

we see
I
Fro = Fuy

is gauge invariant.
The complete Lagrangian

L= Pint 3y + gAY — i — 4 FuuF"”
is invariant under gauge transformation
P(x) = ¢ Wp(x)
Ap(x) = A () = Au(x) = 048 (x)

Remarks:

(1] AuAF term is not gauge invariant = field massless.
©Q Duyp = (9, + igAy)P the coupling is universal
© no gauge self coupling

Recipe for the construction of theory with local symmetry

@ Write down a Lagrangian with local symmetry

(Institute) Note 8
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@ Replace du¢ by covariant derivative D¢ ~ (a;, - igA;’jt") ¢ where guage fields A; have
been introduced.

) 1
se v — Dy ~ to construct the field tensor and add —— to
U D,Dy — D,Dy, Fiv he field Fjiy and add 4F;VF3W
the Lagrangian density
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Non-Abelian symmetry-Yang Mills fields
1954: Yang-Mills generalized U(1) local symmetry to SU(2) local symm.

Consider isospin doublet
_( ¥ >
v ( [

Under SU(2) transformation

it
P00 — 9/ = exp{~ =Yy,
where T = (71, T2, T3) are Pauli matrices, with
T . TR
[5- j} = ’eijk(T)
Start with free Lagrangian which is invariant under SU(2) symm,

Lo = p(x) (i7" — m)y

Under local symmetry transformation,

PO — () = VO with U(8) = exp{~ )

(Institute) Note 8
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As usual for local symmetry, the derivative term does not transform linearly,

apﬂl’(x) - ayll’l(x) = Ua;ll/"" (ayU)ll’

Introduce gauge fields A;, to form covariant derivative,

D) = (0, — gL )y
Require that Dy transforms as ¢(x)
(D) = U[Dyy]
which requires ,
O i5 ) (UY) = U@y — i)y
Or o, .
(T e, = U(—ig?';"‘)
?-A}/ T A_‘M -1 ! -1
S = U U = L@
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Use covariant derivatives to construct field tensor

T Aﬂt T E T- ﬁv
DyDyp = (9, — g ) (v — fg )¢ 00y — (Tya”l’b—i_ : 2A oY)
. TA, L T AL TA,
—igu(—=)p + (—ig)" () (=)

Antisymmetrization

- Fuy T Fu

(DuDy = DDy = ig(—" )y~ = - (0 A, — 3 A) — g[a

M\r-u

Or
= AL — A A, + gl AL AL

The the term quadratic in A is new in Non-Abelian symmetry.
Under gauge transformation.

7 F = U F)U!

Infinitesmal transformation 6(x) < 1

AE = AF 4 elikgi AK — 15,0
g
Fii = Fl, + €™/ F,

Remarks
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Q Again A;Aa“ is not gauge invariant=-gauge boson massless=-long range force
Q Aj, carries that symmetry charge (e.g. color —)

© F ~ 0A —0A+ gAA — term responsible for Asymptotic freedom.
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Spontaneous symmetry breaking

Spontaneous symmetry breaking—-symm of ground state # symmetry of the Hamiltonian
=If symmetry is continuous, = massless scalar fields—Goldstone boson
Example:ferromagnetism

T > T(Curie temp) all dipoles are randomly oriented——rotational invariant

T < T, all dipoles are oriented in some direction

Ginzburgh-Landau theory

Free energy as function of magnetization M (averaged)
u(M) = (0:M)? + ar (T)M - M + aa(M - M)?

take ap > 0 so that free energy is positive for large M and a1 (T) =a(T —T.) a >0 so that
there is a transition going through T.. Ground state is governed by

M(a1+2a2M-A7) =0

For T > T, only solution is M =0 and T < T, non-trivial sol |M| = +,/AL 0

20y
= ground state with M in some direction is no longer rotational invariant.
Nambu-Goldstone theorem
Noether's theorem: a continuous symmetry = conserved charge Q. Suppose 2 local operators
A, B with property

(Q,B]=A Q= / d®x jo(x) indep of time
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Suppose (0|A[0) = v # 0 (symmetry breaking condition)
0 # (0/[Q. B1j0) = [ d*x (0llio(x), B]|0)
= Y (27)*6*(P,){(0Lio (0)|n) {n| BJ0)e~""* — (| B|0) (Lo (0) I} "'} = v
n
Since V' # 0 and time-independent, we need to a state such that
E,—0 for ﬁ" =0

massless excitation. For relativistic particle E = v/ P2 4+ m? this implies massless particle—
Goldstone boson.
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Discrete symmetry case

1 oo Ay
:5( up)® — CP —qu , ¢ — —¢p symmetry

The Hamiltonian density

. 2
@0 + 5 (991 + £ g2+ 24t

M\»—\

Effective energy

2
(V9P +V(g) . V(p)= "9+ 0"

M\»—A

wp) =

For 2 < 0 the ground state has ¢ = £/ 7TP‘2 classically.

This means the quantum ground state |0) will have the property
(0]¢|0) =v #0 symmetry breaking condition

Define quantum field ¢’ by ¢/ = ¢ — v

A

then L= %(awp’? — (—p2)P"? — Avg” — Z‘PM

No Goldstone boson—-discrete symmetry
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Abelian symmetry case

L= [0 + (@m)] V(e + )

with
2 2 T 2 A, 2\2
V(ie*+m ):—?(a + )+Z(a + )

This system has O(2) symmetry,

<0’> <(7/) <cosa sina)(a)
— 7 = .

T T —sinax  cosa T
The minimum is located at

==y

This is a circle in ¢ — 7t plane. For convenience choose  (0|c|0)=v  (0|7]|0)=0.

New quantum field

od=c—-v , =n

The new Lagrangian is
£—18'2 372 2,2 _ Apo! (072 oy A 242
*5[( po’e + (0um)*] — pto’ — Ave' (0 + 1 )—Z(V +7'%)
Note that there is no 772 term, = 77/ massless Goldstone boson
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Non-Abelian case

o—model
1 o & . - - o =
L= 5[(za,,a? + (39, 71)%) + Ni"auN + gN (o + iT - 7ty )N — V(02 + 7°)
with )
V(2 +7%) = —"7((72 +72) + 2 (02 + 72)?

c—d =0
= S s S
T— 7T =7T+ia X771
- T
NHN’—N7IDC2 N
and .
c—d =0+B-7
= s
n— 7 =m1— B0
l\/ﬁ/v’:/v_'ﬁé N

where & and B are arbitrary parameters. The symmetry is of the form, SU (2) x SU (2). This
Lagrangian has been used in 1960's to describe the interaction between pions and nucleons.
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Note that the nucleon is massless due to the symmetry under the axial transformation. As for
the spontaneous symmetry breaking, it is easy to see that the minimum is located at

2
M

_ .2 _ K
71/7/\

0% + it

If we choose
(o) =v , (7)=0

The 7t are Goldstone bosons. The symmetry is broken from SU (2) x SU (2) to SU (2) . Note
that the spontaneous symmetry also give mass to the nucleon,

MN = gv.
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Higgs Phenomena

Combine spontaneous symmetry breaking with local symmetry=—- Higgs Phenomena.
Discovered in the 60’s by Higgs, Englert & Brout, Guralnik, Hagen & Kibble independently
Abelian case

Consider the Lagrangian

£ = (D) (D) + 129" — A9 — § FuFH

where
Dty = (o — igAF)¢p , Fuv = 9, Ay — 0y Ay

This is invariant under the local gauge transformation
9(x) — ¢/ = e Mg (x)
Ap() = Ay () = Au(x) = 2048 (x)
The spontaneous symm. breaking is generated by the potential
V(p) =—1¢'p+A(979)°
minimum at

g VP 1o
4’47—?—5(7)
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In quantum theory, choose
v

(lplo)l = 75

Write
— (g +ig,)
¢ \6 1 2

With the choice
(pr)=v , (p)=0

¢, corresponds to Goldstone boson. Define quantum fields by
/! !
Pr=¢1—v , ¢r=¢
Covariant derivative terms gives

(Dp@)" (D"¢) = [(@y + igAw)¢T1[(9" — igA")g]

-1 / Y / /2 giv? I
7(%4’1*“‘#4’2) +§(ay¢2*gA;t4’1) = AfA A+ -

Here we have mass terms for A*. Write the scalar field as

P(x) = —= (v +17(x))eS )

Nis
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"Gauge" transformation:

/ —ig(x)/v 1
p— ¢ = e T p(x) Bu = Au(x) = ;98

&(x) disappears from the Lagrangian

Roughly speaking, massless gauge field A, combine with Goldstone boson &(x) to become
massive gauge boson. As a consequence, two long range forces (from Goldstone boson &(x) and
Au(x)) disappear.
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Non-Abelian case

SU(2) group: ¢ = < gl > doublet
2
L= (D) (D"9) ~V(9) = { FuF™ . Fu = 3uAs — 3,y

V(p) = —1*(¢7¢) + Ao )

Spontaneous symmetry breaking:

Define ¢/ = ¢ — (¢)o

From covariant derivative

(D,9)"(¥9) = [ — i =2 (¢ + (@))% — i 22+ (g)o)]

1 L= . 1 g N
= 282 (@)o(T- A (- A (p)o = 5 (5)%A, - AF
All gauge bosons get masses
1
My = Egv
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The symmetry is completely broken. Write

9(x) _exp{W}( vin )

1%

Use "gauge" transformation

#00 =00 == (0 )

T-A i
=u—tut- é[ayU]U*1

T

il

where  U(x) = exp{

}

= ‘

to transform away &(x).
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