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Weak Interaction
Classification
Because strong interaction are diffi cult to compute reliably, we distinguish processes involving
hadrons from leptons.

1 Leptonic weak interactions
Here all particles are leptons and we can calculate these processes accurately.
Examples:

µ− → e− + νµ +
_
νe νµ + e → νµ + e

τ− → µ− + ντ +
_
νµ τ− → e− + ντ +

_
νe

2 Semi-leptonic interactions
These involve both leptons and hadrons. Since we can calculate leptonic parts reliabley,
these can be used to study the properties of hadrons.
Examples :

π− → µ− + νµ K+ → π0 + e+ + νe
n → p + e− +

_
νe

_
νµ + p → µ+ + n

3 Non-leptonic interactions
Here all particles are hadrons and they are the most diffi cult reactions to study. This class
of reactions differ from normal strong interaction in the slower decay rates and smaller
crossections.
Example :

K+ → π+ + π0 K 0 → π+ + π− + π0

Σ+ → P + π0 Λ→ P + π−
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Selection Rules in Weak Interaction

1 Leptonic Interaction
Two neutrino experiments: ν from β-decay and ν from π decay are different
If they were the same then,

n −→ p + e + ν

ν+ p −→ µ+ + n

However, only e+ is observed in the final product and no µ+. A simple explanation νe
from β-decayis different from νµ in π-decay accompanied by µ and there is also muon
number and electron number conservation

e−, νe Le = 1
e+, νe Le = −1

Similarly, for the muon number Lµ

µ−, νµ Lµ = 1
µ+, νµ Lµ = −1

As a consequenc, the reaction µ± −→ e± + γ are forbidden and experimentally this is
indeed the case. Lepton number conservations seem to hold up very well until neutrino
oscillations have been observed recently.
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2 Semi-leptonic decays

1 The ∆S 6= 0 reactions are about a factor of 10 or so smaller than ,
∆S = 0. reactiond

2 Hadrons in the strangeness changing decays satisfy the selection rule

∆S = ∆Q

For examples,

K+ −→ π0µ+νµ, but K+ 9 π+π+e−
_
νe

3 Absence of ∆S = 1 neutral currents
For example,

Γ (KL → µ+µ−)
Γ (K+ → µ+ν)

≤ 10−9

4 No ∆S = 2 transistion been obsverbed
For example,

Ξ− 9 ne−
_
νe
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When quark model was developed, all these properties can be accormodated by writing
the hadronic weak current as

Jhadµ =
[_
uγµ (1− γ5) d cos θc +

_
uγµ (1− γ5) s sin θc

]
where θc ≈ 0.25 is the Cabbibo angle.

3 Non-leptonic interactions
Here we havethe ∆I = 1/2 rule,

Γ
(
K+ −→ π+π0

)
Γ (Ks −→ π+π−)

' 1.5× 10−3

This rule is very diffi cult to explain because the strong interaction effect.
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Milestones of Weak Interaction

1 Neutrino and Nuclear β decay,
The e− from nuclei decay,

(A,Z )→ (A,Z + 1) + e−

was observed to have continuous energy spectrum. If basic mechanism for e− emission
were

n → p + e−

the energy momentum conservation will require e− to hav a single energy. Pauli (1930)
postulated the presence of neutrino which carries away energy and momentum in nuclear
β -decay,

n → p + e− +
_
νe

2 Fermi Theory
Fermi (1934) proposed to explain the β decay by making analogy with QED to write weak
interaction in the form,

LF =
GF√
2
[p̄(x )γµn(x )][ē(x )γ

µνe (x )] + h.c . GF : Fermi coupling constant

Fitting nuclear β decay reates give

GF '
10−5

M 2
p
, Mp is the proton mass

This works very well for ∆J = 0, β decays of many nuclei.
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Later Gamow-Teller interaction was added

LGT =
GF√
2
[p̄(x )γµγ5n(x )][ē(x )γ

µγ5νe (x )] + h.c .

to account for ∆J = 1 nuclear β decays.

3 Parity violation and V - A theory
θ − τ puzzle
In 1950’s, it was observed that there are two decays

θ → π+ + π−, (even parity)

τ → π+ + π− + π0, (odd parity)

while θ and τ have same mass, charge and spin. It is diffi cult to understand these if the
parity is a good symmetry.
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1956 : Lee and Yang proposed that parity is not conserved.
1957 : C. S. Wu showed that e− in 60Co decay has the property,〈→

σ ·→p
〉
6= 0, →

σ ,
→
p spin and momentum of e−

This implies that the parity is violated in this decay.
V-A theory (1958 Feynman and Gell-Mann, Sudarshan and Marshak, Sakurai)
As a result of parity violation, weak interaction was casted in term of V − A currents,

Leff =
GF√
2
J †

µJ
µ + h.c .

where
Jλ(x ) = Jl λ(x ) + Jh λ(x )

Jλ
l (x ) =

_
νeγλ(1− γ5)e +

_
νµγλ(1− γ5)µ, leptonic current (1)

and
Jλ
h (x ) =

_
uγλ(1− γ5)(cos θcd + sin θc s) hadronic current

θc : Cabibbo angle

Note that in V-A form the fermion fields are all left-handed.
Define

ψL ≡
1
2
(1− γ5)ψ

Then we can simplify the weak currents,

Jλ
l (x ) = 2ν̄eLγλeL + 2ν̄µLγλµL + ...
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Diffi culties:
(1) Not renormalizable

In Fermi theory, 4 fermions interaction has dimension 6 and is not renormalizable. The higher
order graphs are more and more divergent. For example, in µ decay,
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(2) Violate unitarity
The tree amplitude for νµ + e → µ+ νe has only J = 1 partial wave at high energies and cross
section has the form,

σ(νµe) ≈ G 2F S , S = 2meE

On the other hand, unitarity for J=1 cross section is

σ(J = 1) <
1
S

Thus σ(νµe) violates unitarity for E ≥ 300GeV . Since unitarity comes from conservation of
probablity, this violation is unacceptable.
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Intermidate Boson Theory(IVB)
In analogy with QED, introduce vector boson W to couple to the V-A current

LW = g (JµW µ + h.c .)

For example, the µ decay is now mediated by W-exchange.

Since weak interaction is short range, we need MW 6= 0. Use W-boson propagator in the form

−g µν +
kµk ν

M 2
W

k 2 −M 2
W

→ g µν

M 2
W

when |kµ| � MW

This reproduces 4-fermion interaction with
g 2

M 2
W
=
GF√
2
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In this theory, νµ + e → µ+ νe no longer violates unitarity. But the violation of unitarity shows
up in

ν+ ν̄→ W + +W −

and the theory is still non-renormalizable.
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Construction of SU(2)×U(1) model

Choice of group
In IVB theory, interaction is

LW = g (JµW µ + h.c )

For simplicity neglect all other fermions excepts ν, e and write

Jµ = ν̄γµ(1− γ5)e

In electromagnetic interaction, we have

Lem = eJ emµ Aµ, where J emµ = ēγµe

Define eletromagnetic and weak charges as the intergals

T+ =
1
2

∫
d 3xJ0(x ) =

1
2

∫
d 3xν†(1− γ5)e T− = (T+)†

Q =
∫
d 3xJ em0 (x ) = −

∫
d 3xe†e

We can compute the commutator [T+,T−] = 2T3 and

T3 =
1
4

∫
d 3x [ν†(1− γ5)ν− e†(1− γ5)e ] 6= Q
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These 3 charges, T+,T− and Q don’t form a SU (2) algebra. Note weak charges T± have V −A
form while the em charge Q is pure vector.
At this point, there are 2 alternatives:

1 Introduce another guage boson coupled to T3. This leads to group SU (2)×U (1) . This is
the choice we will adapt eventually.

2 Add new fermions such that T+,T− and Q do form a SU(2) algebra (Georgi and Glashow
1972) e.g.

1
2
(1− γ5)

 E+

νe cos α+N sin α
e−


1
2
(1+ γ5)

 E+

N
e−


and a singlet

1
2
(1+ γ5) (N cos α− νe sin α)

The weak charge is

T+ =
1
2

∫
d 3x

[
E+ (1− γ5) (νe cos α+N sin α)

]
+ (νe cos α+N sin α) (1− γ5) e + E

+ (1+ γ5)N +N
† (1+ γ5) e
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We can verify that
[T+,T−] = 2Q

with

Q =
∫
d 3x

[
E †E − e†e

]
Clearly, here only electromagnetic current is neutral and is ruled out by the discoveries of
neutral weak current reactions in 1973.
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Unitarity argument
Equivalently we can argue from unitarity that we needs to introduce either new leptons or a
new guage boson.
Consider in IVB theory the reaction ν+

_
ν −→ W +

L +W
−
L . The lowest order amplitude from

following graph is
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T
(
ν
_
ν −→ W +W −) = −i

_
v
(
p ′
) (
−ig /ε′

)
(1− γ5)

i
/p − /k −me

(−ig /ε) (1− γ5) u (p) (2)

= −2g 2
_
v
(
p ′
) /ε′ ( /p − /k ) /ε (1− γ5)

(p − k )2 −m2e
u (p)

W at rest, polarization vectors are

ε
(i )
µ (k ) with ε(i ) · ε(j) = −δij and k · ε(i ) = 0

A simple choice

ε
(i )
0 = 0, ε

(i )
j = δij

For a moving W with kµ = (E , 0, 0, k ) and k =
√
E 2 −M 2

w , make a Lorentz transformation
along z − axis . The transverse polarizations do not change while the longitudinal polarization

becomes ε
(3)
µ =

1
MW

(k , 0, 0,E ). In the high energy limit with k = E − M
2
W
2E

+ · · · , we see

ε
(3)
µ =

kµ

MW
+O

(
MW

E

)
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Then WL bosons, scattering amplitude in Eq(2) becomes,

T ≈ − 2g 2

k 2 − 2p · k
_
v
(
p ′
) /k ′

MW
( /p − /k ) /k

MW
(1− γ5) u (p) (3)

≈ 2g 2

M 2
W

_
v
(
p ′
)
/k ′ (1− γ5) u (p)

To show that this is a pure J = 1 partial wave, take

pµ = (E , 0, 0,E ) , p ′µ = (E , 0, 0,−E )

kµ =
(
E , k

→
e
)
, k ′µ =

(
E ,−k→e

)
, with

→
e = (sin θ, 0, cos θ)

Since ν and
_
ν have opposite helicities, we have

u (p) =
√
E

 1
→
σ ·→p
E

 χ−1/2 =
√
E
(

1
σz

)
χ−1/2

_
v
(
p ′
)
=
√
Eχ†

1/2

(→
σ ·→p

′

E
,−1

)
=
√
Eχ†

1/2 (−σz ,−1)

where

χ1/2 =

(
1
0

)
, χ−1/2 =

(
0
1

)
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Then the combination in Eq(3) becomes,

_
v
(
p ′
)
/k ′ (1− γ5) u (p) = Eχ†

1/2 (−1,−1)
(

E k
→
σ ·→e

−k→σ ·→e −E

)
(

1 −1
−1 1

)(
1
1

)
χ−1/2

= −4Eχ†
1/2

(
E − k→σ ·→e

)
χ−1/2 = 4Ek sin θ

We have then
T ≈ GF E 2 sin θ as E → ∞ (4)

The partial wave expansin for the helicity amplitude is,

Tλ3λ4 ,λ1λ2 (E , θ) =
∞

∑
J=M

(2J + 1)T Jλ3λ4 ,λ1λ2
(E ) d Jµλ (θ)

where λ1 = −λ2 = 1/2 and λ3 = λ4 = 0 are the helicities of the initial and final particles with
λ = λ1 − λ2 = 1, µ = λ3 − λ4 and M = max (λ, µ) = 1. d Jµλ (θ) is the usual rotation matrix with

d 110 (θ) = sin θ. It is clear that T in Eq(4) corresponds to a pure J = 1 partial wave and violates
the unitarity bound of T J=1 (E ) ≤ constant at high energies. To cancel this bad high energy
behavior we need other diagrams. There are 2 possibilities: s -channel or u-channel diagrams.

1 heavy lepton alternative;
u-channel exchange from diagram(a) yields amplitude,
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Tu
(
ν
_
ν −→ W +W −) = −2g ′2

_
v
(
p ′
) /ε ( /p − /k ) /ε′ (1− γ5)

(p − k ′)2 −m2E
u (p)

=
−2g ′2
M 2
W

_
v
(
p ′
)
/k ′ (1− γ5) u (p)

If g 2 = g ′2, this will cancel bad behavior given in Eq(3)
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2 neutral vector boson alternative;
the s -channel exchange in the diagram (b) gives

Ts
(
ν
_
ν −→ W +W −) = −i

_
v
(
p ′
) (
−if γβ

)
(1− γ5) u (p) Lαµνε′µ

(
k ′
)

εν (k )

×i
[
−g αβ +

(k + k )α (k + k )β

M 2
Z

] [
1

(k + k )2 −M 2
Z

]

Choose ZWW coupling to have Yang-Mills structure

Lαµν = −if ′
[(
k ′ − k

)
α
gµν −

(
2k ′ + k

)
ν
gµα +

(
k ′ + 2k

)
µ
gαν

]
we get

Lαµνε′µ
(
k ′
)

εν (k ) = −if ′
[(
k ′ − k

)
α

ε · ε′ −
(
2k ′ · ε

)
ε′α +

(
2k · ε′

)
εα

]
≈ if ′

M 2
W

[(
k ′ − k

)
α

(
k · k ′

)]
and

Ts ' −
ff ′

M 2
W

_
v
(
p ′
)
/k ′ (1− γ5) u (p)

Thus if ff ′ = 2g 2, this will also cancel amplitude in Eq(3). This corresponds to adding
another U (1) symmetry
In fact if one demands that all amplitudes which violate unitarity be canceled out, one get
renormalizable Lagrangian which is the same as the one derived from the algebraic
approach.
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Now choose gauge group to be SU (2) ×U (1). The Lagrangian for the gauge fields is

L = − 1
4
F iµνF iµν −

1
4
G µνGµν

where
F iµν = ∂µAiν − ∂νAiν + g εijkAjµA

k
ν SU (2) gauge fields

Gµν = ∂µBν − ∂µBµ U (1) gauge field

Fermions
Clearly, from structure of weak charged current given in Eq(1) ν, e form a doublet under SU(2),

lL =
(

νL
eL

)
Then

T+ =
∫
(ν+L eL)d

3x , T− =
∫
(e+L νL)d

3x , Q =
∫
(e+L eL + e

+
R eR )

Note that

Q − T3 =
∫
[− 1
2
(ν+L νL + e

+
L eL)− e

+
R eR ]d

3x

We can show that
[Q − T3,Ti ] = 0 , i = 1, 2, 3
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Take Q − T3 to be U (1) charge Y ≡ 2(Q − T3), called weak hypercharge. The Y charges for
fermions are

lL =
(

νL
eL

)
Y = −1, eR Y = −2

Lagrangian for gauge coupling is

L2 = l̄L iγνDν ll + l̄R iγ
νDν lR (5)

where

Dνψ = (∂ν − ig
~τ ·~Aν

2
− ig ′ Y

2
Bν)ψ

For example,

Dν lL = (∂ν − ig
~τ ·~Aν

2
− ig ′ Y

2
Bν)lL
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Spontaneous Symmetry Breaking
Symmetry braking pattern we want is SU (2)× U (1)→ U (1)em . Choose scalar fields in SU(2)
doublet with hypercharge Y = 1,

φ =

(
φ†

φ0

)
, Y = 1

Lagrangian contaning φ is,
L3 = (Dµφ)†(Dµφ)− V (φ)

where

Dµφ = (∂µ −
ig
2
~τ · ~Aµ −

ig
′

2
Bµ)φ

and
V (φ) = −µ2φ†φ+ λ(φ†φ)2

Coupling between leptons and scalar field φ,

L4 = f
_
LLφeR + h.c .

Spontaneous symmetry breaking is generated by the vaccum expectation value

< φ >0= 〈0| φ |0〉 =
1√
2

(
0
v

)
with v =

√
µ2

λ
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Write the scalar field in the form

φ(x ) = U−1(~ξ)

(
0

v+η(x )√
2

)
where U (~ξ) = exp[

i~ξ(x ) ·~τ
v

] (6)

Gauge Transformation
We can then simplify the form of scalar by a gauge transformation

φ
′
= U (~ξ)φ =

1√
2

(
0

v + η(x )

)

~τ ·~A′µ
2

= U (~ξ)
~τ ·~Aµ

2
U−1(~ξ)− i

g
(∂µU )U−1

field ~ξ(x ) disappears from Lagrangian because of gauge invariance. From L4 (Yukawa coupling),
VEV of the scalar field gives

L4 = f
1√
2
(l̄L < φ > eR + h.c .) + f

η(x )√
2
(
_
e LeR + h.c .)

the electron is now massive withs

me =
f√
2
v

Mass spectrum
We now list the mass spectrum of the theory after the spontaneous symmetry breaking:
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1 Fermion mass

me =
fv√
2

2 Scalar mass(Higgs)

V (φ
′
) = µ2η2 + λvη3 +

λ

4
η4 → mη =

√
2µ

3 Gauge boson masses
From covariant derivative in L3

L3 =
v 2

2
χ†(g

~τ ·~A′µ
2

+
g
′
B
′
µ

2
)(g
~τ ·~A′µ
2

+
g
′
B
′µ

2
)χ+ · · · , χ =

(
0
1

)
we get the mass terms for the gauge bosons,

L3 =
v 2

8
{g 2 [(A1µ)2 + (A2µ)2 ] + (gA3µ − g

′
Bµ)

2}+ · · ·

= M 2
WW

+µW −
µ +

1
2
M 2
ZZ

µZµ + · · ·

where

W +
µ =

1√
2
(A1µ − iA2µ), M 2

W =
g 2v 2

4
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Zµ =
1√

g 2 + g ′2
(g
′
A3 − gBµ), M 2

Z =
g 2 + g

′2

4
v 2

The field

Aµ =
1√

g 2 + g ′2
(g
′
A3µ + gBµ)

is massless photon.
For convience we define

tan θW =
g
′

g
θW : Weinberg angle or weak mixing angle

Then we can write

Zµ = cos θW A
3
µ − sin θW Bµ M 2

Z =
g 2v 2

4
sec2 θW

Aµ = sin θW A
3
µ − cos θW Bµ

Note that there is a relation of the form,

ρ =
M 2
W

M 2
Z cos

2 θW
= 1

which is a consequence of the doublet nature of the scalar fields.

The weak interactions mediated by W and Z bosons can be read out from Eq(5)
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1 Charged current

Lcc =
g√
2
(J †

µW
†µ + h.c .) J †

µ = J
1
µ + iJ

2
µ =

1
2

ν̄γµ(1− γ5)e

Again to get 4-fermion interaction as low energy limit, we require

g 2

8M 2
W
=
GF√
2

which implies that

v =

√√
2

GF
≈ 246Gev

This is usually referred to as the weak scale.
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2 Neutral Current
The Largrangian for the neutral currents is

LNC = gJ3µA3µ +
g
′

2
JYµ B

µ = eJ emµ Aµ +
g

cos θW
JZµ Z

µ

where
e = g sin θW ,

and
JZµ = J

3
µ − sin2 θW J

em
µ

is the weak neutral current. We can define the weak neutral charge as

QZ =
∫
JZ0 d

3x = (T3 − sin2 θW Q )

So the coupling strength of fermions to Z-boson is proportional to T3 − sin2 θW Q .
In particluar, Z boson can contribute to the scattering

νe + e → νe + e
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The measurement of this corss section in the 1970’s give sin2 θW ≈ 0.22. This yields MW ≈ 80
GeV and MZ ≈ 90 GeV.
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Generalization to more than one family.
From 4-fermion and IVB theory, the form of weak currents of leptons and hadrons gives the
following multiplets structure,(

νe
e

)
L
,

(
νµ

µ

)
L

eR , µR

(
u
dθ

)
L

uR , dR , sR

where
dθ = cos θC d + sin θC s

The neutral current in the down quark sector is

LNC = [d̄θγµ(−
1
2
+ sin2 θC

1
3
)dθL − sin2 θW

1
3
(d̄RγµdR + s̄RγµsR )]Z

µ

= (− 1
2
+ sin2 θW

1
3
)[(d̄LγµdL + s̄LγµsL) + sin θW cos θW (d̄LγµsL + s̄LγµdL) + ...

The term
(
d̄LγµsL + s̄LγµdL

)
gives rise to ∆S = 1 neutral current processes, e.g. KL → µ+ + µ−

with same order of magnitude as charged current interaction. But experimentally,

R =
Γ(KL → µ+ + µ−)

Γ(K+ → µ+ ν)
≤ 10−8

Thus we can not have ∆S = 1 neutral curent process at the same order of magnitude as the
charged current process.
GIM mechanism
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Glashow, Iliopoulos and Maiani (1970) suggested a 4-th quark, the charm quark c , which
couples to the orthogonal combination sθ = − sin θcd + cos θc s so that(

u
dθ

)
L
,

(
c
sθ

)
L

As a result , the ∆S = 1, neutral current is canceled out. The new current is of the form

d̄θ(−
1
2
+
1
3
sin2 θW )γµdθ + s̄θ(−

1
2
+
1
3
sin2 θW )γµsθ = (−

1
2
+
1
3
sin2 θW )(d̄γµd + s̄γµs)

which conserves the strangeness. This avoids the conflict with exp on KL −→ µ+µ−

Quark mixing
Before spontaneous symmetry braking, fermions are all massless becauseψL and ψR have
different quantum numbers under SU (2)× U (1) i.e. mass term (ψ̄LψR + h.c .) is not invariant
under SU (2)× U (1). For more than one doublets, ψiR ,ψiL have same quantum numbers under
SU (2)× U (1) group we call "weak eigenstates". After spontaneous symmetry breaking,
fermions obtain their masses through Yukawa coupling.

LY = (fij ḡiLuRj + f
′
ij ḡiLdRj )φ+ h.c .

Renormalizability requires all possible terms consistent with SU (2)× U (1) symmetry. Since fij ,,
f ′ij are arbitrary, fermion mass matrices are not diagonal.

mass eigenstates 6= weak eigenstates
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The mass matrices in up and down sectors are

m(u)ij = fij
v√
2

m(d )ij = f
′
ij
v√
2

These matrices which are sandwiched between left and right handed fields can be diagonalized
by bi-unitary transformations, i.e. given a mass matrix mij ,there exits unitary matrices S and
T such that

S †mT = md

is diagonal. S is the unitary matrix which diagnoalizes the hermitian combination mm+, i. e.

S †(mm†)S = m2d

Biunitary transformation
Write

m2d =

 m21
m22

m23


Define

md =

 m1
m2

m3


and

H = SmdS
† hermitian
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Define a matrix V by
V ≡ H−1m

Then
VV † = H−1mm†H−1 = H−1Sm2dS

†H−1 = H−1H 2H−1 = 1

So V is unitary and we have

S †HS = md , =⇒ S †mV †S = md

Or
S †mT = md , with T = V †S

– – – – – – -
If we write the doublets, (weak eigenstates) as

q1L =

(
u
′

d
′

)
L

q2L =

(
c
′

s
′

)
L

These weak eigenstates are related to mass eigenstates by unitary transformations,(
u
′

c
′

)
= Su

(
u
c

)
,

(
d
′

s
′

)
= Sd

(
d
s

)
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Note that in the coupling to charged gauge boson W ±, we have

LW =
g√
2
Wµ[

_
q1Lγµτ†q1L + q̄2Lγµτ†q2L ] + h.c .

and is invariant under unitary transformation in q1L , q2L space, i.e.(
q
′
1L
q
′
2L

)
= V

(
q1L
q2L

)
VV † = 1 = V †V

We can use this feature to put all mixing in the down quark sector,

q
′
iL =

(
u
d
′′

)
L
,

(
c
s
′′

)
L
, where

(
d
′′

s
′′

)
= U

(
d
s

)

Here U is a 2× 2 unitary matrix. Clearly, we can extend this to 3 generations with result

qiL :
(

u
d
′′

)
,

(
c
s
′′

)
,

(
t
b
′′

)
,

 d
′′

s
′′

b
′′

 = U

 d
s
b


Now U is a 3× 3 unitary matrix, usually called the Cabibbo-Kobayahsi-Maskawa (CKM) matrix.
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CP violation Phase
CP violetion can come form complex coupling to gauge bosons. The coupling of W ± to quarks
is governed by the 3× 3 unitary matrix U . This unitary matrix U can have many complex
entries. However, in diagonalzing mass matrices, S †(mm†)S = m2d . There is arbitrariness in the
matrix S, in the form of diagonal phases i.e. if S diagonalizes the mass matrix, so does S

′

S
′
= S


e iα1 . . . . . .
...

. . .
...

... . . . eαn


We can then redefine the quark fields to get rid of some phases in U . It turns out that for n×n
unitary matrix, number of independent physical phases left over is

(n − 1)(n − 2)
2

Thus to get CP violetion we need 3 generations or more (Kobayashi Mskawa). Here we give a
constructive proof of this statement. Start with a first doublet written as,

q1L =
(

u
U11d + U12s + U13b

)
If U11 has phase δ,

U11 = R11e iδ, R11 real
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then δ can be absorbed in the redefiniton of the u−quark

u −→ u ′ = ue−iδ

and we can write

q1L = e
iδ
(

u ′

R11d + U ′12s + U
′
13b

)
Similarly, we can factor out the complex phases of U21 and U31 by redefinition of c and t quark
fields. These overall phases are immaterial. Finally we can absorb two more phases of U12 and
U13 by a redefinition of the s and b fields. The doublets now take the form(

u ′

R11d + R12s + R13b

)
L
,

(
c
′

R21d + R22e iδ1 s + R23e iδ2b

)
L

,

(
t ′

R31d + R32e iδ3 s + R33e iδ4b

)
L
,

Now we have reduced the number of parameters to 13. The normalization conditons of each
down-like state gives 3 real conditions and orthogonality conditions among different states give 6
real conditions on the parameters, Now we are down to 4 parameters. Since we need 3
parameters for the real orthogonal matrix, we end up with one independent phase.

(Institute) Note 8 37 / 41



Flavor consevation in neutral current interaction
The coupling of neutral Z boson to the fermions conserve flavors. This can be illustrated as
follows. Write the neutral currents in terms of weak eigenstates,

JZµ = ∑
i

_
ψiγµ

[
T3 (ψi )− sin2 θW Q (ψi )

]
ψi

Separate into left- and right-handed fields and distingush the up and down components,

JZµ = ∑
i
(
_
u
′
Liγµ

[
1
2
− sin2 θW

(
2
3

)]
u ′Li +

_
d
′
Liγµ

[
− 1
2
+ sin2 θW

(
1
3

)]
d ′Li

+
_
u
′
Riγµ

[
− sin2 θW

(
2
3

)]
u ′Ri +

_
d
′
Riγµ

[
sin2 θW

(
1
3

)]
d ′Ri

Since weak eigen states qiL and mass eigen states q ′iL are related by unitary matries,

u ′Li = U (uL)ij uLj , · · ·

We see tha unitary matrices cancel out in the combination,
_
u
′
Liu
′
Li so that the neutral current in

terms of mass eigenstates has the same form as the one in terms of weak eigenstates. Thus it
conserves all quark flavor. Note this feature is due to the fact that all quarks with same helicity
and electric charge have the same quantum number with repect to SU (2)× U (1) gauge group.
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Appendix
Unitarity
Scattering in Quantum Mechanics
For a free particle moving in z−direction, the plane wave can be expanded in terms of Legendre
polynomials as,

e ikz = ∑
l
(2l + 1) i l jl (kr )Pl (cos θ)

where jl (kr ) is the spherical Bessel function and for large r it can be written as

jl (kr ) ∼
1
2ikr

[
e i (kr−lπ/2) − e−i (kr−lπ/2)

]
For the Schrodinger equation in central potential,[

− }
2

2m
∇2 + V (r )

]
ψ
(→
r
)
= Eψ

(→
r
)

the wave function ψ
(→
r
)
can also be expanded in terms of Legendre polynomials in the form,

ψ
(→
r
)
= ∑

l
(2l + 1) i lRl (kr )Pl (cos θ) , with E =

}2k 2
2m
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Here Rl (kr ) is the radial wave function. Assuming that V (r ) is a short range force, then for
large r we can write

Rl (kr ) ∼
1
2ikr

[
ηl (k ) e

i (kr−lπ/2) − e−i (kr−lπ/2)
]

Probability conservation (unitarity) requires

|ηl (k )| ≤ 1

For the case of elastic scattering we have

|ηl (k )| = 1

and can be written as
ηl (k ) = e

2iδl (k ), δl (k ) : phase shift

Usually the asymptotic form of the wavefunction is written as

ψ
(→
r
)
∼ e ikz + f (k , θ) e

ikr

r
, f (k , θ) : scattering amplitude

Expansion in terms of Legendre polynomials gives,

f (k , θ) = ∑
l
(2l + 1) fl (k )Pl (cos θ) =

1
2ik ∑

l
(2l + 1) [ηl (k )− 1]Pl (cos θ)
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fl (k ) is usually called the partial wave. Differential cross section is of the form,

dσ

dΩ
= |f (k , θ)|2

and the total cross section is

σ = 4π ∑
l
(2l + 1) |fl (k )|2 =

π

k 2 ∑
l
(2l + 1) |ηl (k )− 1|

2

From unitarity, the maximum contribution of any partial wave to the total cross section is

σl ≤
4π (2l + 1)

k 2

i. e. each partial wave cross section can not grow faster than
1
k 2
∼ 1
E

For relativistic system, we have partial wave expansion for the helicity amplitude in the form,

Tλ3λ4 ,λ1λ2 (E , θ) = ∑
J
(2J + 1)T Jλ3λ4 ,λ1λ2

(E ) d Jµλ (θ)

where λ = λ1 − λ2, µ = λ3 − λ4 and d Jµλ (θ) is the d − function. Then the unitarity requires∣∣∣T Jλ3λ4 ,λ1λ2
(E )

∣∣∣ ≤ const
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