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QCD
Quark Model
Isospin symmetry
To a good approximation, nuclear force is independent of the electromagnetic charge carried by
the nucleons – charge independence. To implement this, we say strong interaction has an
SU (2) symmetry n ↔ p . These SU (2) generators T1,T2,T3 satisfy commutation ,

[Ti ,Tj ] = iεijkTk

Acting on n or p

T3 |p〉 =
1
2
|p〉, T3 |n〉 = −

1
2
|n〉, T+|n〉 = |p〉, T−|p〉 = |n〉 · · ·

This means n and p form a doublet under isospin transformation. Isospin invariance simply
means that

[Ti ,Hs ] = 0

where Hs is strong interation Hamiltonian.
We can extend isospin assignments to other hadrons . For example we get the following isospin
multiplets,

(π+,π0,π−) I = 1, (K+,K 0), (K̄ 0,K−) I =
1
2
, η , I = 0
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(Σ+,Σ0,Σ−) I = 1, (Ξ0,Ξ−), I =
1
2
, Λ, I = 0

(ρ+, ρ0, ρ−) I = 1, (K+∗,K 0∗), ( ¯K 0∗,K ∗−) I =
1
2

· · ·

If isospin symmetry were exact, then all particles in multiplets have same masses, which is not
the case in nature. But the mass difference within the isospin multiplets seems to be quite small.

mn −mp
mn +mp

∼ 0.7× 10−3, mπ+ −mπ0

mπ+ +mπ0
∼ 1.7× 10−2 · · ·

Thus isospin symmetry as approximate one and maybe it is good to few %.
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SU(3) symmetry and Quark Model
When Λ and k particles were discovered, they were produced in pair (associated production)
with longer life time. It was postulated that these new particles possessed a new additive
quantum number, strangeness S , conserved by strong interaction but violated in decays,

S (Λ0) = −1, S (K 0) = 1 · · ·

Extension to other hadrons, we can get a general relation,

Q = T3 +
Y
2

where Y = B + S is called hyperchargee, and B is the baryon number. This is known as
Gell-Mann-Nishijima relation.
Eight-fold way : Gell-Mann, Neeman
Group mesons or baryons with same spin and parity,
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These are the same as irreducible representations of SU (3) group. The spectra of hadrons show
some pattern of SU (3) symmetry which is lots worse than isospin of SU (2) because the mass
splitting within the SU (3) multiplets is about 20% at best. Nevertheless, it is still useful to
classify hadrons in terms of SU (3) symmetry. This is known as the eight-fold way.
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Quark Model
One peculiar feature of eight fold way is that octet and decuplet are not the fundamental
representation of SU (3) group. In 1964, Gell-mann and Zweig independently propose the quark
model: all hadrons are built out of spin 1

2 quarks which transform as the fundamental
representation of SU (3),

qi =

 q1
q2
q3

 =

 u
d
s


with the quantum numbers

Q T T3 Y S B
u 2/3 1/2 +1/2 1/3 0 1/3
d −1/3 1/2 −1/2 1/3 0 1/3
s −1/3 0 0 −2/3 −1 1/3

In this scheme, mesons are qq̄ bound states. For examples,

π+ ∼ d̄ u π0 ∼ 1√
2
(ūu − d̄ d ). π− ∼ ūd

K+ ∼ s̄u K 0 ∼ s̄d , K−ūs . η0 ∼ 1√
6
(ūu + d̄ d − 2s̄ s)
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and baryons are qqq bound states,

p ∼ uud , n ∼ ddu

Σ+ ∼ suu , Σ0 ∼ s
(
ud + du√

2

)
, Σ− ∼ sdd

Ξ0 ∼ ssu , Ξ− ∼ ssd , Λ0 ∼ s(ud − du)√
2

.

Quantum numbers of the hadrons are all carried by the quarks. But we do not know the
dynamics which bound the quarks into hadrons. Since quarks are the fundamental constituent
of hadrons it is important to find these particles. But over the years none have been found.
Paradoxes of simple quark model

1 1 Quarks have fractional charges while all observed particles have integer
charges. At least one of the quarks is stable. None has been found.

2 Hadrons are exclusively made out qq̄, qqq bound states. In other word,
qq, qqqq states are absent.

3 The quark content of the baryon N∗++ is uuu. If we chose the spin

state to be

∣∣∣∣32 , 32
〉

then all quarks are in spin-up state~ α1α2α3 is

totally symmetric. If we assume that the ground state has l = 0, then
spatical wave function is also symmetric. This will leads to violation of
Pauli exclusion principle.
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Color degree of freedom
One way to get out of these problems, is to introduce color degrees of freedom for each quark
and postulates that only color singlets are physical observables. 3 colors are needed to get
antisymmetric wave function for N ∗++ and remains a color singlet state. In other words each
quark comes in 3 colors,

uα = (u1, u2, u3) , dα = (d1, d2, d3) · · ·

All hadrons form singlets under SU (3)color symmetry, e.g.

N ∗++ ∼ uα(x1)αβ(x2)uγ(x3)εαβγ

Futhermore, color singlets can not be formed from the combination qq, qqqq and they are
absent from the observed specrum. Needless to say that a single quark is not observable.
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Gell-Mann Okubo mass formula
Since SU (3) is not an exact symmetry, we want to see whether we can understand the pattern
of the SU (3) breaking. Experimentally, SU (2) seems to be a good symmetry, we will assume
isospin symmetry to set mu = md . We will assume that we can write the hadron masses as
linear combinations of quark masses.

1 o− mesons

m2π = (mo + 2mu )

m2k = mo +mu +ms

m2η = mo +
2
3
(mu + 2ms )

Eliminate the quark masses we get

4m2k = m
2
π + 3m

2
η

This known as the Gell-Mann Okubo mass formula. Experimentally, we hav
LHS = 4m2k ' 0.98(Gev )2 while RHS = m2π + 3m2 ' 0.92(Gev )2 This seems to show
that this formula works quite well.
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2 1
2
+
baryon

mN = m0 + 3mu
mΣ = mo + 2mu +ms
mΞ = mo +mu + 2ms
mΛ = mo + 2mu +ms

We get the mass relation
mΣ + 3mΛ

2
= mN +mΞ

Expermentally,
mΣ + 3mΛ

2
' 2.23 Gev , and mN +mΞ ' 2.25 Gev .

3 3
2
+
baryon

mΩ −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −mN ∗

This is referred to as equal spacing rule. In fact when this relation is derived the particle
Ω has not yet been found and this relation is used to predicted the mass of Ω and
subsequent discovery gives a very strong support to SU (3) symmetry.
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ω− φ mixing
For 1− mesons, the situation seems to be different. If we make an analogy with o− mesons, we
would get Gell-Mann Okubo mass relation as,

3m2ω = 4m
2
K ∗ −m2ρ

Using mK ∗ = 890 Mev , mρ = 770 Mev we get mω = 926.5 Mev from this. But experimentally,
mω = 783Mev which is qiute far away. On the other hand there is a φ meson with mass
mφ = 1020 Mev and has same SU (2) quatntum number as ω. In principle, when SU (3)
symmetry is broken, ω− φ mixing is possible. Suppose for some reason there is a significant
ω− φ mixing we want to see whether this can save the mass relation.
Denote the SU (3) octet state by V8 and singlet state by V1

V8 =
1√
6
(ūu + d̄ d − 2s̄ s) , V1 =

1√
3
(ūu + d̄ d + s̄ s)

Write the mass matrix as

M =

(
m288 m218
m218 m211

)
Assume that the octet mass is that predicted by Gell-Mann Okubo mass relation, i.e.

3m288 = 4m2K ∗ −m2ρ
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After diagonalizing the mass matrix M , we get

R+MR = Md =

(
m2ω 0
0 m2φ

)
, with R =

(
cos θ sin θ
− sin θ cos θ

)
Thus

ω = cos θV8 − sin θV1
φ = sin θV8 + cos θV1

and

sin θ =

√
(m288 −m2ω)
(m2φ −m2ω)

Using m88 = 926.5Mev from Gell-Mann Okubo mass formula, we get

sin θ = 0.76

This is very close to the ideal mixing sin θ =
√

2
3 = 0.81 where mass eigenstates have a simple

form,

ω =
1√
2
(ūu + d̄ d )

φ = s̄ s

This means that the physical φ meson is mostly made out of s quarks in this scheme.
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1 Zweig rule
Since ω and φ have same quantum numbers under SU (2), one expects they have similar
decay widths. Experimentally, ω → 3π mostly, but φ→ 3π is very suppressed relative to
φ→ KK channel even though φ→ KK has very small phase space since mφ = 1020 Mev
and mk ≈ 494 Mev .

B (φ→ KK ) ≈ 85% , B (φ→ πππ) ∼ 28%

Quark diagrams
In term quarks contents, the decays of φ meson proceed as following diagrams
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Zweig rule postulates that processes involving quark-antiquark annihilation are highly
suppressed for some reason. This explains why φ has a width Γφ ≈ 4.26 Mev smaaler than
Γω ≈ 8.5 Mev .
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J/ψ and charm quark
In 1974 the ψ/J (3100) particle was discovered with unusually narrow width, Γ ∼ 70 kev ,
compared to Γρ ∼ 150 Mev , Γω ∼ 10Mev .
Simple explanation, ψ/J ∼ c̄ c and is below the threshold of decaying into 2 mesons containing
charm quark. It can only decay by c c̄ annihilation in the initial state.By Zweig rule, these decays
are highly suppressed and have very narrow width.
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Asymptotic freedom

1 λφ4 theory

L = 1
2
[(∂µ)

2 −m2φ2 ]− λ

4!

Effective coupling constant λ̄ satisfies

d λ̄

dt
= β(λ̄) , β(x̄ ) ≈ 3λ2

16π2
+ 0(λ3)

It is not asymptotically free.
Generalization: λφ4 → λijklφiφjφkφl , λijkl is totally symmetric. It turns out that

βijkl =
dλijkl
dt

=
1

16π2
[λijmnλmnkl + λikmnλmnjl + λilmnλmnjk ]

Take the special case, i = j = k = l

β1111 =
3

16π2
λ11mnλmn11 > 0

is not asymptotically free.
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2 Yukawa interaction

L = ψ̄(iγµ∂µ −m)ψ+
1
2
[(∂µφ)2 − µ2φ2 ]− λφ4 + f ψ̄ψφ

The equations for effective coupling constant are

βλ =
dλ

dt
= Aλ2 + Bλf 2 + Cf 4, A > 0

βf =
df
dt
= Df 3 + Eλ2f , D > 0

To get βλ < 0 , with A > 0 , we need f
2 ∼ λ. This means we can drop E term in βf .

With D > 0, Yukawa coupling f is not asymptotically free. Generalization to more than
one fermion fields or more scalar fields conclusion remains the same.

3 Abelian gauge theory(QED)

L = ψ̄iγµ(∂µ − ieAµ)ψ−mψ̄ψ− 1
4
FµνF µν

de
dt
= βe =

e3

12π2
+O (e5)

scalar QED :
de
dt
= βe =

e3

48π2
+O (e5)

Both are not asymptotically free.
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4 Non-Abelian gauge theories are asymptotically free.

L = − 1
2
Tr (FµνF µν)

where
Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν], Aµ = TaAaµ

with

[Ta ,Tb ] = ifabcTc , Tr (Ta ,Tb ) =
1
2

δab

The equation for effective coupling constant

dg
dt
= β(g ) = − g 3

16π2
(
11
3
)t2(V ) < 0

where
t2(V )δab = tr [Ta(V )Tb (V )] t2(V ) = n for SU (n)

Thus this is asymptotically free . If in addition,there are fermions and scalars with
representation, T a(F ) and T a(s), then

βg =
g 3

16π2

[
− 11
3
t2(V ) +

4
3
t2(F ) +

1
3
t2(s)

]
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where

t2(F )δab = tr (T a(F )T b (F ))

t2(S )δab = tr (T a(S )T b (S ))

Thus as long as t2(F ),and t2(s) are not too large, we still have βg < 0.
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QCD
Quark model needs colors degrees of freedom to overcome paradoxes of simple quark model. On
the other-hands, Bjroken scaling in deep inelastic scattering seems to require asymptotically free
theory.
These suggest gauging the color degrees of freedom of quarks ⇒ Quantum chromodynamics

LQCD = −
1
2
tr (GµνG µν) +∑

k
q̄k (iγ

µDµ −mk )qk

where

Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν]

Dµqk = (∂µ − igAµ)qk , Aµ = Aaµ
λa

2

βg =
−1
16π2

(11− 2
3
nf ) = −bg 3

where nf :number of flavors. The equation for effective coupling constant

d ḡ
dt

= −bḡ 3 t = ln λ

and the solution is

ḡ 2(t) =
g 2

1+ 2bg 2t
where g = ḡ (g , 0)
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For large momenta, λpi , ḡ 2(t) decreases like ln λ
Conveient to define

αs (Q 2) =
ḡ 2(t)
4π

then we can write

αs (Q 2) =
αs (µ2)

1+ 4πbαs (µ2) ln(Q 2/µ2)

Introduce Λ2 by the relation,

lnΛ2 = ln µ2 − 1
4πb αs (µ2)

then αs (Q 2) =
4π

(11− 2
3 nf ) lnQ

2/Λ2

Thus the effective coupling constant αs (Q 2) decreases slowly ∼ 1
lnQ2

. QCD can make prediction
about scaling violation (small) in the forms of integral over structure functions.
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Quark confinements
Since αs (Q 2) is small for large Q 2 , it is reasonable to believe that αs (Q 2) is large for small Q 2 .
If αs (Q 2) is large enough between quarks so that quarks will never get out of the hadrons. This
is called quark confinement. It is most attractive way to "explain" why quarks cannot be
detected as free particles.
QCD and Flavor symmetry QCD Lagrangian is of the form

LQCD = −
1
2
tr (GµνG µν) +∑

k
q̄k iγ

µDµqk +∑
k
q̄kmkqk

Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν] , Aµ = Aaµ
λa

2
Dµqk = (∂µ − igAµ)qk , qk = (u, d , s · · · )

Consider the simple case of 3 flavors.

qk = (u, d , s)

LQCD = −
1
2
tr (GµνG µν) + (ūiγµDµu + d̄ iγµDµd + s̄ iγµDµs) +mu ūu +md d̄ d +ms s̄ s

In the limit mu = md = ms = 0, $QCD , is invariant under SU (3)L × SU (3)R transformation u
d
s


L

→ UL

 u
d
s


L

 u
d
s


R

→ UR

 u
d
s


R
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However, hadron spectra shows only approximate SU (3) symmetry, not SU (3)× SU (3)
symmetry. We can reconcile this by the scheme SU (3)× SU (3) is broken spontaneously to
SU (3) so that particles group into SU (3) multiplet. This would require 8 Goldstone bosons,
which are massless. However in real world quark masses are not zero, these Goldstone bosons
are not exactly massless. But if this symmetry breaking makes sense at all, these Goldstone
bosons should be light. Thus we can identify them as pseudoscalar mesons. In other worlds,
pseudoscalar mesons are ”almost” Goldstone bosons.
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