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1 Path Integral Quantization of Gauge Theories

Canonical quantization of gauge theory is diffi cult, because not all components of gauge fileds
are real physical degree of freedom. To eliminate those components which are dependent, it is
eaiser to use path integral quantization To see the diffi culty, consider SU(2) Yang-Mills fields,

L = − 1
4
F aµνF

aµν a = 1, 2, 3

where
F aµν = ∂µAaν − ∂νAaµ + g εabcAbµA

c
ν

The generating functional is

W [J ] =
∫
[dAµ] exp{i

∫
d 4x [L+

→
J µ ·

→
A

µ

]

The free-field part is

W0 [J ] =
∫
[dAµ] exp{i

∫
d 4x [L0 +

→
J µ ·

→
A

µ

]}

Write the free Lagrangian as,

∫
d 4xLo (x ) = −

1
4

∫
d 4x (∂µAaν − ∂νAaµ)(∂µAaν − ∂νAaµ)

=
1
2

∫
d 4xAaµ(x )(g

µν∂2 − ∂µ∂ν)Aaν(x )
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The formula for the Gaussian integral is,

∫
[dφ] exp[− 1

2
〈φKφ〉+ 〈J φ〉] ∼ 1√

det K
exp

〈
JK−1J

〉
However, in our case operator K

Kνµ(x − y ) = (g µν∂2 − ∂µ∂ν)δ4(x − y )

is a projection operator, i.e.

∫
d 4yKµν(x − y )K ν

λ(y − z ) ∝ Kνλ(x − z )

and has no inverse. Then Gaussian intergral diverges. W0(J ) is singular is due to the gauge
invariance which projects out the transverse gauge fields. In W0(J ) we sum over all field
configurations, including "orbits" that are related by gauge transformation. This over-counting
is the root of the divergent integral. Thus we have to remove this "volume" of the orbit in the
quantization.
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Volume factor in gauge theory
Simple example
We shall use a 2-dimensional integral to illustrate the strategy to factor out the volume factor.
Take a simple integral,

W =
∫
dxdye iS (x ,y ) =

∫
d 2re iS (

→
r ) (1)

where
→
r = (r , θ). Suppose S (

→
r ) is invariant under rotation,

S (
→
r ) = S (

→
r φ), with

→
r φ = (r , θ + φ) (2)

Then S (
→
r ) is constant over (circular) orbit and W is proportional to the length of the orbit. So

if we sum over contribution from inequivalent S (
→
r )′s we can simply divide out the volume

factor corresponding to polar integration
∫
d θ = 2π. We will use a more complicate prodedure

which can be generalized to more general cases. Insert an identity,

1 =
∫
dφδ (θ − φ)

into W given in Eq(1)

W =
∫
dφ

∫
d 2re iS (

→
r )δ (θ − φ) =

∫
dφWφ
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Use the invarinat property S (
→
r ) = S (

→
r φ), we see that

Wφ = Wφ′ , =⇒ Wφ is independent of φ

and

W =
∫
dφWφ = Wφ

∫
dφ = 2πWφ

Here we can just drop volume factor 2π. Impose more complicate constraint,

g (
→
r ) = 0 (3)
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which intersects each orbit only once. We need to compute
[
∆g
(→
r
)]
defined by

1 =
∫
dφ

[
∆g
(→
r
)]

δ
[
g (
→
r φ)

]
Write [

∆g
(→
r
)]−1

=
∫
dφ δ

[
g (
→
r φ)

]
∆g (r ) is rotational invariant,[

∆g
(→
r φ′
)]−1

=
∫
dφ δ

[
g (
→
r φ+φ′ )

]
=
∫
dφ” δ

[
g (
→
r φ” )

]
=
[
∆g
(→
r
)]−1

Integrating over φ,

∆g
(→
r
)
=

∂g (
→
r )

∂θ

∣∣∣∣∣
g=0

(4)

The integral is

W =
∫
dφWφ with Wφ =

∫
d 2re iS (

→
r )δ
[
g (
→
r φ)

]
∆g
(→
r
)

(5)

Again, Wφ is rotational invariant and we can remove the voulume factor in Eq(5),

Wφ′ =
∫
d 2re iS (

→
r )δ
[
g (
→
r φ′ )

]
∆g
(→
r
)

=
∫
d 2r ′e iS (

→
r
′
)δ
[
g (
→
r φ′ )

]
∆g

(→
r ′
)

with
→
r ′ =

(
r , φ′

)
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Volume factor in Gauge Theories
The gauge theory is more complicate. But the principle is the same and it is useful to think of
local gauge symmetry as the generalization of the rotational symmetry in the simple example .

Under the gauge transformation we have
→
Aµ →

→
A

θ

µ, where

→
Aµ ·

→
τ

2
−→

→
A

θ

µ ·
→
τ

2
= U (θ)[(

→
Aµ ·

→
τ

2
) +

1
ig
U−1(θ)∂µU (θ)]U−1(θ)

where

U (θ) = exp[
−i
→
θ ·→τ
2

]

This is analogous to rotational transformation given in Eq(2). We restrict the path integration
to hypersurface which intersects each orbit once. If we choose the hypersurface as

fa(
→
Aµ) = 0, a = 1, 2, 3 (6)

so that the equation

fa(
→
A

θ

µ) = 0

This is analogous to Eq (3). In the neighborhood of identity, we can write

U (θ) = 1+ i

→
θ ·→τ
2

+O (θ2)
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The integration over group space can be chosen as

[d θ] =
3

∏
a=1

d θa

Define

∆−1f [
→
Aµ] =

∫
[d θ(x )]δ[fa(

→
A

θ

µ)]

then

∆f [Af ] = det Mf where (Mf )ab =
δfa
δθb

This is the generalization of the formula,

∫
dx δ (f (x )) =

1
df /dx

∣∣∣∣
f =0

Under infinitesimal gauge transformation

Aθa
µ = Aaµ + εabc θbAcµ −

1
g

∂µθa

and the responce of the function f is

fa(
→
A

θ

µ) = fa(
→
Aµ) +

∫
d 4y [Mf (x , y ]abθb (y ) +O (θ

2)
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Again ∆f [
→
Aµ] is gauge invariant, as illustrated by the following simple calculation. From

∆−1f [
→
Aµ] =

∫
[d θ′(x )]δ[fa(

→
A

θ′

µ )]

we get

∆−1f [
→
A

θ

µ] =
∫
[d θ′(x )]δ[fa(

→
A

θθ′

µ )] =
∫
[d (θ(x )θ′(x )]δ[fa(

→
A

θθ′

µ )]

=
∫
[d θ”(x )]δ[fa(

→
A

θ”

µ )] = ∆−1f [
→
Aµ]

The path integral is

∫
[d
→
Aµ] exp{i

∫
L(x )d 4x} =

∫
[d θ(x )]

[
d
→
Aµ

]
∆f (

→
Aµ)δ[fa(

→
A

θ

µ)] exp{i
∫
L(x )d 4x}

=
∫
[d θ(x )]

[
d
→
Aµ

]
∆f (

→
Aµ)δ[fa(

→
Aµ)] exp{i

∫
L(x )d 4x}

We can now drop the "volume factor"
∫
[d θ(x )] to write the generating functional as

Wf [~J ] =
∫
[d
→
Aµ](detMf )δ[fa(

→
Aµ)] exp{i

∫
d 4x [L(x ) +

→
J µ ·

→
A

µ

]}

This is calles Faddeev-Popov ansatz and the factor detMf is called the Faddeev-Popov
determinant. This is the path integral suitable for quantization.
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Faddeev-Popov Ghost
Write detMf as

(detMf ) ∼
∫
[dc ][dc+]exp{i

∫
d 4xd 4y ∑ c+a (x )[Mf (x , y )]abcb (y )}

where ca , c †
b are Grassman fields and are called Faddeev-Popov ghosts and they are not real

physical degrees of freedoms. Then we can treat the Faddeev-Popov determinant as an
additional term in the Lagrangian. We also want to convert δ[fa(Aµ)] into some effective
Lagrangian form. Suppose we choose the gauge fixing term as ,

[fa(
→
Aµ)] = Ba(x )

Ba(x ) is some arbitrary function. Then the integral

∫
[d θ(x )]∆f [

→
Aµ]δ[fa(

→
A

θ

µ)− Ba(x )] = 1

will give the same ∆f [Aµ] as before. Note that

∫
[dBa(x )]exp{−

i
2ξ

→
B
2
(x )} ∼ constant , ξ is arbitrary
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We can write

W [J ] =
∫
[dAaµ][dBa(x )](detMf )δ[fa(

→
Aµ)− Ba ] exp{i

∫
d 4x [L(x )−

→
J

µ

·
→
Aµ −

1
2ξ

→
B
2
(x )]}

=
∫
[dAaµ](detMf ) exp{i

∫
d 4x [L(x )−

→
J

µ

·
→
Aµ −

1
2ξ
[f a(Aµ)]

2 ]},

Put all these together

W [J ] =
∫
[dAaµ][dc (x )][dc

†(x )] exp{iSeff [~J ]}

where the effective action is,
Seff [~J ] = S [~J ] + Sgf + SFPG

Here Sgf is the gauge fixing term,

Sgf =
1
2ξ

∫
d 4x{fa [Aµ(x )]}2

and SFPG is the Faddev-Popov ghost term,

SFPG =
∫
d 4xd 4y ∑

a,b
c †
a (x )[Mf (x , y )]abcb (y )
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Covariant gauge
Themost common choice of the gauge fixing term is

fa(Aµ) = ∂µAaµ = 0

We now compute the Faddev-Popov determinan . Under infinitesimal gauge transformation,

U (θ(x )) = 1+
i
→
θ ·→τ
2

+O (θ2)

we get

Aaθ
µ = Aaµ + εabc θb (x )Acµ(x )−

1
g

∂µθa

Then

f a(Aθ
µ) = f

a(Aµ) + ∂µ[εabc θb (x )Acµ(x )−
1
g

∂µθa(x )] = f a(Aµ) +
∫
d 4y [Mf (x , y ]abθb (y )

with

[Mf (x , y )]ab = −
1
g

∂µ[δab∂µ − g εabcAcµ]δ
4(x − y )

Then

Sgf = −
1
2ξ

∫
d 4x (∂µAµ)

2

SFPG =
1
g

∫
d 4x ∑

a,b
c+a (x )∂

µ[δab∂µ − g εabcA
c
µ]cb (x )

We can use this to generate Feynman rule and do the calculation perturbatively if applicable.
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