Physical Processes inMassive Star-Forming Regions

Recent observational progress with millimeter arrays

陳惠茹

September 20, 2006 (清大物理)

Why Longer Wavelengths?

Hydrogen 21cm Forbidden Line

• Hyperfine interaction (forbidden transition) • A ~ 2.9 X 10⁻¹⁵ s⁻¹; Lifetime ~ 10⁷ years

Molecular Clouds

Cold, dense molecular gas complex
On ~ 10³-10⁶ cm⁻³
T~ 10-50 K

Ophiuchus Giant Molecular Cloud (by Loke Tan)

What are arrays?

Angular resolution ~ 1.22 λ / D

What are arrays?

Angular resolution ~ 1.22 λ / D

Submillimeter Array (SMA)

Millimeter and Submillimeter Arrays

How do stars form?

Low-Mass Protostars

Credit:

G. Bacon (STScI)

Massive Stars

Clustered Environment

A D B C J F E M J

Η

Ojha et al. 2004

W3 Main

Observational test Accretion vs Coalescence

O Accretion or Infall

- O Isolated, noninteracting cores
- O Collimated outflow
- O Stable IR

• Coalescence or Mergers

- Clustered, interacting cores
- Wide-angle outflow
- Flaring in IR or radio

Bally & Zinnecker 2005

Massive Protostars

1.4 mm (contours) 3.6 cm (greyscale) \bigcirc 0 H_{II} region ٩ 0 \bigcirc \bigcirc \cap W3(H₂O) W3(OH) UC Hill region **Hot Molecular Core** 1000 AU 04^{\$}8

Copyright: Davide De Martin

Continuum Emission

Spectral Line Emission

Hot Core Chemistry

Orion KL

Spectral line Observations

 Deriving velocities kinematics

 Deriving temperature thermal structures & heating sources

Global Collapse toward W3(OH)

