A Subtle Periodic Table

- an unsolved mystery of our Mother Nature

We-Fu Chang NTHU
Oct. 11, 2006 NTHU

- A thousand years old question: What is our world made of?
- In ancient Greek, philosopher believed the building blocks are the "4 elements":

season	element	humour	body fluid	location
Spring	air	sanguine	blood	heart
Summer	fire	choleric	"yellow bile"	liver
Autumn	earth	melancholic	"black bile"	spleen
Winter	water	phlegmatic	phlegm	(various)

No, that's not enough!

Mendeleev first trained as a teacher in the Pedagogic Institute of St. Petersbug before earing his MS in 1856.

Textbook written between 1868-1870

- At that time, the experimentally determined atomic masses were not always accurate. Mendeleev reordered elements despite their accepted masses.
For example, he changed the weight of Beryllium from 14 to 9.
In all, he found 17 elements had to be moved to new positions.
- Even so, there are many elements missing at some positions.

From the gap, he predicted the existence and properties of unknown elements.

- Gallium (by a French, Gallia is Latin for France), Scandium (by a Scandinavian), and Germanium (by a German) were found later to fit his prediction quite well.
- In all Medeleev predicted the existence of 10 new elements, of which seven were eventually discovered.
- After electron, proton, neutron and Quantum Mechanics were known, the periodic table can be easily understood.

Modern Periodic Table

Table 4.1. Revised 2004 by C.G. Wohl (LBNL). Adapted from the Commission of Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements 1995 ," Pure and Applied Chemistry 68, 2339 (1996), and G. Audi and A.H. Wapstra, "The 1993 Mass Evaluation," Nucl. Phys. A565, 1 (1993). The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundances in the Earth's surface. For a new determination of atomic masses, not weighted by abundances, see G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003). Atomic masses are relative to the mass of the carbon-12 isotope, defined to be exactly 12 unified atomic mass units (u). Errors range from 1 to 9 in the last digit quoted. Relative isotopic abundances often vary considerably, both in natural and commercial samples. A number in parentheses is the mass of the longest-lived isotope of that element-no stable isotope exists. However, although Th, Pa, and U have no stable isotopes, they do have characteristic terrestrial compositions, and meaningful weighted masses can be given. For elements 110 and 111 , the numbers of nucleons A of confirmed isotopes are given.

$\begin{gathered} 1 \\ \mathrm{IA} \\ \hline \end{gathered}$																	$\begin{gathered} 18 \\ \text { VIIIA } \end{gathered}$
$1 \quad \mathrm{H}$ Hydrogen 1.00794	$\begin{gathered} 2 \\ \text { IIA } \\ \hline \end{gathered}$											$\begin{gathered} 13 \\ \text { IIIA } \end{gathered}$	$\begin{array}{r} 14 \\ \text { IVA } \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & \text { VA } \\ & \hline \end{aligned}$	$\begin{array}{r} 16 \\ \text { VIA } \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { VIIA } \\ \hline \end{gathered}$	$2 \quad \mathrm{He}$ Helium 4.002602 10
$3 \quad \mathrm{Li}$ Lithium 6.941 11	4 Beryllium 9.012182	PERIODIC TABLE OF THE ELEMENTS										5 Boron 10.811	6 Carbon 12.0107	7 N Nitrogen 14.00674	$8 \quad 0$ Oxygen 15.9994	9 Fluorine 18.9984032 17	$10 \quad \mathrm{Ne}$ Neon 20.1797 18 Ar
$11 \quad \mathrm{Na}$ Sodium 22.989770 19	$12 \quad \mathrm{Mg}$ Magnesium 24.3050	$\begin{gathered} 3 \\ \text { IIIB } \end{gathered}$	$\begin{gathered} 4 \\ \text { IVB } \end{gathered}$	$\begin{gathered} 5 \\ \text { VB } \end{gathered}$	$\begin{gathered} 6 \\ \text { VIB } \end{gathered}$	$\begin{gathered} 7 \\ \text { VIIB } \end{gathered}$	8	$\begin{gathered} 9 \\ -\quad \text { VIII } \end{gathered}$	$\begin{array}{r} 10 \\ -\quad \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \mathrm{IB} \end{aligned}$	$\begin{gathered} 12 \\ \text { IIB } \end{gathered}$	$13 \quad \mathrm{Al}$ Aluminum 26.981538	$14 \quad$ Si Silicon 28.0855	15 Phosph. 30.973761	16 S Sulfur 32.066	$17 \quad \mathrm{Cl}$ Chlorine 35.4527	$18 \quad \mathrm{Ar}$ Argon 39.948
$19 \quad$ K Potassium 39.0983	$20 \quad$ Ca Calcium 40.078	21 Scandium 44.955910	$22 \quad \mathrm{Ti}$ Titanium 47.867	$23 \quad$ V Vanadium 50.9415$\|$	$24 \quad \mathrm{Cr}$ Chromium 51.9961	$\begin{array}{\|lr} \hline 25 & \text { Mn } \\ \text { Manganes } \\ 54.938049 \\ \hline \end{array}$	$\begin{gathered} \hline 26 \quad \mathrm{Fe} \\ \text { Iron } \\ 55.845 \\ \hline \end{gathered}$	$27 \quad$ Co Cobalt 58.933200	$\begin{array}{\|cc\|} \hline 28 \quad \mathrm{Ni} \\ \text { Nickel } \\ 58.6934 \\ \hline \end{array}$	$29 \quad \mathrm{Cu}$ Copper 63.546	$\begin{array}{\|c\|} \hline 30 \quad \mathrm{Zn} \\ \text { Zinc } \\ 65.39 \\ \hline \end{array}$	$31 \quad \mathrm{Ga}$ Gallium 69.723	$32 \quad \mathrm{Ge}$ German. 72.61	$33 \quad$ As Arsenic 74.92160	$34 \quad \mathrm{Se}$ Selenium 78.96	$35 \quad \mathrm{Br}$ Bromine 79.904	$36 \quad \mathrm{Kr}$ Krypton 83.80 24
$37 \quad \mathrm{Rb}$ Rubidium 85.4678 55	$38 \quad \mathrm{Sr}$ Strontium 87.62	$39 \quad Y$ Yttrium 88.90585	$40 \quad$ Zr Zirconium 91.224	$\begin{array}{\|lr\|} \hline 41 & \mathrm{Nb} \\ \text { Niobium } \\ 92.90638 \\ \hline 7 & \hline \end{array}$	$42 \quad$ Mo Molybd. 95.94	$\begin{gathered} \hline 43 \quad \mathrm{Tc} \\ \text { Technet. } \\ 97.907215 \\ \hline 7 r \end{gathered}$	$44 \quad \mathrm{Ru}$ Ruthen. 101.07 26	45 Rhodium 102.90550	$46 \quad \mathrm{Pd}$ Palladium 106.42	$47 \quad \mathrm{Ag}$ Silver 107.8682	$48 \quad$ Cd Cadmium 112.411	$49 \quad$ In Indium 114.818	$\begin{array}{\|c} \hline 50 \quad \mathrm{Sn} \\ \text { Tin } \\ 118.710 \\ \hline \end{array}$	51 Sb Antimony 121.760	$52 \quad \mathrm{Te}$ Tellurium 127.60 84	$53 \quad$ I Iodine 126.90447	$54 \quad$ Xe Xenon 131.29 86
$55 \quad$ Cs Cesium 132.90545 87	$56 \quad$ Ba Barium 137.327	$57-71$ Lantha- nides	$72 \quad \mathrm{Hf}$ Hafnium 178.49 104	73 Tantalum 180.9479 105	$74 \quad$ W Tungsten 183.84	$75 \quad \operatorname{Re}$ Rhenium 186.207 107	$76 \quad$ Os Osmium 190.23	$77 \quad$ Ir Iridium 192.217 109	78 Pt Platinum 195.078	79Au Gold 196.96655 111	$80 \quad \mathrm{Hg}$ Mercury 200.59	$81 \quad$ TI Thallium 204.3833	82 Pb Lead 207.2	$83 \quad \mathrm{Bi}$ Bismuth 208.98038	$84 \quad$ Po Polonium (208.982415)	85 At Astatine (209.987131)	$86 \quad \mathrm{Rn}$ Radon (222.017570)
$87 \quad$ Fr Francium (223.019731)	$\left[\begin{array}{c}88 \quad \mathrm{Ra} \\ \text { Radium } \\ (226.025402)\end{array}\right]$	$89-103$ Actinides	$104 \quad \mathrm{Rf}$ Rutherford. (261.1089)	$\left.\begin{array}{\|l\|}105 \\ \text { Dubnium } \\ (262.1144)\end{array}\right]$	$106 \quad \mathrm{Sg}$ Seaborg. (263.1186)	107 Bohrium (262.1231)	$\begin{array}{cc} 108 \mathrm{Hs} \\ \text { Hassium } \\ (265.1306) \end{array}$	$\left.\begin{array}{\|cc\|} \hline 109 & \mathrm{Mt} \\ \text { Meitner. } \\ (266.1378) \end{array} \right\rvert\,$	$110 \quad$ Ds Darmstadt. $[269,271]$	111 [272]							

Lanthanide series	$57 \quad$ La Lanthan. 138.9055	$\begin{array}{\|cc} 58 & \text { Ce } \\ \text { Cerium } \\ 140.116 \\ \hline \end{array}$	$\|$59 Pr Praseodym. 140.90765	$\begin{gathered} 60 \quad \mathrm{Nd} \\ \text { Neodym. } \\ 144.24 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 61 \quad \text { Pm } \\ \text { Prometh. } \\ (144.912745) \end{array}$	$\begin{array}{\|cr} 62 & \text { Sm } \\ \text { Samarium } \\ 150.36 \\ \hline \end{array}$	$\begin{array}{\|lr} 63 & \text { Eu } \\ \text { Europium } \\ 151.964 \\ \hline \end{array}$	$\begin{gathered} 64 \quad \mathrm{Gd} \\ \text { Gadolin. } \\ 157.25 \\ \hline \end{gathered}$	$65 \quad \mathrm{~Tb}$ Terbium 158.92534	$\begin{array}{\|cc\|} \hline 66 & \text { Dy } \\ \text { Dyspros. } \\ 162.50 \\ \hline \end{array}$	67 Ho Holmium 164.93032	$\begin{array}{\|cc\|} \hline 68 \quad \text { Er } \\ \text { Erbium } \\ 167.26 \\ \hline \end{array}$	$\begin{aligned} & 69 \quad \text { Tm } \\ & \text { Thulium } \\ & \text { 168.93421 } \end{aligned}$	$\begin{array}{cc} 70 & \mathrm{Yb} \\ \text { Ytterbium } \\ 173.04 \\ \hline \end{array}$	$\begin{aligned} & 71 \quad \text { Lu } \\ & \text { Lutetium } \\ & 174.967 \end{aligned}$
Actinide series	$\begin{gathered} 89 \quad \text { Ac } \\ \text { Actinium } \\ (227.027747) \end{gathered}$	$\begin{array}{\|l\|l} 90 \quad \text { Th } \\ \text { Thorium } \\ 232.0381 \end{array}$	$\begin{aligned} & 91 \quad \mathrm{~Pa} \\ & \text { Protactin. } \\ & \text { 231.03588 } \\ & \hline \end{aligned}$	$92 \quad$ U Uranium 238.0289	$\left\|\begin{array}{lr}93 & \text { Np } \\ \text { Neptunium } \\ (237.048166)\end{array}\right\|$	94 Pu Plutonium (244.064197)	$\begin{gathered} 95 \quad \text { Am } \\ \text { Americ. } \\ (243.061372) \end{gathered}$	$\begin{array}{ll} 96 \quad \mathrm{Cm} \\ \text { Curium } \\ (247.070346) \end{array}$	$\left\lvert\, \begin{array}{lr} 97 & \mathrm{Bk} \\ \text { Berkelium } \\ (247.070298) \end{array}\right.$	$\left\|\begin{array}{cc} 98 & \text { Cf } \\ \text { Californ. } \\ (251.079579) \end{array}\right\|$	$\begin{gathered} 99 \quad \text { Es } \\ \text { Einstein. } \\ (252.08297) \end{gathered}$	$\left\|\begin{array}{cc} 100 & \text { Fm } \\ \text { Fermium } \\ (257.095096) \end{array}\right\|$	$\begin{array}{\|l\|} \hline 101 \quad \text { Md } \\ \text { Mendelev. } \\ (258.098427) \end{array}$	$\begin{aligned} & 102 \text { No } \\ & \text { Nobelium } \\ & (259.1011) \end{aligned}$	$\begin{array}{cc} 103 \quad \text { Lr } \\ \text { Lawrenc. } \\ (262.1098) \end{array}$

J Thomson
electron, 1906

C Anderson positron, 1936

Rutherford proton, 1908 (chem)

Yukawa
pion theory, 1949

J. Chadwick neutron, 1935

C. Powell pion, 1950

In 1964, Murray Gell-Mann and George Zweig tentatively put forth the idea of quarks. They suggested that mesons and baryons are composites of three quarks or antiquarks, called up, down, or strange (u, d, s) with spin $1 / 2$ and electric charges $2 / 3,-1 / 3,-1 / 3$, respectively (it turns out that this theory is not completely accurate). Since the charges had never been observed, the introduction of quarks was treated more as a mathematical explanation of flavor patterns of particle masses than as a postulate of actual physical object. Later theoretical and experimental developments allow us to now regard the quarks as real physical objects, even though they cannot be isolated.

November Revolution in Physics

The world of physics was dazzled in November 1974 when two separate experiments at SLAC and at Brookhaven independently discovered the first of a new set of particle states, the J/Psi particle.
Burton Richter of the SLAC collaboration, and Sam Ting, of the Brookhaven group, received the 1976 Nobel Prize in Physics
"for their pioneering work in the discovery of a heavy elementary particle of a new kind."

Standard Model

- Standard Model(SM) is the most successful theoretical understanding of the Mother Nature in human history (with only 19 free parameters.)

$$
\begin{aligned}
S M= & \text { Quantum Mechanics }+ \text { Special Relativity }+ \text { Field theory } \\
& + \text { Gauge Symmetry }\left[\equiv S U(3)_{c} \times S U(2)_{L} \times U(1)\right] \\
& + \text { Matter Content }[\text { quarks, leptons }]+\text { Higgs Mechanism } .
\end{aligned}
$$

- Predicts that weak interaction is mediated by exchange of $W^{ \pm}$and Z^{0} bosons.

S. Glashow

Abdus Salam

Steven Weinberg

Baryons qqq and Antibaryons $\overline{\mathrm{q}} \overline{\mathrm{q}} \overline{\mathrm{q}}$
 Baryons are fermionic hadrons.

These are a few of the many types of baryons.

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
\mathbf{p}	proton	uud	1	0.938	$1 / 2$
$\overline{\mathbf{p}}$	antiproton	$\overline{\text { ūū}} \overline{\mathbf{d}}$	-1	0.938	$1 / 2$
\mathbf{n}	neutron	udd	0	0.940	$1 / 2$
Λ	lambda	uds	0	1.116	$1 / 2$
Ω^{-}	omega	$\mathbf{S S S}$	-1	1.672	$3 / 2$

Mesons $\mathbf{q} \overline{\mathbf{q}}$

Mesons are bosonic hadrons

These are a few of the many types of mesons.

Symbol	Name	Quark content	Electric charge	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Spin
π^{+}	pion	$\mathbf{u \overline { d }}$	+1	0.140	0
\mathbf{K}^{-}	kaon	$\mathbf{s u}$	-1	0.494	0
ρ^{+}	rho	$\mathbf{u} \overline{\mathbf{d}}$	+1	0.776	1
$\mathrm{~B}^{0}$	B-zero	$\mathbf{d} \overline{\mathbf{b}}$	0	5.279	0
η_{c}	eta-c	$\mathbf{c} \overline{\mathbf{c}}$	0	2.980	0

The subtle periodic table in the modern particle physics:

$$
\text { FERMIONS } \quad \begin{aligned}
& \text { matter constituents } \\
& \text { spin }=1 / 2,3 / 2,5 / 2, \ldots
\end{aligned}
$$

Leptons spin =1/2			Quarks spin =1/2		
Flavor	$\begin{aligned} & \text { Mass } \\ & \mathrm{GeV} / \mathrm{c}^{2} \end{aligned}$	Electric charge	Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$V_{\mathrm{L}}{ }_{\text {l }}^{\substack{\text { lightest } \\ \text { neutrino* }}}$	$(0-0.13) \times 10^{-9}$	0	(U) up	0.002	2/3
(e) electron	0.000511	-1	(d) down	0.005	-1/3
$V_{M}{ }_{\text {M }} \begin{aligned} & \text { middle } \\ & \text { neutrino* }\end{aligned}$	$(0.009-0.13) \times 10^{-9}$	0	C charm	1.3	2/3
$\boldsymbol{\mu}$ muon	0.106	-1	(S) strange	0.1	-1/3
$\nu_{H} \begin{aligned} & \text { heaviest } \\ & \text { neutrino* }\end{aligned}$	$(0.04-0.14) \times 10^{-9}$	0	t top	173	2/3
τ^{τ} tau	1.777	-1	b bottom	4.2	-1/3

Fermion masses

- Fermion masses in log scale
fermion masses

- Where comes the mass?

Masses and the Higgs field

- The left-handed and right-handed fermions are coupled by Higgs boson and get their mass through nonzero VEV.

- Mathematically, the fermion mass term can be expressed as

$$
\mathcal{L}_{\text {Yukawa }}=f_{i j} \overline{\psi_{L i}} \psi_{R j} H+H . c .
$$

- A thought experiment:

If a left-handed fermion has mass, we can move fast enough to pass and find a right-handed partner.
Since we observe no right-handed neutrino \Rightarrow neutrinos are massless in Standard Model.

Fermion Mixing

- We have learnt that: the mixing among neutrinos are "Bi-LARGE" and only few mass matrix patterns can explain the data.
$U_{M N S}=\left(\begin{array}{ccc}e^{i \phi_{1}} & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} \\ 0 & e^{-i \delta+i \phi_{2}} & 0 \\ -s_{13} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$
$\theta_{12} \sim 33^{\circ}, \theta_{23} \sim 45^{\circ}, \theta_{13}<13^{\circ} ; \delta, \phi_{1}, \phi_{2}$ are still unknown.
- Compared to the SM quark sector:
$V_{C K M}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} \\ 0 & e^{-i \delta} & 0 \\ -s_{13} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$
$\theta_{12} \sim 13^{\circ}, \theta_{23} \sim 2^{\circ}, \theta_{13} \sim 0.2^{\circ} ; \delta \sim 65^{\circ}$.
- Puzzles!!

Let's look back.

- Too many elements
\Longrightarrow Periodic Table
\Longrightarrow Atoms consist of electrons and nuclei
- Too many isotopes
\Longrightarrow nuclei is made of protons and neutrons
- Too many hadrons
\Longrightarrow quarks and $S U(3)_{c}$
- Too many redundant generations
\Longrightarrow Preon and Hypercolor??

Preon doesn't work!

In the 1980s, the preon was a very popular research topic. But it doesn't look promising anymore:

- No direct experimental evidence or hints of the existence of substructure of quarks or lepton.
Contact interaction search at LEP

$$
\Longrightarrow \Lambda_{p}>\mathrm{TeV}
$$

- The theory is difficult.
- Must be another Yang-Mills: Which group? Which representation? How to calculate?
- Why are quarks and leptons so light? Natural expectation is mass $\sim \Lambda_{p}>\mathrm{TeV}$. Chiral symmetry is the only known symmetry to protect large mass, no one knows how to make it work here.
- How to get the SM quantum number?
- Some generic bad predictions: exotic boson, quarks, and leptons..

Other tries.

- Bigger symmetry group?

$$
S U(5) \rightarrow S U(8), S O(10) \rightarrow S O(10+4 k), E 6 \rightarrow E 8
$$

However, familon problem, predicts $K^{+} \rightarrow p i^{+}+f$

- Symmetry, or extra quantum number in the Yukawa sector: Structure Zeros, Froggatt-Nielsen, or the hybrid.
- Statistics:

Anarchy, Landscape..

Geometry in extra Dimension?

- 5D fermion localizes at different position, z_{i}, in extra dimension $y \in[-\pi R, \pi R]$, $\psi_{i}(x, y)=g\left(z_{i}, y\right) \psi(x)$,

$$
\begin{array}{r}
g\left(z_{i}, y\right)=\frac{1}{\left(\pi \sigma^{2}\right)^{1 / 4}} \exp \left[-\frac{\left(y-z_{i}\right)^{2}}{2 \sigma^{2}}\right] \\
g\left(z_{1}, y\right) g\left(z_{2}, y\right)=\exp \left[-\frac{\left(z_{1}-z_{2}\right)^{2}}{4 \sigma^{2}}\right] g\left(\frac{z_{1}+z_{2}}{2}, y\right)
\end{array}
$$

- Exponential Yukawa hierarchy becomes linear displacement between left-handed and right-handed fermions in the fifth dimension.
- The following map can reproduce all quarks' masses and CKM mixings

Intersecting brane?

It may provide a topological reason why we have 3 generations.

