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Physics is vital in breakthrough in life sciences

Breakthrough in physical instrument: optical microscope (Hooke, 1665),
amplifier, X-ray, electron microscope, MRI, SPM, mass spectrometer,
Single molecule microscopy,....

Nobel laureates in physiology/medicine

that were physicists/had physics training:

Georg von Békésy (physical mechanism of the cochlea, 1961)
Francis Crick (DNA, 1962)

Alan Hodgkin (nerve cell ,1963)

Haldan Hartline (visual processes in the eye, 1967)

Max Delbriick (bacteriophage H-1969)

Rosalyn Yalow (radio-immunoassays of peptide hormones, 1977)
Werner Arber (restriction enzymes , 1978)

Erwin Neher (single ion channels in cells ,1991)

Paul Greengard (signal transduction in nervous systems, 2000)
Leland Hartwell (regulators of cell cycle, 2001)

Peter Mansfield (NMR, 2003)......

Others: Schroedinger, Cooper,
Feicaenbaum



What is Biophysics?
Biophysical Society defines as: "that branch of knowledge that applies the

principles of physics and chemistry and the methods of mathematical
analysis and computer modeling to understand how the mechanisms of
biological systems work” .

 Why BioPhysics ?

« Material Nature of Bio-substances affect
Biological properties. (Evolution made use
of the physical properties of bio-materials)

« Physical principles & Laws holds from
microscopic level - macroscopic level

 Traditional Biology is descriptive, non-
quantitative



http://www.biophysics.org/

Why BioPhysics ?

Physics is universal.

Rise of molecular biology: DNA, RNA, protein,
ATP... are universal in all living matters

Universality in Central Dogma:
DNA-RNA-protein-Biological functions...

New, interesting, exciting & useful.
Lots of unsolved important problems.

Techniques & Methodology in physics can probe
the fundamental principles in bio-systems of a
wide spectrum of scales in a quantitative way.




Era of modern Biophysics

« Length Scales:
nm [l fm X mm [ cmX m [ km

DNA,RNA protein, intracellular, virus, bacteria, Intercellular, collective motion, insects,  animals/plants, migration

e Time Scales:

fs Hkps H s K ms [s

e transfer,H-bonding,water DNA,RNA protein rearrangement , protein folding DNA transcription
0 hr [ day [ year K Byr

cell division Earth organisms animal migration evolution

. Knowledge: Interdisciplinary 5% 2R} 4835
MathematicsllIPhysicsllIChemistrylllIBiologylllIMedical
BioPhysics R0 Biology + Physics

* Biophysicist is a TRUE Scientist ! Explore to the
maximum freedom for doing science!
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Elementary particles of Life

Universal molecules: DNA, RNA, protein, ATP

Interactions giving rise to bio-process: Central
Dogma: DNA-RNA-protein-Biological functions...

Nanomachines: molecular motors, FoF1 ATPase..

How physical and chemical interactions lead to
complex functions in cells ?

Gene networks, protein networks .......



THE STRUCTURE OF ONH
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Play (Torture) with DNA

DNA stretching, elasticity
DNA drag reduction

DNA thermo-phoresis
DNA condensation

DNA under external fields
DNA photolysis

DNA ratchet motion




Mechanics/Elasticity of Single Bio-
molecules

« To investigate the conformational changes
In single bio-molecules, may provide
significant insight into how the molecule
functions.

« How forces at the molecular level of the
order of pN underlie the varied chemistries
and molecular biology of genetic
materials?
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Replication rate (bases s

DNA transcription by RNA polymerase

Bustemante et al, Nature 404, 103 (2000)
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Double helix stabilized by H-bonds (bp interactions)

Polymer of persistence length ~50nm under low force (<10pN):Entropic
elasticity. Complicated at high forces: cooperative behavior

Elasticity of dsDNA affect its structure and can influence the biological
functions



Worm-like chain model (stiff chain)

kBT P / ds ( ) t = dz(;) ltI=1 inextensible

single strand

Rod-like chain model (twisted stiff chain)
Marko et al., Science 256, 506, 1599
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Fitting from expts:
A=53nm;

= Qo

Can account for some supercoiling properties of DNA
Phenomenological model, no description of underlying
mechanism.



770 model for double-stranded DNA

H. Zhou, Z. Yang Z-.c. Ou- Yang PRL 82, 4560 (99)
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B-form -form Transition under retching for

Lai & Zhou, J. Chem. Physics 118, 11189 (2003)

Force Experiments
Stretching a single end-grafted DNA
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eAbrupt increase of 1.7 times in contour length of dsDNA near
65pN.
*Thermal fluctuations unimportant near onset of transition.




First order phase transition at Bt

First-order elongation:Stretch by untwisting
Ay

B=0.073 PB=0.075

Untwisting upon stretching

Untwist per contour length from BIOS, ATw/Lo~-100 deg. /nm;
eAlmost completely unwound ~ 34deg./bp

*Torque ~ 60 pN nm




Untwisting upon stretching
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«Untwist per contour length from BOS, ATw/Lo~-100 deg. /nm;
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*Torque ~60 pNnm  T= %m- 20 (V) + 28,1 — cos )



Direct observation of DNA rotation
during transcription by Escherichia
coli RNA polymerase Harada et al., Nature 409 , 113

(oNN1)

a ‘ Magnet * DNA motor: untwisting gives

Fluorescent rise to a torque
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DNA condensation & packing
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Complex competition of DNA elasticity,
charge interactions, volume interactions,
solvent effects.....



DNA condensed by spermidine
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[SPD]=20mM jamming when
entering in 0.7% gel




Jamming: due to conformation changes in DNA

E PRE 75, 041922 (2007)
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Agarose Gel pore Size 530+185 nm
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100mM SPD




De-Jamming: due to re-entrant condensation of DNA

Flexible coil (reptate thro’ gel)  rigid condensed globule flexible again
(size>minimal pore size)

[SPD]

Re-entrant due to charge inversion (over-charge of DNA) ?



Controlled motion of DNA: external drives

In gel
under DC E field




Simple to Complex: emerging properties in bio—
systems

Cou ings, teractl ﬁ| r_i1near1ty, feedback:'**=> collective behavior, bio—
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Synchromzed beatmg of myocytes

Cardiac myoyte

spiral waves:

Coupled oscillator networks of Cardic cells:
nonlinear dynamics, spiral waves, spatio-temporal patterns...



Simple to Complex: emerging properties in bio—

systems

B Dictyostelium discodium
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emerging properties in bio-systems

(III) Neurons [ Network il Braln i Behavior

. Networkconnectlsynapses
Hodgkln(—ll-I9u5x2I)ey Model Neuro/cognitive science

Synchronized Firing

Complex behavior/function determined by neuron connections.
Complex neuronal Network:

A single neuron in vertebrate cortex connects ~10000 neurons
Mammalian brain contains > 10**11 interconnected neurons
«Signal & information convey via neuronal connections—coding



Neuron & Action Potential
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Expts. On giant axon of squid:
time & voltage dependent Na, K ion channels
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Experiments
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Schematic procedures in preparing
the sample of neuron cells from
celebral cortex embryonic rats
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Embryos of Wistar rats
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Growth of axon connection to form a network

Typical confocal microscope pictures of cultures used in ou'r experiments.
Red: anti-MAP2 (neuronal marker); Green, anti-GFAP (glia marker). Black &white:
phase contrast image; Merge of the three images above.



Optical recording of fluorescence
signals from firing network

Firing of the network is monitored by the changes in intracellular
[Ca 2+] which is indicated by the fluorescence probe (Oregon

nEsdd50 1 _oved, mipg

Non-synchronous Firing in early stage of growth



Synchronized Firing of Neuronal Network Culture

Spontaneous firing of the cultures are induced

by reducing [Mg2+] in the Buffered salt solution
Firing - the changes in intracellular [Ca 2+] indicated by the
fluorescence probe.

M2d 70 mpn

- Synchronized Firing at later stage of growth



Time dependence of the SF frequency for a
growing network

-Critical age for SF, tc

SF freq. grows with time
f=fc+fo log(t/tc)

Bursting Rate/Hz
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Phys. Rev. Lett. 93088101 (2004)
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Onset time for SF as a function of
cell density

|0} prrerrrrrrep e rrrrm—r—rrrrrry
«Critical age for SF
# 1 |
N —= ~ :
= "'-.|':' EL_
’f=fC+fO |Og(t/tC) 1 | I:] ——a ....l..llJIJ — ...l.;;im

.f increases with the effective connections .
. fc is indep. of [ p(107/mm’) _



Synchronous firing frequency f ~ mean connectivity k
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Manipulating/attacking the neuronal network

Tailoring network regions by UV lasers
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Model for Neuronal Network Growth
Phys.Rev. E 2006

k=mean connectivity in domain of radius d aX

P(k)= prob. of connecting 2 neurons
OJ=mean cell density

Synchronized Cluster occurs at t=tc with f=fc

Increase in connectivity: 0k =2B0d 0d P(K)
d = ul t < 1,

Enhanced growth towards synchronized cluster (active
search) for t<tc

Experimentally: SF occurs at t=tc with f=fc
fc is indep. of P: [
Assume fc ~ ke, [ SF occurs when sufficient connections are made:

1

2
ke~ tc U Lo X 7
AN



Retarded growth for t>tc

. b
Empirical result : (f~k) & = ke + koln(—) > te.
At t ~ tc (k ~ kc), the neurons have made enough connections
among themselves and cooperativity begins:- a neuron gets
enough signals from other neurons so that it surmounts its
threshold for further fast growth.

It kKnows that there are enough connections for cooperativity
and there is no need for further increase of connection.
Thus the rate of growth R starts to decay.

R = dk/dt = = k= ke
= dk/ :{1]}[— i

| for k=



Slowing down for t>tc

t
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oy iG] d? = Dt
Using diffusive search model: -
= -(k- >
>P(k)=Pc exp[-(k-kc)/ko] k>kc Bk =200d 0d P(K)
Retarded growth for t>tc:
k k— k goabs ) N
R =dk/dt = =2 expl— : T] for k= k.. o L2F T
'HC' J'rf,:, Dc:& 1ol p(‘lOZf‘mmz) _'
{'!iljl:" - ]I('.G 'l .-} .IC. | [ -(I‘z(l III) 20 S(II-IUISIU 60 70 80 l'JI(III[I[I 1
0.2 F o .
5 Time/Sec
OO M 1 L 1 L | L 1 M
0 10 20 30 40 50

Day in Vitro



Expt: f=fc+fo log(t/tc) 5
Assume k/ke=f/fc: f_k_ (é) t<t.
Assume P(k)~1 for k<kc ke

In general with P(k) = P(k/k.) for k<kc®

2 o
£k et R() (%) | t<t, | Theory
fo kel L4 B ()t )
- ®
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) jil. Pix) S -

Fitting: fo/fc=ko/kc=D/(u”2 tc)~1.5 0 -

relation between the microscopic growth paeréte t/t
C
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Estimates of u and D

« minimal radius, rc, of an isolated domain
such that SF still occur determined by UV
laser tailoring

« For Bl =10"4/mm"2, we found rc~0.15mm
(ute)?p ~ No ~ r2p. L)~ 1t o fof I

« U ~25Im/day; D~0.0056mm*2/day




Coupling between neurons

———— BT -

« P(0)=mean prob. that 2 neurons initially separated by [

will be connected

P(A) =P (@—1 (cia.;lj(i 39)) S (%)

P
Pliﬂ;l — _ﬂc_m = tor A = ut,..
1+ =5~

«Characteristic coupling length
A, =ut,. + + Dt,.

e [lc ~0.33mm ~ 2 rc




Biological implications
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Many Spikes in one pulse: Bursting




Electrophysiology measurement
(whole-cell recording, current-clamp)

Glia and neuron mixed culture (8DIV, 5X10°)

Inter-burst synchronized , but intra-burst is NOT synchronized 2s



Bursting: role of inhibitory element

Continuous firing (over excited) is harmful--
excitotoxicity

Inhibitors (Glia) suppress over-excited neurons
g=inhibitory field

Mean-field model

Z=mean connectivity of a neuron to inhibitors

dr 3 o |
E? = I — 3 y—zg+ £t FitzHugh-Nagumo model for neurons
¢ . '
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Network of neurons & Iinhibitors
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« What Physicists can do in Biology ?

a lot of interesting and unexplored science
from molecules to collective behavior of organisms
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HIV-1 Reverse Transcriptase (EC. 2.7.7.49)
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