From Nobel Prize 2008

to New Physics

Paoti Chang

National Taiwan University
Colloquium at Tsing-Hua University

March 11, 2009

Outline

- Symmetry breaking - Nobel Prize 2008
- Standard Model
- New physics from Heaven
- Results from collider in 2008.
- What's next?

Broken Symmetry

"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"

Photo: Universtity of Chicago
Yoichiro Nambu
4. $1 / 2$ of the prize
"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Photo: KEK
Makoto Kobayashi
\& $1 / 4$ of the prize

Photo: Kyoto University
Toshihide Maskawa
c $1 / 4$ of the prize

CP Violation in SM

naturenews

The Belle detector in Japan helped to confirm the symmetry breaking effects predicted by theoretical phvsicists.

B Factory
P. Chang 3

What's the origin of mass?

"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"

Nambu's background Y. Nambu, preliminary Notes for the Nobel Lecture

I will begin by a short story about my background. I studied physics at the University of Tokyo. I was attracted to particle physics because of the three famous names, Nishina, Tomonaga and Yukawa, who were the founders of particle physics in Japan. But these people were at different institutions than mine. On the other hand, condensed matter physics was pretty good at Tokyo. I got into particle physics only when I came back to Tokyo after the war. In hindsight, though, I must say that my early exposure to condensed matter physics has been quite beneficial to me.

Nobel Prize 1972

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

John Bardeen
$191 / 3$ of the prize
USA
University of Illinois
Urbana, IL, USA

3/11/2

Leon Neil Cooper
$Q_{1 / 3}$ of the prize
USA
Brown University
Providence, RI, USA

John Robert Schrieffer
(9) $1 / 3$ of the prize

USA
University of
Pennsylvania
Philadelphia, PA, USA
b. 1931

Cooper pair condense (ower (o)

Computabe
P. Chang 6

Source of Observation

Meanwhile Nambu had heard J. Robert Schrieffer describe the theory of superconductivity ... with John Bardeen and Leon N. Cooper. The talk disturbed Nambu: the superconducting fluid did not conserve the number of particles, violating an essential symmetry of nature. It took him two years to crack the puzzle.

Imagine a dog faced with two bowls of equally enticing food. Being identical, the bowls present a twofold symmetry. Yet the dog arbitrarily picks one bowl. Unable to accept that the symmetry is entirely lost, Nambu discovered that the dog, in effect, cannot make up her mind and constantly switches from one bowl to the other. By the laws of quantum physics, the oscillation comes to life as a new particle, a boson.
... others, ..., also saw that a superconductor should have such a particle. It was Nambu, however, who detailed the circumstances and significance of its birth and realized that the pion, as well, was born in like manner (by breaking the chiral, or leftright, symmetry of quarks). ...

Illustration of SSB

- Higher E: More Symmetric

Nambu-Golstone Boson

- ... Being identical, the bowls present a twofold symmetry. Yet the dog arbitrarily picks one bowl. Unable to accept that the symmetry is entirely lost, Nambu discovered that the dog, in effect, cannot make up her mind and constantly switches from one bowl to the other. By the laws of QM, the oscillation comes to life as a new particle, a boson.
- others, ..., also saw that a superconductor should have such a particle. It was Nambu, however, who detailed the circumstances and significance of its birth and realized that the pion, as well, was born in like manner (by breaking the chiral, or leftright, symmetry of quarks).

Jeffrey Goldstone, then a postdoc at CERN, ..., realized the import ... and soon published a simpler derivation, noting that the result was general. Thereafter ... dubbed the Goldstone boson. ("At the very least, it should be called the Nambu-Goldstone boson," Goldstone comments.) When Nambu finally published ... in 1960, ... showed how the initially massless particle mixes with a magnetic field in a superconductor to become heavy. Recognized by Anderson, Peter Higgs, then at the IAS, and others as general ... became the Higgs Mechanism of the Standard Model

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

Only three types of quarks were found before 1972.

Discovery of CP Violation

Phys. Rev. Lett. 13, 138 (1964

Volume 13, Number 4

PHYSICAL REVIEW LETTERS

27 July 1964

EVIDENCE FOR THE 2π DECAY OF THE $K_{2}{ }^{0}$ MESON ${ }^{*} \dagger$

J. H. Christenson, J. W. Cronin, ${ }^{\ddagger}$ V. L. Fitch, ${ }^{\ddagger}$ and R. Turlay ${ }^{\S}$
Princeton University, Princeton, New Jersey
(Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the $K_{2}{ }^{0}$ meson. Several previous experiments have served ${ }^{1,2}$ to set an upper limit of $1 / 300$ for the fraction of $K_{2}{ }^{0}$'s which decay into two charged pions. The present experiment, using spark chamber techniques, proposed to extend this limit.
In this measurement, $K_{2}{ }^{0}$ mesons were produced at the Brookhaven AGS in an internal Be target bombarded by $30-\mathrm{BeV}$ protons. A neutral beam was defined at 30 degrees relative to the circulating protons by a $1 \frac{1}{2}$-in. $\times 1 \frac{1}{2}-\mathrm{in}, \times 48-\mathrm{in}$. collimator at an average distance of 14.5 ft . from

The analysis program computed the vector momentum of each charged particle observed in the decay and the invariant mass, m^{*}, assuming each charged particle had the mass of the charged pion. In this detector the $K_{e 3}$ decay leads to a distribution in m^{*} ranging from 280 MeV to $\sim 536 \mathrm{MeV}$; the $K_{\mu 3}$, from 280 to ~ 516; and the $K_{\pi 3}$, from 280 to 363 MeV . We emphasize that m^{*} equal to the K^{0} mass is not a preferred result when the three-body decays are analyzed in this way. In addition, the vector sum of the two momenta and the angle, θ, between it and the direction of the $K_{0}{ }^{0}$ beam were determined. This Nobel prize 2008 to new physics
P. Chang

Evolution of the Universe

Universe now

The Sakharov conditions

Antimatter can turn into matter if:
(a) proton decay occurs (baryon \# violation)
(b) there is a matterantimatter asymmetry
 (CP violation)
(c) there is thermal nonequilibrium
Particle Physics Astrophysics
Must Understand CP Violation

Birth of KM Mechanism

1973

KM Mechanism

$C P$ violation is due to a complex phase

 in quark mixing matrix$\left(\begin{array}{l}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{l}V_{u d} V_{u s} V_{u b} \\ V_{c d} V_{c s} V_{c b} \\ V_{t d} V_{t s} V_{t b}\end{array}\right)\left(\begin{array}{l}d \\ s \\ b\end{array}\right)$
$\left(\begin{array}{ccc}1-\left(\lambda^{2} / 2\right) & \lambda & A \lambda^{3}(\rho-\text {-iil } \\ -\lambda & 1-\left(\lambda^{2} / 2\right) & A \lambda^{2} \\ A \lambda^{3}(1-\rho-\text {-ii7 }) & -A \lambda^{2} & 1\end{array}\right)$

Unitarity Matrix
$\mathrm{V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}+\mathrm{V}_{\text {cd }} \mathrm{V}_{\mathrm{cb}}^{*}+\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}^{*}=0$

The Standard Model

- Understand fundamental interactions using field theory. $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1) \Rightarrow$ strong \otimes weak $\otimes \mathrm{EM}$ (Standard Model)
- Elementary particles + Interactions + CKM matrix

		BOSONS			force carriers$\text { spin }=0,1,2, \ldots$		
$\frac{2 \pi}{0}$	$s b$	Unified Electroweak spin $=1$	$\underset{\text { Mass }}{\text { Gever }}$	Electric charge	Strong or color $\operatorname{spin}=1$	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
	$V_{\mu} \quad V_{\tau}$	$\underset{\text { photon }}{\gamma}$	0	0	$\begin{gathered} \mathbf{g} \\ \text { gluon } \end{gathered}$	0	0
		\mathbf{W}^{-}	80.22	-1			
	$\mu^{\sim} \tau$	\mathbf{W}^{+}	80.22	+1			
Thee Generations of II mater		\mathbf{Z}^{0}	91.187	0			
3/11/2009		Nobel prize 2008 to new physics					P. hang 20

Do we understand everything?

Beyond the SM from Heaven

- Baryon-antibaryon asymmetry is $\sim 10^{10}$, but KM phase contribute only $\sim 10^{20}$

$$
\frac{\boldsymbol{n}(\boldsymbol{B})}{\boldsymbol{n}(\gamma)}=\left(\mathbf{5 . 1 _ { - 0 . 2 } ^ { + 0 . 3 }) \times 1 \mathbf { 1 0 } ^ { - 1 0 }} \text { (WMAP)}\right) \frac{n(\overline{\boldsymbol{B}})}{n(\gamma)} \simeq \mathbf{0} \Rightarrow \text { Needs o(10) improvemt. }
$$

- What is dark matter? (22\%)
- What is dark energy? (74\%)
- Neutrinos are massive? Maping of the Universe

Search for New Physics

Results for 2008

- Results of direct searches for new physics at Tevatron are negative, limited by statistics and collision energy.
- Focus on flavor physics that may show hints or provide clean probe of new physics.

Measurement of ϕ_{1} / β

The Golden Channel, $b \rightarrow \cos$ Decays

HFAG (b $\rightarrow c c s$): $S_{c c s}=0.672 \pm 0.024$ ($A_{\text {ccs }}=0.005 \pm 0.020$, consists of no DCPV)

CP violation in the B system was already established.

From all Measurements

B factories: $\delta \phi_{1} \sim 2^{\circ}, \delta \phi_{2} \sim 10^{\circ}, \delta \phi_{3} \sim 15^{\circ}-30^{\circ}$

-ime dependent CPV in $b \rightarrow s$ Penguin

$$
\begin{aligned}
A_{f}(t) & =\frac{\Gamma\left(B^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)} \\
& =-S_{f} \sin \left(\Delta m_{B} t\right)+C_{f} \cos \left(\Delta m_{B} t\right)
\end{aligned} \quad \mathrm{S}_{\mathrm{f}}=\sin 2 \phi_{1} ; \quad \mathrm{C}_{\mathrm{f}}=-\mathrm{A}
$$

$A \propto V_{c b}^{*} V_{c s}$

\longrightarrow
New physics phase in the loop causes deviation

Δ S results before ICHEP 2008

For most modes, $\Delta \mathrm{S}(\mathrm{SM})$ is positive.
$\phi \mathrm{K}^{0}: \sin 2 \beta_{\text {eff }}=+0.12 \pm 0.31$ (stat) ± 0.10 (syst)

$\eta^{\prime} K^{0}: \sin 2 \phi_{1 \text { eff }}:+0.64 \pm 0.10 \pm 0.04$

. Decay Modes with Updated Results

- Class A: $\eta^{\prime} \mathrm{K}^{0}, \omega \mathrm{~K}_{\mathrm{s}} \Rightarrow$ Same method as J/ $\Psi \mathrm{K}^{0}$
- Class B: $K^{0} \pi^{0}$ • No tracks on B decay vertex. Require tacks with SVD hits.
- Perform fit by constraining C.

- Class C: $\pi^{+} \pi^{-} \mathrm{K}_{\mathrm{S}}, \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{S}}$
- Model the Dalitz distributions.
- Many parameters: phase, S and C for each mode
- Class D: $\phi \mathrm{K}_{\mathrm{s}} \pi^{0}$:

Low statistics. Need to know the CP content. Use results from $\phi \mathrm{K}^{+} \pi^{-}$. Class is characterized by the analysis complexity.

ϕ_{1} measured with penguins

Single Mode with the Highest Precision: $B \rightarrow \eta K^{0}$

$S\left(\eta^{\prime} K^{0}\right)=0.64 \pm 0.10 \pm 0.04$
$A\left(\eta^{\prime} K^{0}\right)=-0.01 \pm 0.07 \pm 0.05$

Time dependent Dalitz

The Golden Channel: $B-\phi K_{S}$

Focus on the low M(KK) region, and Extract the CP parameters:

ϕ_{1} / β with all penguin modes

$b-$ sqa Penguins Summary HFAG CKM 2008 results \rightarrow

All measurements now are more or less consistent w ith the Svalue from
$b \rightarrow$ cos decays:
$S(b \rightarrow c C S)=0.672 \pm 0.024$
HFAG naive average:
$S(p e n g u i n s)=064 \pm 0.04$
Measurement with penguin modes are still an excellent test for NP.
More statistics are required for mode-by-mode studies.

CP Violation in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

- Analogously B^{0}, CP violation in B_{s} occurs through interference of decay with and without mixing:

$\Rightarrow \sin (2 \beta)$
$\Rightarrow \sin \left(2 \beta_{s}\right)$

- β_{s} in SM is predicted to be very small: $\quad \beta_{s}^{\mathrm{SM}}=\arg \left(-\frac{\boldsymbol{V}_{t s} V_{t b}^{*}}{\boldsymbol{V}_{c s} V_{c b}^{*}}\right) \approx \mathbf{0 . 0 2}$
- New Physics affects the CP violation phase as: $2 \beta_{s}=2 \beta_{s}^{\mathrm{SM}}-\phi_{s}^{\mathrm{NP}}$
- If NP phase ϕ_{s}^{NP} dominates $\rightarrow \quad 2 \beta_{s}=-\phi_{s}^{\mathrm{NP}} \quad \phi_{s}^{\mathrm{SM}}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)$

Results before Summer 2008

CDF update in summer

- This summer, CDF updated up to $2.8 / \mathrm{fb}==>\sim 3200$ events
- However, Same Side Tagging not used in $2^{\text {nd }}$ half of sample $==>$ statistically equivalent to $2.0 / f b$
- Consistency with SM decreased: $15 \% \rightarrow 7 \%$ ($\sim 1.8 \sigma$)
- DO and CDF will keep updating measurement of $\phi_{s}{ }^{1 / \psi \phi}$ as one of the Tevatron flagship measurements!

Direct CP Violation in $B \rightarrow K \pi$ Decay $5^{3 t /}$

$$
\mathcal{A}_{C P}(B \rightarrow f)=\frac{|\bar{A}|^{2}-|A|^{2}}{|\bar{A}|^{2}+|A|^{2}} \propto \sum_{i, j} A_{i} A_{j} \sin \left(\delta_{i}-\delta_{j}\right) \sin \left(\phi_{i}-\phi_{j}\right)
$$

Belle Results: Nature 452, 332 (2008)

Expectation from current theory $T \& P$ are dominant $\Rightarrow \Delta A_{K \pi} \sim 0$

- Enhancement of large C with large strong phase to $\mathrm{T} \Rightarrow$ strong inter. !?

Chiang et. al. 2004
Li, Mishima \& Sanda 2005

- Enhancement of large P_{Ew}
\Rightarrow New physics
Yoshikawa 2003; Mishima \& Yoshikawa 2004;
Buras et. al. 2004, 2006; Baek \& London 2007;
Hou et. al. 2007; Feldmann, Jung \& Mannel 2008

Model independent checks for $\mathrm{NP}^{\text {sule }}$

M. Grønau, PLB 627, 82 (2005); D. Atwood \& A. Soni, Phys. Rev. D 58, 036005(1998).
$\mathcal{A}_{C P}\left(K^{+} \pi^{-}\right)+\mathcal{A}_{C P}\left(K^{0} \pi^{+}\right) \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}=\mathcal{A}_{C P}\left(K^{+} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{0}}{\tau_{+}}+\mathcal{A}_{C P}\left(K^{0} \pi^{0}\right) \frac{2 \mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}$

First observation of direct CP violation in charged B decays

- Dalitz analysis on $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$

657M BB, BELLE-CONF-0827

383M BB, PRD78, 012004, 08

$\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \mathrm{p}^{\mathrm{O}} \mathrm{K}^{ \pm}\right)=\left(+41 \pm 10 \pm 3_{-7}^{+3}\right) \%$ @ 4.0σ
$A_{C P}\left(B^{ \pm} \rightarrow \rho^{0} K^{ \pm}\right)=\left(+44 \pm 10 \pm 4_{-13}^{+5}\right) \%$ @3.7 σ

$$
\mathrm{B}^{+} \rightarrow \tau^{+} v
$$

- In SM, decay rate related to decay constant and V_{ub}

$$
\begin{gathered}
\mathcal{B}(B \rightarrow \ell \nu)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{D}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B} \\
\Rightarrow \mathcal{B}(\mathbf{B} \rightarrow \tau v)=\left(0.78_{-0.13}^{+0.09}\right) \mathbf{x 1 0 ^ { - 4 }}
\end{gathered}
$$

(CKM fitter 2008 prediction)

- Charged Higgs may contribute to BF.
destructive

$$
\begin{aligned}
& \mathcal{B}(B \rightarrow \tau V)=B(B \rightarrow \tau V)_{S M} \times r_{H} \\
& \text { W.S. Hou, PRD 48, } 2342(1993)
\end{aligned}
$$

$$
r_{H}=\left(1-\frac{m_{B}^{2}}{m_{H}^{2}} \tan ^{2} \beta\right)^{2}
$$

- Previous results:

Belle hadronic tag
$\mathscr{B}(\mathrm{B} \rightarrow \tau v)=\left(1.79_{-0.49-0.51}^{+0.56+0.46}\right) \times 10^{-4}$

BaBar hadronic \& semileptonic tags

$$
\mathscr{B}(\mathrm{B} \rightarrow \tau v)=(1.2 \pm 0.4 \pm 0.3 \pm 0.2) \times 10^{-4}
$$

New Belle Result on $\mathrm{B}^{+\rightarrow} \tau^{+} v$

NEW with $3.8 \sigma \quad 657 \mathrm{M} \mathrm{BB}$ with $\mathrm{D}^{(*)} 1 \vee$ tag

$$
\begin{aligned}
\mathbf{N}_{\text {sig }} & =154_{-35}^{+36} \text { (stat) } \\
& \Rightarrow \mathcal{B}(\mathrm{B} \rightarrow \tau \mathrm{v})=\left(1.65_{-0.37-0.37}^{+0.38}\right) \times 10^{-4}
\end{aligned}
$$

- Tag on $\mathrm{D}^{(*)} \mid v$
- Search for
$\tau \longrightarrow$ evU, $\mu \vee V, \pi V$
- Check extra energy in ECAL
- Understand background from the control sample

New BaBar Result on $\mathrm{B}^{+} \rightarrow \tau^{+}{ }^{\varepsilon}$.

Tag on $D^{(*)} \mid v$, look for $\tau \rightarrow e v v, \mu v v, \pi \nu, \rho v$

Mode	Expected Background $\left(N_{\mathrm{BG}}\right)$	Observed Events $\left(N_{\text {obs }}\right)$	Overall Efficiency (ε)	Branching Fraction
$\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$	91 ± 13	148	$(3.08 \pm 0.14) \times 10^{-4}$	$(4.0 \pm 1.2) \times 10^{-4}$
$\tau^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau}$	137 ± 13	148	$(2.28 \pm 0.11) \times 10^{-4}$	$\left(1.0_{-0.9}^{+1.2}\right) \times 10^{-4}$
$\tau^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau}$	233 ± 19	243	$(3.89 \pm 0.15) \times 10^{-4}$	$\left(0.6_{-0.5}^{+1.1}\right) \times 10^{-4}$
$\tau^{+} \rightarrow \pi^{+} \pi^{0} \bar{\nu}_{\tau}$	59 ± 9	71	$(1.30 \pm 0.07) \times 10^{-4}$	$\left(2.0_{-1.3}^{+1.4}\right) \times 10^{-4}$
$B^{+} \rightarrow \tau^{+} \nu_{\tau}$	521 ± 31	610	$(10.54 \pm 0.41) \times 10^{-4}$	$(1.8 \pm 0.8 \pm 0.1) \times 10^{-4}$
$3 / 11 / 2009$	Nobel prize 2008 to new physics	P. Chang 42		

Tension in the CKM fit

 Belle $\left(\mathfrak{B x 1 0 ^ { 4 }}\right) \quad$ BaBar $(~(~<10104) ~ M y ~ A v g . ~ © ~=~$ Had. Tags $1.79_{-0.49+0.51}^{+0.56+0.46} \quad 1.8_{-0.8}^{+0.9} \pm 0.4 \quad(1.73 \pm 0.35) \times 10^{-4}$ Dlv Tags $1.65_{-0.37-0.37}^{+0.38+0.35} \quad 1.8 \pm 0.8 \pm 0.1$- CKM fitter obtained $\mathscr{B}=\left(0.78_{-0.13}^{+0.09}\right) \times 10^{-4}$ deviation $=2.6 \sigma$
- $B=(1.2 \pm 0.4) \times 10^{-4}$ using
$I \mathrm{~V}_{\mathrm{ub}} \mathrm{I}=(4.39 \pm 0.54) \times 10^{-3}, \mathrm{f}_{\mathrm{B}}=0.189 \pm 0.027 \mathrm{GeV}$
Note that interference is destructive in 2HDM (type II). $\mathcal{B}^{>} \boldsymbol{B}_{\text {SM }}$ implies that H^{+}contribution dominates

$\mathscr{B}(B \rightarrow \tau v)$ vs $\sin 2 \phi_{1} / 2 \beta$

-Using ratio, the relation is independent of f_{B} and Vub -Belle and BaBar will have new updates soon.

- Good topics for the future Super B factory

1σ deviation

Charged Higgs Bound

The 95% lower bound of charged Higgs mass b
 as a function of $\mathfrak{B}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)$ and its error.

$M_{H}+>300 \mathrm{GeV} / \mathrm{c}^{2}$ @ 95\% C.L. for all $\tan \beta$

$\mathrm{b} \rightarrow \mathrm{S}^{+}{ }^{-}$

- Loop dominant \Rightarrow Small BF ; good place for new physics!
- Contributions from three coefficients:
$\mathcal{L}_{\text {eff }}=\Sigma \mathrm{C}_{\mathrm{i}} \mathrm{O}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$ (short distance effect). SM expects real C_{i} Ceffi $_{\text {en }}$ EM penguin; $\mathrm{c}_{9}^{\text {eff }}\left(\mathrm{C}_{10}^{\mathrm{eff}}\right)$: vector (axial vector) part of weak diagrams
- More observables sensitive to NP:
- FB lepton asymmetry, $\mathbf{A}_{\text {fB }}$
- K* polarization, FL
- CP asymmetry, $\mathbf{A}_{\text {CP }}$
- Isospin asymmetry
- e/ μ ratio
- $A_{F B}\left(q^{2}\right):$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$indication of Z^{0}
$\mathrm{b} \rightarrow \mathrm{s} \mathrm{I}^{+} \mathrm{I}^{-}$:
SM \Rightarrow

Good agreement with SM BF

657M, NEW

Obtain partial BF in 6 bins in q^{2}; extrapolate the total BF . $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{II}\right)=(10.8 \pm 1.0 \pm 0.9) \times 10^{-7}$ $\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{KII})=\left(4.8_{-0.4}^{+0.5} \pm 0.3\right) \times 10^{-7}$
photon pole Veto events in the J/ ψ and ψ^{\prime} regions
-॰- Belle, ICHEP 08
--- BABAR, FPCP 08
-- Melikhov et. al (quark model, PLB 410, 1997)
——Ali (PRD 66, 034002, 290, 2002)

Good agreement with SM BF

657M, NEW

384M FPCP 08

Obtain partial BF i extrapolate the tol $\mathrm{BF}\left(\mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{II}\right)=(10.8$ $\times 10^{-7}$ $\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{KII})=\left(4.8_{-0.4^{+\cdots}}^{0^{0}} \begin{array}{llllll} & 2.5 & 5 & & & \\ \hline\end{array}\right.$
photon pole
Veto events in the J/ ψ and ψ^{\prime} regions
-•- Belle, ICHEP 08
--- BABAR, FPCP 08
-- Melikhov et. al (quark model, PLB 410, 1997)

- Ali (PRD 66, 034002, 290, 2002)

Unexpectedly Large Isospin Asymmetry?

$$
\mathrm{A}=\frac{1.071 \times B F\left(B^{0} \rightarrow K^{(*) 0} l l\right)-B F\left(B^{ \pm} \rightarrow K^{\left({ }^{*}\right) \pm} l l\right)}{1.071 \times B F\left(B^{0} \rightarrow K^{(*) 0} l l\right)+B F\left(B^{ \pm} \rightarrow K^{(*) \pm} l l\right)}
$$

Anomalous $A_{F B}\left(q^{2}\right)$ in $B \rightarrow K(*) \| Q_{\text {Brill }}$

Obtain $\mathbf{A}_{\mathbf{F B}}$ by a fit: $\frac{3}{4} F_{L}\left(1-\cos ^{2} \theta_{B l}\right)+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos ^{2} \theta_{B l}\right)+A_{F B} \cos \theta_{B l}$ Effiqiency corrected

Data show positive $A_{F B}$ at low q^{2}, while the SM predicts negative A_{FB} "

At high q^{2}, data above the SM expectation.

What's next?

The CMS detector

\square Pixels
Tracker
ECAL

- HCAL
\square MUON Dets.
- Superconducting Solenoid

Total weight: 12500 t Overall diameter: 15 m Overall length: 21.6 m Magnetic field: 4 Tesla

A general purpose detector Acceptance: Calorimetry $|\eta|<5.0$, Tracking $|\eta|<2.4$

The CMS collaboration

Plan for LHC in 2009-2010

- Repairing 50 magnets and restarting LHC in October 2009
- Take data for 44 weeks in 09-10 with an extra cost of 8 M euros
- A short run with 0.9 TeV first and all the way to 10 TeV .
mexpect to collect $30.0 \mathrm{mb}^{-1}$ of data.

Plan for Super KEKB

will reach $8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad$ Expect to start construction in

New collaboration (SuperBelle) baut

■ Super Belle will be a new international collaboration.

- Two proto-collaboration meetings in Mar\&Jul, 2008
- Participation of new people from Germany, India, U.S., Japan,... .
- Kick-off of the new collaboration: $10^{\text {th }}-12^{\text {th }}$ Dec 2008.
- Still most of the sessions were he onen

■ Near-term plan (preliminary)

- Detector study report has been completed.
- Detector proposals (by summer 2009).
- The final detector design by Dec. 2009.

KEKB operation
Detector proposals
Internal review
Kick-off ${ }^{\uparrow}$ meeting
(Dec 08)

Actions to invite new collaborators

KEK, Japan, December 10-12, 2008

Summary

- Nobel prize 2008 - Symmetry breaking
- Human endeavor: achieve a lot but more to explore
- Results start to probe NP but limited by statistics:
$\phi_{\mathrm{Bs}} \mathrm{B} \rightarrow \tau v, \mathrm{~A}_{\text {FB }}$, isospin asymmetry
$\mathscr{B}(\mathrm{B} \rightarrow \mathrm{X} \mathbf{s \gamma})$ strong constraint to NP
Need much more data to confirm the ΔS puzzle.
ΔA explanation \Rightarrow if from new physics, what is it?
- Future new physics search: direct: ATLAS and CMS; indirect: LHCb and Super KEKB

Backup Slides

Measurement in Principle

- Fully reconstruct a CP eigenstate.
- Determine the flavor the tag side.
- From the distance of the two B decay vertices to measure the decay time difference.

Time dependent CP Asymmetry

$$
A_{C P}(t)=\frac{\Gamma\left(\bar{B}^{0} \rightarrow f_{C P} ; t\right)-\Gamma\left(B^{0} \rightarrow f_{C P} ; t\right)}{\Gamma\left(\bar{B}^{0} \rightarrow f_{C P} ; t\right)+\Gamma\left(B^{0} \rightarrow f_{C P} ; t\right)}=A_{A} \cos (\Delta m t)+\Delta \sin (\Delta \boldsymbol{m} t)
$$

- Asymmetry in $\triangle \mathrm{t}$ shape implies ICPV.
- Difference in area indicates DCPV

Successful Operation

Worid Integrated Luminosity (KEKB+PEP-II)
(1400 -
As of Autumn 2008
 KEKB + PEP-II

领 $1 \times \infty$ Approaching 1.4 alb $^{-1!}$
peak $L=1.71 \times 10^{34}$

KEKB
for Belle

PEP-II
for BaBar
peak L $=1.21 \times 10^{34}$

K* Helicity Distribution

$\frac{3}{2} F_{L} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)$

Lepton Flavor \& CP Asymmetries

- In $\leqslant M, R_{K} \sim 1.33$ and $R_{K} \sim 1.0$.
- R_{K} is sensitive to the size of photon pole.
- $R_{K}>1.0$ in the two Higgs doublet model with large $\tan \beta$. (Y. Wang and D. Atwood, PRD 68, 094016, 2003)

$$
R_{K^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow K^{(*)} e e\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}
$$

A_{CP}

Lepton Asy.	Belle $(657 \mathrm{M})$	BABAR $(384 \mathrm{M})$
$K^{*} \ell \ell$	$1.21 \pm 0.25 \pm 0.07$	$1.37_{-0.40}^{+0.53}$
K८ौ	$0.97 \pm 0.18 \pm 0.05$	$0.96_{-0.34}^{+0.44}$

$C P$	Belle Asy.	BABAR $(657 \mathrm{M})$
$K^{*} \ell \ell$	$-0.10 \pm 0.10 \pm 0.03$	-0.02 ± 0.16
K८८	$0.04 \pm 0.10 \pm 0.02$	-0.18 ± 0.18

More on $\mathrm{A}_{\text {FB }}$

$$
\frac{d A_{F B}}{d \hat{s}} \propto-\left\{\operatorname{Re}\left(C_{9}^{\text {eff }} C_{10}\right) V A_{1}+\frac{\hat{m}_{b}}{\hat{s}} \operatorname{Re}\left(C_{7}^{\text {eff }} C_{10}\right)\left[V T_{2}\left(1-\hat{m}_{K^{*}}\right)+A_{1} T_{1}\left(1+\hat{m}_{K^{*}}\right)\right]\right\}
$$

$\cdot \mathrm{C}_{7}+-\mathrm{C}_{7}^{\mathrm{SM}}$? If yes, \mathcal{B} will change!
The sign of C_{7} is constrained by $\mathcal{B}(\mathrm{Xs} \mathrm{II})$. Gambino et. al, PRL94, 061803, 05

- C may be complex due to new physics. Hou et. AI, PRD77, 014016, 08

