When Organics Meet Ferromagnets -- insights from X-ray spectromicroscopy --

Der-Hsin Wei National Synchrotron Radiation Research Center

09.24.2014 Dept. of Phys. NTHU

Why organic-ferromagnet hybrid structure?

- Why study interface?
- Synchrotron-based X-ray spectromicroscopy
- Experimental results
- Insights learned
- Soft X-ray Nanoscopy Project for TPS at NSRRC

D. H. Wei

National Synchrotron Radiation Research Center

0 and **1**

□ Artificial structures for TWO distinct states

D. H. Wei

Roles of the spacer (metal, semiconductor, insulator)

-- switch magnetizations independently (thick spacer is preferred)

Trade off

-- lost a certain percentage of spin coherence (why?) (thin spacer is better)

Metals vs dielectric materials

Charge

Metal Free electron (Drude model)

National Synchrotron Radiation Research Center

D. H. Wei

Spin-orbit interaction

$H_{SO} = 0$	$\zeta_{SO}L$ ·	S	\propto	Z^4
--------------	-----------------	---	-----------	-------

Copper	(Cu), Z = 29
Gold	(Au), Z = 79
Silicon	(Si), Z = 13
Gallium	(Ga), Z = 31
Arsenic	(As), Z = 33
Carbon	(C), Z = 6

- Energy of SOI $: 10^{-1} 10^{-3} \text{ eV}$
- Give relatively **small** impact to the shape of band structure
- Show its greatest impact on electrons close to Fermi level

D. H. Wei

Scenarios faced:

- applications: ride with the advances of organic electronics
- physical properties: extended spin coherence life time
- fabrication: less demanded process, reduced cost

Why organic-ferromagnet hybrid structure?

- Why study interface?
- Synchrotron-based X-ray spectromicroscopy
- Experimental results
- Insights learned
- Soft X-ray Nanoscopy Project for TPS at NSRRC

Interface is one of the key players

(NSRRE)

Control of charge and spin degree of freedom

Layered structure (spin valve)

D. H. Wei

* Materials

✓ provide spin-polarized carriers

✓ preserve spin coherence

★ Interface

- ✓ effective spin injection/detection
- ✓ spin-dependent boundary resistance

Take magnetization into account (in delocalized e⁻ picture; shifted bands)

 \square Diffusive transport with $M_1 // M_2$

How to explore a buried interface

Photon-matter interactions

Stronger photon absorption, More photo-excited electrons !

D. H. Wei

Q: physical origin?

http://www.cstl.nist.gov/div837/Division/outputs/DTSA/chapters/Appendix.html

Layer-resolved detection

Photon penetration depth

Electron Detector Inelastic mean free path (electron) FM1 FM2

By tuning the photon energy, one can selectively amplify the signals (and thus resolve layers with different compositions)

- Why organic-ferromagnet hybrid structure?
- Why study interface?
- Synchrotron-based X-ray spectromicroscopy (XPEEM)
- Insights learned
 - Soft X-ray Nanoscopy Project for TPS at NSRRC

SR-based spectromicroscope (BL05B2)

Photoemission electron microscope

- \checkmark Synchrotron \rightarrow accessing the buried interface with element-specificity
- ✓ Polarized photon → magnetization detection (through XMCD effect)
- \checkmark Ultra-high vacuum \rightarrow better interface control (consistency, one thing at a time)
- ✓ Microscopy → Inhomogeneity (of chemicals, magnetism, etc.)

The way XPEEM works

Full field electrostatic microscope : Accelerating field \rightarrow Topography Photoelectric effect \rightarrow Work function X-ray energy \rightarrow Chemistry X-ray polarization \rightarrow Magnetism

XMCD & XMCD-based PEEM images

D. H. Wei

NSRRE

- Why organic-ferromagnet hybrid structure?
- Why study interface?
- Synchrotron-based X-ray spectromicroscopy
- Experimental results
- Insights learned
- Soft X-ray Nanoscopy Project for TPS at NSRRC

Experimental structures

D. H. Wei

National Synchrotron Radiation Research Center

Co electrode retains its FM order

X-ray absorption spectroscopy (near-edge) / XMCD

Electrode can maintain its individual (magnetic) properties in OSV structures

D. H. Wei

 $C_{22}H_{14}$

Appl. Phys. Lett. 101, 141605 (2012)

D. H. Wei

National Synchrotron Radiation Research Center

Element-specific image in magnetic contrast

Cu(100)//Pn(3.6 nm)/Co(1.6 nm)

Cu(100)//Pn(7.2 nm)/Co(3.4 nm)

D. H. Wei

National Synchrotron Radiation Research Center

Order of deposition matters

A further look in XMCD images

+σ

D. H. Wei

-σ

Insights (I)

<u>Cu(100)/Pn/Co</u>

7 nm Pn is needed to cover Cu(100) surface.

- Co shows retarded FM order when landing on Pn.
- Pn/Co:
 - -- a rough interface & ill-defined magnetization directions
 - -- complex spin-dependent scattering at interface
 - -- current is expected to have a reduced spin polarization

General

- "Homogeneity/uniformity" can be a concern in hybrid systems.
- "Layered structure" = "individual layers" + "interfaces"

Why FM layer would experience a retarded magnetization when it lands on an OSC layer? Any implication?

How to resolve/minimize the impacts originated from ill-defined OSEC-FM interfaces?

Co deposited on C_{60} : Si(111)/SiO_x/C₆₀/Co

810

Thicker C₆₀ film gives weaker electron yields

A thickness dependent sticking coefficient is another possibility, but it lacks a physical ground

Appl. Phys. Lett. 104, 043303 (2014)

Insights (II)

<u>Cu(100)/C₆₀/Co</u>

■ Unlike Pn, C_{60} film is smooth when growing on Cu(100).

• Co top layer sinks into C_{60} under layer.

General

- X-rays can "examine" what lies underneath the top surface.
- How deep can X-rays "see" depends on the detection mode (critical parameters are different between transmission and emission)
- Empirical relations are dominated in organic spintronics for now.
- Needs more theoretical and experimental efforts to establish fundamental understandings.

. . .

Many questions remain unanswered yet ...

- Material dependency?
- Electronic structures at interface ? (properties of ultrathin film is sensitive to where it lands)
- How spins are transported in organic materials? (more spectroscopic & theoretic works are needed)

D. H. Wei

National Tsing Hua University Mr. Men-Rui Chiang Prof. Pen-Cheng Wang

 National Synchrotron Radiation Research Center Mr. Pei-Yu Cheng Dr. Yuet-Loy Chan Dr. Tai-Ming Liu Dr. Yao-Jane Hsu

D. H. Wei

Why organic-ferromagnet hybrid structure?

- Why study interface?
- Synchrotron-based X-ray spectromicroscopy
- Experimental results
- Insights learned
 - Soft X-ray Nanoscopy Project for TPS at NSRRC

LIGHT is the main tool!

Taiwan Photon Source (TPS)

115

Taiwan Light Source (TLS)

di la

Soft X-ray Nanoscopy beamline

D. H. Wei

□先進光源暑期實習 (Junior)

- □清華大學先進光源科技學位學程 (Graduate student)
- **G** Short Courses & Workshops

Beside the research opportunities ...

Research assistant / Postdoctoral fellow / Young Scientist

D. H. Wei

National Synchrotron Radiation Research Center

