Recent Advances in High k **Gate Dielectrics For Si and Compound Semiconductors**

J. Raynien Kwo (郭瑞年)

Physics Department, National Tsing Hua University

Previous Collaborators at Bell Labs

(Lucent Technologies and Agere Systems)

Materials	<u>Characterizations</u>	Si and GaAs Device and Processing				
R. M. Fleming	Y. J. Chabal	J. Bude				
J. P. Mannaerts	Brett Busch	K. Ng				
J. M. Rosamilia	A. R. Kortan	Lalita Menchanda				
D. W. Murphy	D. Muller	M. Green				
Y. H. Wong	S. N. G. Chu	G. D. Wilk				
C. D. W. Jones	H. Krautter	Hans Gosserman				
J. J. Krajewski	J. Sapjeta	Peter Ye				
T. Boone	R. J. Oplia	Frank Yang				
A. M. Sergent	E. Garfunkel	Brian Willis				
	T. Gustafsson (Rutge	ers) T. S. Lay				
	W. H. Schulte					

OUTLINES

- Introduction : The call for alternative high κ gate dielectrics for 45 nm Si CMOS by year 2010
 - * Fundamental materials requirements
 - * Processing integration issues for Si CMOS scaling
- The discovery of compound semiconductors passivation using Ga₂O₃(Gd₂O₃) and Gd₂O₃ oxides
- Summary of results and achievements of high κ gate dielectrics of Gd₂O₃ and Y₂O₃ on Si
- ✤ New research programs
- Anticipated accomplishments
 - * Technology
 - * Research

The Call for Alternative High κ Gate

Dielectrics for Si CMOS

MOSFET (互補式金氧場效電晶體)

1960 Kahng and Atalla, First MOSFET 1970 First IC, 1 kbit, 750 khz microprocessor

Intel Semiconductor CMOS Roadmap

When do we stop ?

Reliability:

25 22 18 16 Å

processing and yield issue

Tunneling: 15 Å

Design Issue: chosen for 1A/cm² leakage $I_{on}/I_{off} >> 1$ at 12 Å

Bonding:

Fundamental Issues-

- how many atoms do we need to get bulk-like properties?
- Is the interface electronically abrupt?
- Can we control roughness?

In 1997, a gate oxide was 25 silicon atoms thick.

In 2005, a gate oxide will be 5 silicon atoms thick, if we still use SiO_2

and at least

2 of those 5

atoms will

interfaces.

be at the

Oxygen Bonding from EELS

Fundamental Materials Selection Guidelines

 $Si + MO_x \longrightarrow M + SiO_2$ $Si + MO_x \longrightarrow MSi_2 + SiO_2$ $Si + MO_x \longrightarrow MSiO_x + SiO_2$

- Thermodynamic stability in contact with Si
 to 750°C and higher. (Hubbard and Schlom)
 Alkaline earth oxide, IIIB, IVB oxide and
 rare earth oxide
- Dielectric constant, band gap, and conduction band offset
- Defect related leakage,

substantially less than SiO₂ at $t_{eq} < 1.5$ nm

- Low interfacial state density D_{it} < 10¹¹ eV⁻¹cm⁻²
- Low oxygen diffusivity
- Crystallization temperature >1000°C

Basic Characteristics of Binary Oxide Dielectrics

Dielectrics	SiO ₂	Al ₂ O ₃	Y ₂ O ₃	HfO ₂	Ta ₂ O ₅	ZrO ₂	La ₂ O ₃	TiO ₂
Dielectric constant	3.9	9.0	18	20	25	27	30	80
Band gap (eV) Band offset (eV)	9.0 3.2	8.8 2.5	5.5 2.3	5.7 1.5	4.5 1.0	7.8 1.4	4.3 2.3	3.0 1.2
Free energy of formation MO _x +Si ₂ M+ SiO ₂ @727C, Kcal/mole of MO _x	-	63.4	116.8	47.6	-52.5	42.3	98.5	7.5
Stability of amorphous phase	High	High	High	Low	Low	Low	High	High
Silicide formation ?	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hydroxide formation ?	-	Some	Yes	Some	Some	Some	Yes	Some
Oxygen diffusivity @950C (cm ² /sec)	2x 10 ⁻¹⁴	5x 10 ⁻²⁵	?	?	?	10-12	?	10-13

MRS Fall Meeting, Dec., 2002

Critical Integration Issues

- Morphology dependence of leakage *Amorphous vs crystalline films?*
- Interfacial structures
- Thermal stability
- Gate electrode compatibility
- Reliability

Fundamental Limitations

- Fixed charge
- Dopant depletion in poly-Si gate
- Dopant diffusion
- Increasing field in the channel region

The Discovery of novel oxides of (Ga, Gd)O_x and Gd₂O₃ for GaAs Passivation

Why GaAs ?

Higher electron mobility and semi-insulating substrate For high speed signal processing, and high power applications

HOW TO PASSIVATE GaAs SURFACE ?

Previous efforts over thirty five years !

- Anodic, thermal, and plasma oxidation of GaAs
- Wet or dry GaAs surface cleaning followed by deposition of various dielectric materials

THE KEY is to identify a dielectric being thermodynamically and electronically stable, and showing a low D_{it} with GaAs.

Our breakthrough

- Novel gate oxides $Ga_2O_3(Gd_2O_3)$ and Gd_2O_3 in-situ deposited by MBE of low D_{it}
- Have successfully applied to GaAs, AlGaAs, InGaAs, InP, GaN, and Si

ULTRAHIGH VACUUM DEPOSITION OF OXIDES

J. Kwo et al, APL, 75, 116, (1999)

Cross sectional TEM of (Ga, Gd)₂O₃ on GaAs

Single Domain Growth of (110) Gd₂O₃ Films on (100)

0.8 μm D-Mode GaAs MOSFET

• Mobility $\mu_n = 1100 \text{ (cm}^2/\text{V sec)}$

Summary of results and achievements

High κ gate dielectrics of $Gd_2O_3\,$ and $Y_2O_3on\,$ Si

 $\mathbf{Gd}_2\mathbf{O}_3 \qquad \mathbf{\kappa} = \mathbf{14}$

 $\mathbf{Y}_2\mathbf{O}_3 \qquad \mathbf{\kappa} = \mathbf{18}$

In both epitaxial and amorphous films

J. Kwo, et al APL, **77**, 130, (2000) J. Kwo, et al J. Appl. Phys. **89**, 3920 (2001)

In-situ Fabrication: UHV Integrated Processing System

Part of the equipment-left

Part of the equipment-middle

Part of the equipment-right

UHV Deposition of the Oxides on Si

- Ultrahigh vacuum, multi-chamber MBE system.
- Electron-beam evaporation of oxide sources from pressed ceramic pellets.
- 2 inch RCA-cleaned Si wafers, hydrogen passivated, followed by prompt insertion into UHV.
- In-situ heating to 400-500C to attain a (2 x 1) reconstructed Si surface.
- Substrate temperature of 550C for **epitaxial** films.
- Room temperature deposition for **amorphous** films.
- Maintain **low pressure** during growth < 1.0 x 10⁻⁹ torr.

Single Domain Growth of (110) Gd₂O₃ Films on Vicinal (100) Si

ADF-STEM Image

Amorphous Gd₂O₃ on Si

Crystalline Gd₂O₃ on Si (two domain film)

No Evidence of SiO₂ Formed at the Interface

Critical Materials Integration Issues

* Morphology, amorphous vs crystalline films?

- Interfacial structures
- Thermal stability
- Gate electrode compatibility

Morphology Dependence of Gd₂O₃ and Y₂O₃

 $J_{L} (A/cm^{2})$

Comparison of Leakage Current vs Oxide Thickness

C-V Electrical Characteristics of Y₂O₃ on Si

Critical Materials Integration Issues

- Morphology, amorphous vs crystalline films?
- ***** Interfacial structures
- Thermal stability
- Gate electrode compatibility

Medium Energy Ion Scattering

STEM Cross Sectional Images

(Thick cross section) (Thin cross section) Amorphous $Si/Y_2O_3/Crystalline-Si$

D. Muller

Yttrium Oxide on Silicon

(capped in-situ with Si, no anneal)

Between the Y_2O_3 and C-Si is a graded Si_xY_vO layer

D. Muller

Critical Materials Integration Issues

- Morphology, amorphous vs crystalline films?
- Interfacial structures
- Thermal stability
- Gate electrode compatibility

Thermal Stability

Thick capping layer case: a-Si(40Å)/ $Y_2O_3(90Å)$ /Si interface is stable at 800°C, reaction has occurred at 900°C.

Critical Materials Integration Issues

- Morphology, amorphous vs crystalline films?
- Interfacial structures
- Thermal stability
- ✤ Gate electrode compatibility

Compatibility of Gate Electrode

Annealed at 850C/15 min in O₂

Annealed in 850C/15 min in N₂

High K Gate Dielectrics Project

New Research Programs

 \succ Low defect high κ ultrathin films >Interface engineering > Electrical characterization and optimization >Identify new material candidates for metal gate \rightarrow Metal gate/high κ integration and testing \succ Integration of high κ , and metal gate with Si- Ge strained layer and testing \succ Integration of high κ , and metal gate with strained Si and testing

New dielectric films by sputtering and MBE

- -- HfO₂ and ZrO₂ systems doped with N, Al, and Si * To reduce charge trapping, and the fixed charge density.
 - * To raise the recrystallization temperature
- -- Ternary oxides of rare earth aluminate on Si such as $(Al, Y)_2O_3$ * To exceed the figure of merit over Al_2O_3

Interface Engineering

Graded composition growth scheme to engineer the interface with Si

Electrical characterization and optimization

Three major problems :

- Large trapped charge
- Low channel mobility
- Electrical stability and reliability

Our approaches :

- In-situ doped polysilicon gate or metal gate to avoid the hydroxide formation (frequency dispersion).
- Nitrogen doping and post anneals to reduce the fixed charge density.
- To correlate interfacial state density with the materials parameters and the device mobility.

Metal Gate Electrode

- Compatible work function,
- High carrier concentration,
- Thermal/chemical stability with the underlying dielectric.
- --- To replace the n+, and p+ poly, it is necessary to identify pairs of metals with work functions that are respectively within 0.2 eV of the conduction and valence band edges of Si.

Solutions:

- (1) To introduce N and /or Si in the low work function metal. Metal alloys TaN, and TaNSi are potential NMOS gate electrodes.
- (2) To obtain low-work function films by the alloying of elemental metals with compositional control such as binary alloys of Ta-Ru
- (3) Conducting metal oxides like IrO_2 and RuO_2 as PMOS gate electrode.

Gd₂O₃ on GaN

Low D_{it} of ~ 10¹¹ cm⁻²eV⁻¹

Summary

Surface passivation using stable low D_{it} oxides
Ga₂O₃(Gd₂O₃) and Gd₂O₃ for GaAs and GaN
Strong tendency to conform to underlying substrates insight for low D_{it} and passivation !

- Crystalline and amorphous Gd₂O₃ and Y₂O₃ as alternative gate dielectrics for Si with sharp interfaces without reactions.
- Model systems to investigate critical materials integration issues of the high κ gate dielectric for Si CMOS processing.
- Better understandings of the leakage conduction, fixed charges, mobile ions, and interfacial structures are needed to establish the reliability of the oxides.

Anticipated Accomplishments

RESEARCH

- Understand the interfacial structures and the atomic bonding of the MBE and ALD oxides on Si to establish the mechanism of a low D_{it} on Si, and Si-Ge.
- Identify the charge carriers and underlying transport mechanism of the newly developed dielectric materials.
- Study and understand the physics, such as interfacial scattering and mobilities in the inversion channel and device performance on the MOS devices.

TECHNOLOGY

- Achieve significant reduction in D_{it}, electrical leakage, and fixed charge density in MBE and ALD oxides on Si after systematic anneal studies
- Establish the ALD growth/process parameters for high-performance oxide
- Establish process flow and masks for fabricating the sub-micron and nano- MOS and MOSFET devices using high κ dielectrics on Si and Si-Ge
- Develop IP's for the new materials, growth methods, devices, and technology, thus establish our position in these new technologies