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Introduction

@ Einstein gravity theory is not renormalizable from
the perspective of quantum field theory.

@ Quantum effects of gravity become significant only at
Planck scale, and it may be possible to treat it as an
effective field theory at low energy scale.

@ Robinson and Wilczek claimed that quantum gravity can
correct gauge couplings with power—law running and
render all gauge theories asymptotically free. Later,
further analysis by other authors suggested that the
previous result was gauge dependent.
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Diagrammatical Calculation

The Lagrangian

We begin with the action of Einstein—Yang—Mills theory

5 / d'x /g FZR _ ig““g”ﬂfzy]:;ﬁ} (UJ

where R is Ricci scalar and ]73 is the Yang—Mills fields
strength F,, =V, A, —V, A, —ig[A,, A,]. With the
minus—dimension coupling constant x = +/167G. Usually,
one expands the metric tensor around a background metric
gﬂy and treats graviton field as quantum fluctuation huy
propagating on the background space—time, guu

g,uu = glﬂ/ + ’ih;wa gW = g’“’ — kh#*” 4 /€2hghay =+ ... (2)

VB = VB e R0, — ). (3)
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Diagrammatical Calculation

Gauge—fixing condition

Let us set g =1,.,, Where 7, is the Minkowski metric.
uv pv [ald

huy is interpreted as graviton field, fluctuating in flat

space—time. The lagrangian can be arranged to different

orders of h,, or k. In the de Donder harmonic gauge

v 1 1%
x* = o0,h*"" — iaﬂhy =0
Graviton propagator has a simple form

i[g”"g’” + ghPghT — ghvgh? (4)

P =

For simplicity, in the following, the metric gt¥ is
understood as nt”.
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Diagrammatical Calculation

Faddeev—Popov factor

Gauge fixing condition generally is accompanied with
ghost. For instance, gauge condition

X*[8] =0
introduces ghost with its action as
ﬁgh = EaQaﬂcﬁa (5)

where Qaﬁ is the Faddeev—Popov factor,

(e}

o _ OX

With harmonic gauge, the ghosts do not interact with
other field, we can ignore them.
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Diagrammatical Calculation

£ function and Counterterms

Using the traditional Feynman diagram calculations, we
can get the [ function by evaluating two and three point
functions of gauge fields. These Green functions are
generally divergent, so counter—terms are needed to
cancel these divergences. The relevant counter—terms to
the [ function are

THY — i(sabQMV(;Q, THYP — gfabcvg{:ég(sl

Q" = q'q” — q’g (6)
VP =g"P(a — k)" +g”(k —p)” +8"(p— )’

The  function is given by

0,3

B(s) = gM%(ECSQ — 1) (7)
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Diagrammatical Calculation

Feynman Diagrams

At one loop level, diagrams are listed below. Also, we

only have to keep the quadratic divergences, because

logarithmic ones will only contribute to high order
operator and then not to [ function.

WW@UW
(a)

00000
)QQ000

(d)
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Diagrammatical Calculation

Two—point

The two point functions from Fig. 1(a) and Fig. 1(b) are
found in terms of ILIs to be

T@m — 9,2 / dx [Q“V [Z, +a*(3x* — %) T,

+atq, 75" + a’q, T4’ — " a,a,74° — A>Ty | (M?2)

TOW — _352Q"T,(0) (8)

where we have defined

T(M?) = /[&k L

k? — M2’
Kk,
IQ;W(MQ) = /d4km (9)
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Diagrammatical Calculation

Three—piont

Three point functions from Fig.l(d) and 1(e) are found,
when keeping only the quadratically divergent terms, to be

T@Wh:mﬁ{—VﬁﬁMm+

[ x| (50 - sz om - )
+ (g”ﬂkgzg“’ — gk, TY7 + kITP — k”Iﬁ“) (M?)

+ (g”“ng;"’ — g"p, 157 + p' I — v Ty ) <M§)} }

T = 3igr? Vi T, (0) (10)

qkp

with AAg::X(X——l)q2. Contraction is performed by using

FeynCalc.
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Diagrammatical Calculation

Regularization schemes

To handle with the divergent loop momentum integral, we

need a regularization scheme.
field theory tells us two guide rules.

The lesson from quantum

Regularization Gauge Divergence
schemes invariance | behaviour
Cut-off R X Vi

Dimensional R v X
Loop R vV vV
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Diagrammatical Calculation

Cut—off Regularization

Now we shall apply the different regularization schemes
to the divergent ILIs. In cut—off regularization, when
keeping only quadratically divergent terms, one has

. :
Zg“”zﬁ, 5 ~ 15'2g“”A? (11)

The resulting two and three point functions are

Ruv
I2 -

a+b)uv
Tgui_of)F = £u)toff + Tgu)toff
1 i i 3 i
~ 20%k? [ dx|= A? — AN — A% =0
“/ {2 T {167# 2 1672
d+e)uv 1 v
Tguirof)lfl ’ = gu)tléff—i_ Eu)t!éfg ~

which agrees with the result obtained by Ebert et.al.
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Diagrammatical Calculation

Dimensional Regularization

In dimensional regularization, where 1@(0)::0 and
Zguuzz %g#y13, the two and three point functions are found
to be

1 e [T, (12)
Tf)?e)#up — 2igk? / dx [(guqu — qugup)Ig(MC?I) (13)

(I — K TEME) + (870 — pe ) TE(ME)

where the regularized quadratic divergence in dimensional
regularization behaves as the logarithmic one

R 2 . —1 912

IQ (Mq)|DR - ]_67TQMQ[E -

e + 1+ 0(¢g)] (14)
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Diagrammatical Calculation

Loop Regularization

We now make a calculation by using loop regularization.

With the consistency condition Zguyzz %guylg, we obtain

for two and three point functions

a+b
T](JR v

= 2K%Q™ / dx[— 215(0) +2Z,(M3)

+ q%&ﬁ——@Z&AA@} (15)
T = 21%2/‘1" EVﬁﬁlg(O) +(8"a” — a"8"") I, ( M)
+  (8YPkF — KYgPM) T3 (M) + (8p” — pPg) Ty (M2)

(16)
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Diagrammatical Calculation

£ function

from which we can directly read off the two—point and
three—point counter—terms 55 and 5f respectively(only keep
the leading quadratically divergent part):

1 1
SE = 2 M2 2 §F = 2 M2 2
2 K ].67T2 |: c mof, 01 at 167T2 c 2

we obtain the gravitational corrections to the gauge [
function

2

A" = —sr? - (17)
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Diagrammatical Calculation

Running of couplings
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Figure: An illustration of gravitational contributions to the
running of gauge couplings in the MSSM
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Background Field Method

Background Field Method

The method is used to calculate the effective action, I'

ewitle] = [Dulglew s |sll- (- )] 0®)

Mfg] = Slg] - tndetay[y)
g ndet (Siely+ RIAKT) (19

In Einstein—Gauge system,

8w ::guy<+.mhuy, Au ::Au‘+'au (20)
coupling renormalization constant Z, is connected to the
gauge field renormalization constant Z, =1+ §, with
ZgZi/2 =1 in Background-Field Gauge, then [ function is

0 0 1 0
Y= l—8 = _1 g’ —g —0 (21)
B N “a Mo
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Vilkovisky—-DeWitt Formalism

Vilkovisky-DeWitt Formalism

The diagrammatic approach and traditional background
field method share a gauge condition dependent problem.
To overcome the gauge condition problem, we shall us

Vilkovisky—-DeWitt Formalism. The effective action is
modified to

exp ' o] = /Du[w] exp — [5[90] - g (0" (i) =)

(22)

i

where p EE(oi(w*;¢)> and the world function,

olps; o] = %(length of geodesic from p,to ).
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Vilkovisky—-DeWitt Formalism

The metric, Gj;|p]

let Gj;[p|] denote the metric of the field space, then at
one—loop order, the effective action is given by

[lg] = S[g] — 1ndetQup(g]

1 . 1
+ 3 1ndet (VIVJS[@] + EX(; [@]X%[@]) (23)

with V;V;S[p] = S.;[@] — I'};Sk[@]. Here the connection T¥,
is determined by Ghj@]. The metric is chosen to be

1 1 o)V 1 v la
Ggm/(x)gﬂa(x/) F|g(x)|2 (g“(pg ) _ égllf gp > 6<X’ X’) (24)
Gru ey = [2(0)]28" (x)3(x, X) (25)
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Vilkovisky—-DeWitt Formalism

Landau-DeWitt gauge

The Vilkovisky—-DeWitt formalism is applicable for any
gauge condition. In Landau-DeWitt gauge, the calculation
is much simpler. Landau-DeWitt gauge conditions (w=1)
is determined by the gauge transformation and in U(l)
gauge it reads

2 1 5 ;
Xa = =(Ohy = SON) + w(BhiDay + atF ),
X = - 8"&“. (26)

And in this case we can replace fﬁd with Iﬁd, where Iﬁd is
the Christoffel connection determined by

ViGu =0
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Vilkovisky—-DeWitt Formalism

Parameter, w and v

w 1s a parameter introduced for a comparison with the
traditional background—field method. When w = (0, it goes
to harmonic gauge. Also a parameter, v, is introduced for
the connection terms,

ViV,S[p] = S 5[] — VI ;Sk[@] (27)

At one—loop order with Landau—DeWitt gauge, the effective
action is

Flg] = S[g] — 1ndetQup(g]

1 . 1
—|—5 éirg Indet (VIVJS[ o] + EKO‘[ oK@ ]) . (28)

Use

Iy = 22815 (29)
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Vilkovisky—-DeWitt Formalism

One—loop correction

The total quadratically divergent one—loop gravitational
contribution to the effective action is given

T[A,] = i/d4xﬁ2+ﬁ2c1§‘i/d4x]?‘2 (30)
where the constant C is given by
4a, — 1
c — QT(V [(2¢ — 1) — 4(%€ — 1)]

F8(K2E — 1) — 16w — 4) Fw(—1+6ay)  (31)
obtain the gravitational correction to the [ function

1 0

B = gsg on Oum KT (32)
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Vilkovisky—-DeWitt Formalism

Results

Note that we used the notation for the quadratic
divergences,

Iy, = 228,71 (33)

For different regularization schemes, a, is different.
We 1list the results

c =Tl =1
v=1w=1,

(=0, £=0 1 —2
v=0,w=0,

(=1/2,6=1/K> 0 —2
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Vilkovisky—-DeWitt Formalism

M
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Figure: An illustration of gravitational contributions to the
running of gauge couplings in the MSSM
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Summary

@ We considered the gravitational contributions to the
runnning of gauge couplings.

@ Both the traditional Diagrammatical and Background
Field Method give the same result that the gravity
tends to render all gauge theories asymptotically
free. However the result is gauge condition
dependent.

@ We present the gauge condition independent result in
the framework of the Vilkovisky—-DeWitt formalism.
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