Observational Constraints on Exponential Gravity

Phys. Rev. D 82, 103515 (2010)

Ling-Wei Luo

Collaborator: Louis Yang, Chung-Chi Lee, Chao-Qiang Geng

Department of Physics, National Tsing Hua University

April 1st, 2011

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

- Alternative dark energy models
- Modified matter
- Quintessence
- K-essence
- Perfect fluid models
- Modified gravity
- $f(R)$ gravity (non-linear Lagrangian density in terms of R)
- Scalar-tensor theories (R couples to ϕ with the form: $F(\phi) R$)
- Braneworld models
- Others
- $f(R)$ models:
$S_{\mathrm{E}-\mathrm{H}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g} R \rightarrow S=\frac{1}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g} R+f(R)$.
- Hu and Sawicki

$$
f(R)=-\mu R_{c} \frac{\left(R / R_{c}\right)^{2 n}}{\left(R / R_{c}\right)^{2 n}+1} \text { with } n>0 \text { and } R_{c}>0
$$

- Starobinsky

$$
f(R)=-\mu R_{c}\left[1-\left(1+R^{2} / R_{c}^{2}\right)^{-n}\right] \text { with } n>0 \text { and } R_{c}>0,
$$

- Tsujikawa

$$
f(R)=-\mu R_{c} \tanh \left(R / R_{c}\right) \text { with } R_{c}>0 .
$$

- Exponential gravity

$$
f(R)=-\beta R_{s}\left(1-e^{-R / R_{s}}\right)
$$

Goal: we will test these models with the the observational data (SNe la, BAO and CMB).

- Exponential gravity
- The action is

$$
S=\frac{1}{2 \kappa^{2}} \int d^{4} x \sqrt{-g}[R+f(R)]+S_{m}
$$

where $\kappa^{2} \equiv 8 \pi G$ and

$$
f(R)=-\beta R_{s}\left(1-e^{-R / R_{s}}\right) .
$$

- The modified Friedmann equation is

$$
H^{2}=\frac{\kappa^{2} \rho_{M}}{3}+\frac{1}{6}\left(f_{R} R-f\right)-H^{2}\left(f_{R}+f_{R R} R^{\prime}\right),
$$

where a subscript R denotes the derivative with respect to R, a prime represents $d / d \ln a$, and $\rho_{M}=\rho_{m}+\rho_{r}$.

- In flat spacetime, the Ricci scalar is

$$
R=12 H^{2}+6 H H^{\prime}
$$

- Exponential gravity

■ Following Hu and Sawicki's parameterization

$$
y_{H} \equiv \frac{\rho_{D E}}{\rho_{m}^{0}}=\frac{H^{2}}{m^{2}}-a^{-3} \text { and } y_{R} \equiv \frac{R}{m^{2}}-3 a^{-3}
$$

with $m^{2} \equiv \kappa^{2} \rho_{m}^{0} / 3$, we rewrite the modified Friedmann equation and Ricci scalar into two coupled differential equations

$$
y_{H}^{\prime}=\frac{y_{R}}{3}-4 y_{H}
$$

and

$$
y_{R}^{\prime}=9 a^{-3}-\frac{1}{H^{2} f_{R R}}\left[y_{H}+f_{R}\left(\frac{H^{2}}{m^{2}}-\frac{R}{6 m^{2}}\right)+\frac{f}{6 m^{2}}\right]
$$

■ Leading to a second order differential equation of y_{H} in the form

$$
y_{H}^{\prime \prime}+J_{1} y_{H}^{\prime}+J_{2} y_{H}+J_{3}=0
$$

- And the effective dark energy equation of state $w_{D E}$ is given by

$$
w_{D E}=-1-\frac{y_{H}^{\prime}}{3 y_{H}}
$$

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

- Type la Supernovae (SNe la)
- The distance modulus

$$
\mu_{t h}\left(z_{i}\right) \equiv 5 \log _{10} D_{L}\left(z_{i}\right)+\mu_{0},
$$

where $\mu_{0} \equiv 42.38-5 \log _{10} h$ with $H_{0}=h \cdot 100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.

- The Hubble-free luminosity distance for the flat universe

$$
D_{L}(z)=(1+z) \int_{0}^{z} \frac{d z^{\prime}}{E\left(z^{\prime}\right)},
$$

where $E(z)=H(z) / H_{0}$.

- The χ^{2} for the SNe la data is

$$
\chi_{S N}^{2}=\sum_{i} \frac{\left[\mu_{o b s}\left(z_{i}\right)-\mu_{t h}\left(z_{i}\right)\right]^{2}}{\sigma_{i}^{2}} .
$$

- Type la Supernovae (SNe la)
- Since the absolute magnitude of SNe la is unknown, we should minimize $\chi_{S N}^{2}$ with respect to μ_{0}, which relates to the absolute magnitude, and expand it to be

$$
\chi_{S N}^{2}=A-2 \mu_{0} B+\mu_{0}^{2} C,
$$

where

$$
\begin{aligned}
& A=\sum_{i} \frac{\left[\mu_{o b s}\left(z_{i}\right)-\mu_{t h}\left(z_{i} ; \mu_{0}=0\right)\right]^{2}}{\sigma_{i}^{2}}, \\
& B=\sum_{i} \frac{\mu_{o b s}\left(z_{i}\right)-\mu_{t h}\left(z_{i} ; \mu_{0}=0\right)}{\sigma_{i}^{2}}, \quad C=\sum_{i} \frac{1}{\sigma_{i}^{2}} .
\end{aligned}
$$

The minimum of $\chi_{S N}^{2}$ with respect to μ_{0} is

$$
\tilde{\chi}_{S N}^{2}=A-\frac{B^{2}}{C} .
$$

■ Baryon Acoustic Oscillations (BAO)

- The distance ratio

$$
d_{z} \equiv r_{s}\left(z_{d}\right) / D_{V}(z)\left(z_{d} \text { is redshift at the drag epoach. }\right)
$$

- The volume-averaged distance

$$
D_{V}(z) \equiv\left[(1+z)^{2} D_{A}^{2}(z) \frac{z}{H(z)}\right]^{1 / 3}
$$

- $D_{A}(z)$ is the proper angular diameter distance

$$
D_{A}(z)=\frac{1}{1+z} \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}, \quad \text { (for flat universe). }
$$

- The comoving sound horizon

$$
r_{s}(z)=\frac{1}{\sqrt{3}} \int_{0}^{1 /(1+z)} \frac{d a}{a^{2} H\left(z^{\prime}=\frac{1}{a}-1\right) \sqrt{1+\left(3 \Omega_{b}^{0} / 4 \Omega_{\gamma}^{0}\right) a}}
$$

here $\Omega_{b}^{0}=0.022765 h^{-2}$ and $\Omega_{\gamma}^{0}=2.469 \times 10^{-5} h^{-2}$.

- Baryon Acoustic Oscillations (BAO)

■ z_{d} is the redshift at the drag epoch

$$
z_{d}=\frac{1291\left(\Omega_{m}^{0} h^{2}\right)^{0.251}}{1+0.659\left(\Omega_{m}^{0} h^{2}\right)^{0.828}}\left[1+b_{1}\left(\Omega_{b}^{0} h^{2}\right)^{b 2}\right]
$$

with

$$
\begin{aligned}
b_{1} & =0.313\left(\Omega_{m}^{0} h^{2}\right)^{-0.419}\left[1+0.607\left(\Omega_{m}^{0} h^{2}\right)^{0.674}\right] \\
b_{2} & =0.238\left(\Omega_{m}^{0} h^{2}\right)^{0.223}
\end{aligned}
$$

■ The measured distance ratios $d_{z=0.2}^{o b s}=0.1905 \pm 0.0061$ and $d_{z=0.35}^{o b s}=0.1097 \pm 0.0036$ with the inverse covariance matrix:

$$
C_{B A O}^{-1}=\left(\begin{array}{cc}
30124 & -17227 \\
-17227 & 86977
\end{array}\right)
$$

- The χ^{2} for the BAO data is

$$
\chi_{B A O}^{2}=\left(x_{i, B A O}^{t h}-x_{i, B A O}^{o b s}\right)\left(C_{B A O}^{-1}\right)_{i j}\left(x_{j, B A O}^{t h}-x_{j, B A O}^{o b s}\right),
$$

where $x_{i, B A O} \equiv\left(d_{0.2}, d_{0.35}\right)$.

- Cosmic Microwave Background (CMB)
- The acoustic scale

$$
l_{A}\left(z_{*}\right) \equiv\left(1+z_{*}\right) \frac{\pi D_{A}\left(z_{*}\right)}{r_{S}\left(z_{*}\right)}
$$

- The shift parameter

$$
R\left(z_{*}\right) \equiv \sqrt{\Omega_{m}^{0}} H_{0}\left(1+z_{*}\right) D_{A}\left(z_{*}\right) .
$$

- The decoupling epoch

$$
z_{*}=1048\left[1+0.00124\left(\Omega_{b}^{0} h^{2}\right)^{-0.738}\right]\left[1+g_{1}\left(\Omega_{m}^{0} h^{2}\right)^{g 2}\right]
$$

where

$$
g_{1}=\frac{0.0783\left(\Omega_{b}^{0} h^{2}\right)^{-0.238}}{1+39.5\left(\Omega_{b}^{0} h^{2}\right)^{0.763}}, \quad g_{2}=\frac{0.560}{1+21.1\left(\Omega_{b}^{0} h^{2}\right)^{1.81}}
$$

- Cosmic Microwave Background (CMB)

■ $l_{A}\left(z_{*}\right)=302.09, R\left(z_{*}\right)=1.725$ and $z_{*}=1091.3$ with the inverse covariance matrix:

$$
C_{C M B}^{-1}=\left(\begin{array}{ccc}
2.305 & 29.698 & -1.333 \\
29.698 & 6825.27 & -113.180 \\
-1.333 & -113.180 & 3.414
\end{array}\right)
$$

- The χ^{2} for the CMB data is

$$
\chi_{C M B}^{2}=\left(x_{i, C M B}^{t h}-x_{i, C M B}^{o b s}\right)\left(C_{C M B}^{-1}\right)_{i j}\left(x_{j, C M B}^{t h}-x_{j, C M B}^{o b s}\right)
$$

where $x_{i, C M B} \equiv\left(l_{A}\left(z_{*}\right), R\left(z_{*}\right), z_{*}\right)$.

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

- The $\chi^{2}=\tilde{\chi}_{S N}^{2}+\chi_{B A O}^{2}+\chi_{C M B}^{2}$

Exponential Gravity: $R+f(R)=R-\beta R_{s}\left(1-e^{-R / R_{s}}\right)$

Model		Ω_{m}^{0}	χ^{2}
	$\beta=2$	$0.274_{-0.013}^{+0.014}$	546.7136
Exponential Gravity	$\beta=3$	$0.276_{-0.013}^{+0.014}$	545.3836
	$\beta=4$	$0.276_{-0.013}^{+0.014}$	545.1721
$\Lambda \mathrm{CDM}$	$0.276_{-0.013}^{+0.014}$	545.1522	

■ We have a lower bound of parameter β at 1.27 but no upper limit

- Ω_{m}^{0} is constrained to the concordance value
- $\beta \rightarrow \infty$ corresponds to the Λ CDM model
- From the plot of effective dark energy equation of state $w_{D E}$, the deviation from cosmological constant phase $\left(w_{D E}=-1\right)$ become smaller for larger value of β

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

■ We have studied the modified gravity, especially intrested on the exponential gravity

- We have done the data fitting by using the SNe la, BAO and CMB data
- In the low redshift regime, we follow Hu and Sawicki's parameterization to form the differential equation for the exponential gravity and solve it numerically
- In the high redshift regime, we take advantage of the asymptotic behavior of the exponential gravity toward an effective cosmological constant
■ Current observational data can not distinguish between the Λ CDM and exponential gravity models

End

- Thank you!

Outline

5 Backup slides: Statistical Methods

- The method of maximum likelihood - likelihood function
- A set of N measure quantities $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$ describe by a joint p.d.f. $f(\boldsymbol{x} ; \boldsymbol{\theta})$, where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)$ is a set of n parameters whose value are unknown.
- The likelihood function $\mathcal{L}(\boldsymbol{\theta}) \equiv f(\boldsymbol{x} ; \boldsymbol{\theta})$.
- If the measurements x_{i} are statistically independent and each follow the p.d.f. $f\left(x_{i} ; \boldsymbol{\theta}\right)$, then the joint p.d.f. for x factorizes and the likelihood function is

$$
\mathcal{L}(\boldsymbol{\theta})=\prod_{i=1}^{N} f\left(x_{i} ; \boldsymbol{\theta}\right)
$$

- It is usually easier to work with $\ln \mathcal{L}$, and since both are maximized for the same parameter value $\boldsymbol{\theta}$, the maximum likelihood (ML) estimators can be found by solving the likelihood equations,

$$
\frac{\partial \ln \mathcal{L}}{\partial \theta_{i}}=0, \quad i=1, \ldots, n
$$

- The method of least squares - χ^{2} function
- The method of least squares (LS) coincides with the method of maximum likelihood in the following special case.
- Consider a set of N independent measurements y_{i} at known points x_{i}. The measurement y_{i} is assumed to be Gaussian distributed with mean $F\left(x_{i} ; \boldsymbol{\theta}\right)$ and known variance σ_{i}^{2}.
- The goal is to construct estimators for the unknown parameters $\boldsymbol{\theta}$,

$$
\chi^{2}(\boldsymbol{\theta})=-2 \ln \mathcal{L}(\boldsymbol{\theta})+\text { const }=\sum_{i=1}^{N} \frac{\left(y_{i}-F\left(x_{i} ; \boldsymbol{\theta}\right)\right)^{2}}{\sigma_{i}^{2}}+\text { const } .
$$

- The set of parameters $\boldsymbol{\theta}$ which maximize \mathcal{L} is the same as those which minimize χ^{2}.
- The method of least squares - χ^{2} function
- In general, the measurements y_{i} are not Gaussian distributed as long as they are not indepentent, If they are not independent but rather have a covariance matrix $V_{i j}=\operatorname{cov}\left[y_{i}, y_{j}\right]$, then the LS estimators are determined by the minimum of

$$
\chi^{2}(\boldsymbol{\theta})=(\boldsymbol{y}-\boldsymbol{F}(\boldsymbol{\theta}))^{T} V^{-1}(\boldsymbol{y}-\boldsymbol{F}(\boldsymbol{\theta})) .
$$

where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)$ is the vector of measurements, $\boldsymbol{F}(\boldsymbol{\theta})$ is the corresponding vector of predicted values.

- Best-fit

Small value of χ^{2} indicate a good fit. The parameters $\boldsymbol{\theta}^{*}$ that minimize χ^{2} are called the best-fit parameters.

- Confidence Level

Table 32.2: $\Delta \chi^{2}$ or $2 \Delta \ln L$ corresponding to a coverage probability $1-\alpha$ in the large data sample limit, for joint estimation of m parameters.

$(1-\alpha)(\%)$	$m=1$	$m=2$	$m=3$
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16

PDG2008

