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Alternative dark energy models
Modified matter

Quintessence
K-essence
Perfect fluid models

Modified gravity

f (R) gravity (non-linear Lagrangian density in terms of R)
Scalar-tensor theories (R couples to φ with the form: F (φ)R)
Braneworld models

Others
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f (R) models:

SE-H =
1

16πG

∫
d4x
√
−gR→ S =

1

16πG

∫
d4x
√
−gR+f(R).

Hu and Sawicki

f(R) = −µRc
(R/Rc)

2n

(R/Rc)2n + 1
with n > 0 and Rc > 0,

Starobinsky

f(R) = −µRc
[
1− (1 +R2/R2

c)
−n] with n > 0 and Rc > 0,

Tsujikawa

f(R) = −µRc tanh(R/Rc) with Rc > 0.

Exponential gravity

f(R) = −βRs(1− e−R/Rs)

Goal: we will test these models with the the observational
data (SNe Ia, BAO and CMB).
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Exponential gravity

The action is

S =
1

2κ2

∫
d4x
√
−g [R+ f(R)] + Sm,

where κ2 ≡ 8πG and

f(R) = −βRs(1− e−R/Rs).

The modified Friedmann equation is

H2 =
κ2ρM

3
+

1

6
(fRR− f)−H2 (fR + fRRR

′) ,

where a subscript R denotes the derivative with respect to R, a
prime represents d/d ln a, and ρM = ρm + ρr.
In flat spacetime, the Ricci scalar is

R = 12H2 + 6HH ′.
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Exponential gravity
Following Hu and Sawicki’s parameterization

yH ≡
ρDE
ρ0m

=
H2

m2
− a−3 and yR ≡

R

m2
− 3a−3,

with m2 ≡ κ2ρ0m/3, we rewrite the modified Friedmann
equation and Ricci scalar into two coupled differential
equations

y′H =
yR
3
− 4yH

and

y′R = 9a−3 − 1

H2fRR

[
yH + fR

(
H2

m2
− R

6m2

)
+

f

6m2

]
,

Leading to a second order differential equation of yH in the
form

y′′H + J1y
′
H + J2yH + J3 = 0.

And the effective dark energy equation of state wDE is given
by

wDE = −1− y′H
3yH

.

Ling-Wei Luo Student Talk@CS2011 5/ 15



Outline Introduction Observational Constraints Results Summary

Outline

1 Introduction

2 Observational Constraints

3 Results

4 Summary

Ling-Wei Luo Student Talk@CS2011 5/ 15



Outline Introduction Observational Constraints Results Summary

Type Ia Supernovae (SNe Ia)

The distance modulus

µth(zi) ≡ 5 log10DL(zi) + µ0,

where µ0 ≡ 42.38− 5 log10 h with H0 = h · 100km/s/Mpc.
The Hubble-free luminosity distance for the flat universe

DL(z) = (1 + z)

∫ z

0

dz′

E(z′)
,

where E(z) = H(z)/H0.
The χ2 for the SNe Ia data is

χ2
SN =

∑
i

[µobs(zi)− µth(zi)]
2

σ2
i

.
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Type Ia Supernovae (SNe Ia)

Since the absolute magnitude of SNe Ia is unknown, we should
minimize χ2

SN with respect to µ0, which relates to the
absolute magnitude, and expand it to be

χ2
SN = A− 2µ0B + µ2

0C,

where

A =
∑
i

[µobs(zi)− µth(zi;µ0 = 0)]
2

σ2
i

,

B =
∑
i

µobs(zi)− µth(zi;µ0 = 0)

σ2
i

, C =
∑
i

1

σ2
i

.

The minimum of χ2
SN with respect to µ0 is

χ̃2
SN = A− B2

C
.

Ling-Wei Luo Student Talk@CS2011 7/ 15



Outline Introduction Observational Constraints Results Summary

Baryon Acoustic Oscillations (BAO)
The distance ratio

dz ≡ rs(zd)/DV (z) (zd is redshift at the drag epoach.)

The volume-averaged distance

DV (z) ≡
[
(1 + z)2D2

A(z)
z

H(z)

]1/3
.

DA(z) is the proper angular diameter distance

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
, (for flat universe).

The comoving sound horizon

rs(z) =
1√
3

∫ 1/(1+z)

0

da

a2H(z′= 1
a−1)

√
1 + (3Ω0

b/4Ω0
γ)a

,

here Ω0
b = 0.022765h−2 and Ω0

γ = 2.469× 10−5h−2.
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Baryon Acoustic Oscillations (BAO)
zd is the redshift at the drag epoch

zd =
1291(Ω0

mh
2)0.251

1 + 0.659(Ω0
mh

2)0.828
[
1 + b1(Ω0

bh
2)b2

]
,

with

b1 = 0.313(Ω0
mh

2)−0.419
[
1 + 0.607(Ω0

mh
2)0.674

]
,

b2 = 0.238(Ω0
mh

2)0.223.

The measured distance ratios dobsz=0.2 = 0.1905± 0.0061 and
dobsz=0.35 = 0.1097± 0.0036 with the inverse covariance matrix:

C−1BAO =

(
30124 −17227
−17227 86977

)
.

The χ2 for the BAO data is

χ2
BAO = (xthi,BAO − xobsi,BAO)(C−1BAO)ij(x

th
j,BAO − xobsj,BAO) ,

where xi,BAO ≡ (d0.2, d0.35).
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Cosmic Microwave Background (CMB)

The acoustic scale

lA(z∗) ≡ (1 + z∗)
πDA(z∗)

rS(z∗)
.

The shift parameter

R(z∗) ≡
√

Ω0
mH0(1 + z∗)DA(z∗).

The decoupling epoch

z∗ = 1048
[
1 + 0.00124(Ω0

bh
2)−0.738

] [
1 + g1(Ω0

mh
2)g2

]
,

where

g1 =
0.0783(Ω0

bh
2)−0.238

1 + 39.5(Ω0
bh

2)0.763
, g2 =

0.560

1 + 21.1(Ω0
bh

2)1.81
.

Ling-Wei Luo Student Talk@CS2011 10/ 15



Outline Introduction Observational Constraints Results Summary

Cosmic Microwave Background (CMB)

lA(z∗) = 302.09, R(z∗) = 1.725 and z∗ = 1091.3 with the
inverse covariance matrix:

C−1CMB =

 2.305 29.698 −1.333
29.698 6825.27 −113.180
−1.333 −113.180 3.414

 .

The χ2 for the CMB data is

χ2
CMB = (xthi,CMB − xobsi,CMB)(C−1CMB)ij(x

th
j,CMB − xobsj,CMB) ,

where xi,CMB ≡ (lA(z∗), R(z∗), z∗).
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The χ2 = χ̃2
SN + χ2

BAO + χ2
CMB

Exponential Gravity: R + f(R) = R− βRs(1 − e−R/Rs )
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We have a lower bound of parameter β at 1.27 but no upper
limit

Ω0
m is constrained to the concordance value

β →∞ corresponds to the ΛCDM model

From the plot of effective dark energy equation of state wDE ,
the deviation from cosmological constant phase (wDE = −1)
become smaller for larger value of β
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We have studied the modified gravity, especially intrested on
the exponential gravity

We have done the data fitting by using the SNe Ia, BAO and
CMB data

In the low redshift regime, we follow Hu and Sawicki’s
parameterization to form the differential equation for the
exponential gravity and solve it numerically

In the high redshift regime, we take advantage of the
asymptotic behavior of the exponential gravity toward an
effective cosmological constant

Current observational data can not distinguish between the
ΛCDM and exponential gravity models
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End

Thank you!
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The method of maximum likelihood - likelihood function

A set of N measure quantities x = (x1, ..., xN ) describe by a
joint p.d.f. f(x;θ), where θ = (θ1, ..., θn) is a set of n
parameters whose value are unknown.
The likelihood function L(θ) ≡ f(x;θ).
If the measurements xi are statistically independent and each
follow the p.d.f. f(xi;θ), then the joint p.d.f. for x factorizes
and the likelihood function is

L(θ) =

N∏
i=1

f(xi;θ) .

It is usually easier to work with lnL, and since both are
maximized for the same parameter value θ, the maximum
likelihood (ML) estimators can be found by solving the
likelihood equations,

∂ lnL
∂θi

= 0 , i = 1, ..., n .
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The method of least squares - χ2 function

The method of least squares (LS) coincides with the method
of maximum likelihood in the following special case.
Consider a set of N independent measurements yi at known
points xi. The measurement yi is assumed to be Gaussian
distributed with mean F (xi;θ) and known variance σ2

i .
The goal is to construct estimators for the unknown
parameters θ,

χ2(θ) = −2 lnL(θ) + const =

N∑
i=1

(yi − F (xi;θ))2

σ2
i

+ const .

The set of parameters θ which maximize L is the same as
those which minimize χ2.
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The method of least squares - χ2 function

In general, the measurements yi are not Gaussian distributed as
long as they are not indepentent, If they are not independent
but rather have a covariance matrix Vij = cov[yi, yj ], then the
LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))TV −1(y − F (θ)) .

where y = (y1, ..., yN ) is the vector of measurements, F (θ) is
the corresponding vector of predicted values.

Best-fit
Small value of χ2 indicate a good fit. The parameters θ∗ that
minimize χ2 are called the best-fit parameters.
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Confidence Level

PDG2008

Ling-Wei Luo Student Talk@CS2011 19/ 15


	Outline
	Introduction
	Observational Constraints
	Results
	Summary
	Appendix
	Backup slides: Statistical Methods


