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Motivation

⋆ Constrain the interaction form (three point function) for
the fields of general spin

⋆ Calculation the amplitude with massive fields more
effectively

⋆ Transformed to the twistor space to see the algebra
geometry curves
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Amplitude in spinor form

General form of the amplitude

A(λ1, λ̃1,β1, β̃1,ψsz
1 ; · · · )

� Linear property with respect to external fields

� Lorenz invariant

� momentum conservation

� Functions of spinors
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Spinor form for the momentum and external

fields –(s = 1
2)

Massless field p2 = 0

Spinor form paȧ = λaλ̃ȧ

Massive fields p2 = m2

paȧ = λaλ̃ȧ +βaβ̃ȧ

The solution of E.O.M (dirac equation)

Massless Left-hand:λ , right-hand:λ̃
Massive u− =

(λ
β̃
)

, u+ =
( β
−λ̃

)

, v− =
( λ
−β̃

)

, v+ =
(β

λ̃

)

.
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Generator of the little group in the spinor form

For massive fields ,the little group is SO(3), it can be
represented as the first-order differential operators with
respect to spinors

R(J1) =
−1
2

(

β
∂

∂λ
− β̃

∂
∂ λ̃

+λ
∂

∂β
− λ̃

∂
∂ β̃

)

,

R(J2) =
i
2

(

β
∂

∂λ
+ β̃

∂
∂ λ̃

−λ
∂

∂β
− λ̃

∂
∂ β̃

)

,

R(J3) =
−1
2

(

λ
∂

∂λ
− λ̃

∂
∂ λ̃

−β
∂

∂β
+ β̃

∂
∂ β̃

)

. (1)

Check the commutation relations

[R(Ji),R(Jj)] = iεijkR(Jk). (2)
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External field forms a representation of the little
group

R(J3)us =
−1
2

(

λ
∂

∂λ
− λ̃

∂
∂ λ̃

−β
∂

∂β
+ β̃

∂
∂ β̃

)

us = D
1
2

rs(J3)ur,

R(J2)us =
+i
2

(

β
∂

∂λ
+ β̃

∂
∂ λ̃

−λ
∂

∂β
− λ̃

∂
∂ β̃

)

us = D
1
2

rs(J2)ur,

R(J1)us =
−1
2

(

β
∂

∂λ
− β̃

∂
∂ λ̃

+λ
∂

∂β
− λ̃

∂
∂ β̃

)

us = D
1
2

rs(J1)ur.

the raising and lowering operators

R(J+) =
(

λ̃ ∂
∂ β̃

−β ∂
∂λ

)

and R(J−) =
(

β̃ ∂
∂ λ̃

−λ ∂
∂β

)
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Application on 3
2 spin fields

The states for spin 3
2

u−3
2

= −λβ̃ (λ ⊕ β̃)

u−1
2

= (−λλ̃ +ββ̃)(λ ⊕ β̃ )+λβ̃(β ⊕−λ̃)

u 1
2

= (−λλ̃ +ββ̃)(β ⊕−λ̃)−βλ̃ (λ ⊕ β̃)

u 3
2

= −βλ̃ (β ⊕−λ̃) (3)

Acting the R(J+) on the u−3
2
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Similarly, for anti-particles

v−3
2

= −λβ̃ (λ ⊕−β̃)

v−1
2

= (−λλ̃ +ββ̃ )(λ ⊕−β̃)+λβ̃(β ⊕ λ̃ )

v 1
2

= (−λλ̃ +ββ̃ )(β ⊕ λ̃)−βλ̃ (λ ⊕−β̃)

v 3
2

= −βλ̃ (β ⊕ λ̃ ). (4)
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Apply to the general Rarita-Schwinger tensor
spinors

The lowest helicity vector is obtained by symmetry product
the tensor part and the dirac-spinor part as

u−j =−(λβ̃ )j− 1
2 (λ ⊕ β̃ ). (5)

The the higher helicity states can be obtained as

u(−j+n) = N(j,n)(J+)nu−j, (6)

where n in integer and ∈ [1,2j] and N is the normalize
constant.
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Manifest forms

u−j+n

=
[ n

2 ]

∑
i=0

S
(

(λβ̃ )⊗j− 1
2+i−n ⊗ (λλ̃ −ββ̃ )⊗(n−2i)(−2βλ̃ )⊗i

)

⊗λ

−
[ n−1

2 ]

∑
i=0

S
(

(λβ̃ )⊗j− 1
2+i+1−n ⊗ (λλ̃ −ββ̃)⊗(n−2i−1)(−2βλ̃ )⊗i)⊗β .

S denote the symmetry tensor product
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Amplitude in spinor form

We consider the three point amplitude with (q̄ q g).
According to the function property of the amplitude in the
spinor form, the three point amplitude should satisfy the
following one order differential equations

R(Ja)1A(λi, λ̃i,βi, β̃i,u
i
ri
;λ3, λ̃3,±) = A(λi, λ̃i,βi, β̃i,D

(2)
sr1 u1

s ,u
2
r2

;λ3, λ̃3,

R(Ja)2A(λi, λ̃i,βi, β̃i,u
i
ri
;λ3, λ̃3,±) = A(λi, λ̃i,βi, β̃i,D

(2)
sr2 u2

s ,u
1
r1
,λ3, λ̃3,

R(J3)3A(λi, λ̃i,βi, β̃i,u
ri
i ,λ3, λ̃3,±) = ±A(λi, λ̃i,βi, β̃i,u

r1
1 ,u

r2
2 ;λ3, λ̃3,±

Relation: 7; Constraint: 4, Freedom: 10
It’s hard to solve these directly. (One of the possible method
is to use the D-module technology in algebra geometry)
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Directly construction of the solutions.

According to the general properties of the amplitude, we
construct the solutions directly.

The general form of the amplitudes for spin 1
2

A =
(

c1 〈λ1|F
e
1(p1,p2)|λ2〉 [µ̃ |Fo

2(p1,p2)|λ3〉

+ c2 〈λ1|F
o
3(p1+p2)|µ̃ ] 〈λ2,λ3〉

+ c3 〈λ2|F
o
4(p1+p2)|µ̃ ] 〈λ1,λ3〉

+ c4 〈λ1|F
o
5(p1)|µ ] 〈λ2,λ3〉+ c4′ 〈λ2|F

o
5′(p2)|µ ]〈λ1,λ3〉

)

1

[µ̃ , λ̃3]
(8)
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General solutions

Only three independent solutions and the general form of
the amplitude is

A(
−1
2

,

−1
2

,−1)=
P1(〈λ1,λ2〉, [β̃1, β̃2])〈λ2,λ3〉

[β̃2, λ̃3]
+Q0〈λ1,λ3〉〈λ2,λ3〉.

(9)

Here Q0 only depends on the mass and P1 is a first-order
polynomial function: a(m)〈λ1,λ2〉+b(m)[β̃1, β̃2],
b(m) term ↔ the electric interactions
Q0 term ↔ magnetic interactions
The term of coefficient a(m) is not consistent with the gauge
invariance when the external photon are off shell.
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Amplitude with other spin-configurations

According to the spinor form of the little group
generators, we can directly obtain the other amplitudes

A(
1
2
,

−1
2

,−1) = R(J+1 )A(
−1
2

,

−1
2

,−1)

A(
−1
2

,

1
2
,−1) = R(J+2 )A(

−1
2

,

−1
2

,−1)

A(
1
2
,

1
2
,−1) = R(J+1 )R(J+2 )A(

−1
2

,

−1
2

,−1) (10)
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General solutions for other spins

For 3
2 spin

A
(

(
3
2
,−

3
2
),(

3
2
,−

3
2
),(1,−1)

)

=
P3

(

[β̃1, β̃2],〈λ1,λ2〉
)

〈λ3,λ2〉

[β̃2, λ̃3]

+ Q2
(

[β̃1, β̃2],〈λ1,λ2〉
)

〈λ1,λ3〉〈λ3,λ2〉, (11)

For general spin

A
(

(j,−j),(j,−j),(1,−1)
)

=
F2j

(

[β̃1, β̃2],〈λ1,λ2〉
)

〈λ3,λ2〉

[β̃2, λ̃3]

+ G2j−1
(

[β̃1, β̃2],〈λ1,λ2〉
)

〈λ1,λ3〉〈λ3,λ2〉, (12)
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General review of the BCFW recursion relations

Such relation is accomplished by shifting the external
momentum p(z) such that the external fields are still on shell
and the momentum conservation hold. The amplitude with
shifted external momentum are denoted as A (z).

Three conditions for the recursion relations
cite(BCFW : 2005)

� Rational condition: A (z) is rational

� Constructive condition: it vanish for z → ∞

�

Simple pole condition: the only singularities are simple poles
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If the conditions are met, there are simple recursion
relations for these constructive amplitudes
(citeBadger1,Badger2)

A (p1, · · ·pn) = ∑
pt

∑
h

AL(pr, · · · p̂i, · · · ,ps,−P̂h)

1

P2
ij −m2

Pij

AR(P̂
h
,ps+1, · · · p̂j, · · · ,pr−1), (13)
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Progress on the tree-level amplitude

⋆ Amplitude with more than one massless external line
(Solved by S. D. Badger et.al. [arXiv: hep-th/0504159],
[arXiv: hep-th/0507161] and also in Ozeren’s [arXiv:
hep-ph/0603071], Schwinn’s [arXiv: 0809.1442]

⋆ Amplitude with only one massless external line (Solved in
arXiv:1103.2518)

⋆ Amplitude with all massive lines (Solved in
arXiv:1103.2518)
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Major obstruct

Non-constructible: A (z)z→∞ 6= 0. If the shifting lines contain
massive lines, it it is impossible for the amplitude to be
constructible for general spin configurations. Fortunately, we
find it is possible to choose a correlated spin configurations
for the two shift line such that the amplitude is constructible.
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Massive momentum shifting scheme

Since the amplitudes are Lorentz invariant, we can choose a
reference frame such that the two shifted momentum can be
of form

pq̂1 = λq1λ̃q1 +βq1β̃q1 + zλq1β̃q1,

pq̂2 = λq2λ̃q2 +βq2β̃q2 − zλq1β̃q1, (14)

and
〈λq1,λq2〉[β̃q1, λ̃q2]+ 〈λq1,βq2〉[β̃q1, β̃q2] = 0. (15)

The z-independent states for two labeled particles are
(λq1

β̃q1

)

,

(

a
b̃

)

=

(

−pq2 ◦ β̃q1

mβ̃q1

)

(16)

G.Chern (NJU) — Spinor for the massive fields

Slide 21/26



momentum shifting scheme for one massive and
one massless lines

For massless gauge field of + helicity, the amplitudes are
constructible under the two-line shift (cite: Badger1,
Badger2)

p1 = λ1λ̃1+ z([λ̃2, λ̃1]λ2λ̃1+[β̃2, λ̃1]β2λ̃1),

p2 = λ2λ̃2+β2β̃2− z([λ̃2, λ̃1]λ2λ̃1+[β̃2, λ̃1]β2λ̃1), (17)

where p1 momentum of the massless gauge boson and p2 is
for the dirac fields.

External field for the constructible amplitude

ε+ = µλ̃1
〈µ ,λ1〉

,
(a

b̃

)

=
(−mλ1

λ̃1◦pq

)
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The amplitude with spin state independent with
each other

Here, the spin state of the quark line are not independent but

related with the spinors of a gluon
(a

b̃

)

=
(−mλ1

λ̃1◦pq

)

.

To get the amplitude with another spin state for this massive
line lc, we can shift the momentum of this line together with

another massive line lf ,
(a

b̃

)

=
(−pq2◦β̃q1

mβ̃q1

)

.

Linear combination of the two parts, we get the amplitude
with non-related spin states.
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General procedure for the tree-level amplitude in
QCD

1 Choose two massless line to be shifted if possible.

2 If not, choose two pair of massive lines to be shifted.
The two pair of lines have a common fields.

3 Recursion the amplitude of two different spin
configuration for the non-common fields respectively to
be of less external lines for the two pair of momentum
shifting.

4 Linear combine the two spin configurations of the
amplitude and obtain an amplitude which has lines of
independent spin state .

5 Acting with spinor form of the little group generators, to
obtain the amplitude of arbitrary spin configuration.
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Future plan

⋆ Extended to one loop

⋆ Extended to higher spin fields

⋆ Transform to the twistor space, to analysis the algebra
curve corresponding to each non-vanishing amplitude

⋆ Apply to a system of modular space (e.x. N=2 SUSY
theory). And discuss the transformation manner of the
amplitude under the moving in modular space.
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Thank you
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