Solution
 Final Examination
 Introduction to Relativity I (PHYS431000)

1. (Fundamental concepts)

(a) State the Einstein equivalence principle.

Soln: At every spacetime point in an arbitrary gravitational field, it is possible to choose a locally inertial coordinate system given by a locally free falling observer such that within a sufficiently small region, the laws of nature take the same form as in an unaccelerated Cartesian coordinate system in the absence of gravity.
[8pts]
(b) Explain how Einstein equivalence principle leads to the presence of gravitational redshift.

Soln: See my note p.5.3. Key equations are (5.1.5) and (5.1.6).

2. (Deriving Einstein Equation)

(a) Explain why spacetime must be curved in the presence of gravity.

Soln: See my note p.5.4.
(b) Assume that the law of gravitation take the tensorial form

$$
K_{\mu \nu}=k T_{\mu \nu}
$$

where k is a constant, $Y_{\mu \nu}$ is the energy momentum tensor and $K_{\mu \nu}$ is a tensor. State the conditions which $K_{\mu \nu}$ should satisfy.
Soln:
$K_{\mu \nu}$ must be symmetric. $T_{\mu \nu}$ is covariantly conserved, implying that $K^{\mu \nu}{ }_{; \nu}=0$.
(c) State the Bianchi identity for the Riemann curvature tensor $R^{\lambda}{ }_{\mu \alpha \beta}$. Use it to derive the unique combination, up to an overall constant, of $K_{\mu \nu}$ in terms of $R_{\mu \nu}$ and $g_{\mu \nu} R$.
Soln:
Bianchi identity:

$$
R_{\mu \nu \alpha \beta ; \gamma}+R_{\mu \nu \beta \gamma ; \alpha}+R_{\mu \nu \gamma \alpha ; \beta}=0 .
$$

Multiply by $g^{\mu \alpha}$, we get

$$
R_{\nu \beta ; \gamma}+R_{\nu \beta \gamma ; \alpha}^{\alpha}-R_{\nu \gamma ; \beta}=0
$$

Contract with $g^{\nu \beta}$,

$$
R_{; \gamma}-R_{\gamma ; \alpha}^{\alpha}-R_{\gamma ; \beta}^{\beta}=0 .
$$

i.e.

$$
\left(2 R^{\beta}{ }_{\gamma}-\delta^{\beta}{ }_{\gamma} R\right)_{; \beta}=0
$$

Hence up to a multiplicative constant,

$$
K_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R
$$

3. (Newtonian Limit)

(a) What is the generalization of the Newton's first law of motion in general relativity?

Soln:

$$
\frac{d^{2} x^{\mu}}{d s^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d s} \frac{d x^{\beta}}{d s}=f^{\mu} / m
$$

where f^{μ} is the four-force.
(b) Consider the case where there is no other external force other than the presence of a gravitational force. State the conditions for Newtonian limit.
Soln: Newtonian limit is when $|\phi| \ll 1$ and $v / c \ll 1$.
[4pts]
(c) Show that in the Newtonian limit, the equation of the motion in (a) reduces to the ordinary Newton's law of gravity.
Soln: In the absence of gravity, spacetime is flat and we use rectangular coordinates

$$
x^{0}=c t, \quad x^{1}=x, \quad x^{2}=y, \quad x^{3}=z .
$$

In the presence of a wealk gravitational field,

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

For small velocities,

$$
(d s / d \tau)^{2}=\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \approx\left(\frac{d t}{d \tau}\right)^{2}
$$

The geodesic equation becomes

$$
\frac{d^{2} x^{\mu}}{d s^{2}} \approx-\Gamma_{00}^{\mu}\left(\frac{d x^{0}}{d s}\right)^{2} \approx-\Gamma_{00}^{\mu}
$$

As for Γ_{00}^{μ}, we find

$$
\Gamma_{00}^{\mu}=\frac{1}{2} \eta^{\mu \mu}\left(\frac{\partial h_{00}}{\partial x^{\mu}}-2 \frac{\partial h_{\mu 0}}{\partial x^{0}}\right)
$$

Ignoring the time derivative term for slow speeds, we get

$$
\Gamma_{00}^{\mu} \approx \frac{1}{2} \eta^{\mu \mu} \frac{\partial h_{00}}{\partial x^{\mu}}
$$

and

$$
\frac{d^{2} x^{i}}{d t^{2}}=-\frac{1}{2} \frac{\partial h_{00}}{\partial x^{i}}
$$

This is the form of the Newtonian gravity

$$
\frac{d^{2} x^{i}}{d t^{2}}=-\frac{\partial \Phi}{\partial x^{i}}
$$

if

$$
h_{00}=2 \Phi
$$

[8pts]

4. (Gravitation Wave)

(a) Consider a weak gravitational field

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left|h_{\mu \nu}\right| \ll 1
$$

Derive the transformation of $h_{\mu \nu}$ under an infinitesimal coordinate transformation

$$
x^{\mu} \rightarrow x^{m}+\xi^{\mu} .
$$

(b) Einstein equation in a weak gravitational field

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left|h_{\mu \nu}\right| \ll 1
$$

can be written as

$$
\square \hat{h}_{\mu \nu}=-16 \pi G T_{\mu \nu}+\theta_{\mu \nu}
$$

where

$$
\hat{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h_{\alpha}^{\alpha}
$$

and

$$
\theta_{\mu \nu}=\partial_{\nu} \partial^{\alpha} \hat{h}_{\mu \alpha}+\partial_{\mu} \partial^{\alpha} \hat{h}_{\nu \alpha}-\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \hat{h}_{\alpha \beta}
$$

Show that one can always go to a certain specific coordinate system such that the $\theta^{\mu \nu}$ term vanishes and the weak field Einstein equation reads

$$
\square \hat{h}_{\mu \nu}=-16 \pi G T_{\mu \nu}
$$

(c) Consider the propagation of gravitational wave in empty space. The wave can be represented as

$$
\hat{h}_{\mu \nu}=\operatorname{Re}\left(A_{\mu \nu} e^{i k_{\alpha} x^{a}}\right)
$$

Show that k_{α} must be a null vector and that

$$
A_{\mu \nu} k^{\nu}=0
$$

5. (Geodesic Equation)

(a) Show that the geodesic equation can be written as

$$
\frac{d}{d s}\left(g_{\mu \nu} \frac{d x^{\nu}}{d s}\right)=\frac{1}{2} \frac{\partial g_{\alpha \beta}}{\partial x^{\mu}} \frac{d x^{\alpha}}{d s} \frac{d x^{\beta}}{d s}
$$

(b) Consider the metric outside a blackhole

$$
d s^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

Show that

$$
\begin{gathered}
r^{2} \frac{d \varphi}{d s}=h=a \text { constant. } \\
\left(1-\frac{2 m}{r}\right) \frac{d t}{d s}=l=a \text { constant. }
\end{gathered}
$$

(c) Show that for a massless photon, it follows the trajectory

$$
\frac{d^{2} u}{d \varphi^{2}}+u=3 u^{2}
$$

where

$$
u=m / r
$$

