Study of $\Lambda_b \to \Lambda \phi$ and $\Lambda_b \to \Lambda \eta^{(\prime)}$

Yu-Heng Lin

In collaboration with C. Q. Geng, Y. K. Hsiao, Yao Yu

Published in Eur. Phys. J. C (2016) 76: 399

12/29/2016

- 1. Motivation
- 2. Calculation of the Amplitude
- 3. Results

 $\Lambda_b(bud), \ \Lambda(sud), \ \phi(s\bar{s}), \ \eta^q(u\bar{u}+d\bar{d})/\sqrt{2}, \ \eta^s(s\bar{s})$

Motivation

- 1. The recent measurements of $\Lambda_b \to \Lambda \phi$ and $\Lambda_b \to \Lambda \eta^{(\prime)}$ from LHCb are given as $\mathcal{B}(\Lambda_b \to \Lambda \phi) = (5.18 \pm 1.29) \times 10^{-6}$, $\mathcal{B}(\Lambda_b \to \Lambda \eta) = (9.3^{+7.3}_{-5.3},) \times 10^{-6}$, 3σ -significance, $\mathcal{B}(\Lambda_b \to \Lambda \eta') < 3.1 \times 10^{-6}$, (90% C.L.) (R. Aaij et al. [LHCb Collaboration],Phys.Lett. B759 (2016) 282-292) (R. Aaij et al. [LHCb Collaboration], JHEP 1509, 006 (2015))
- 2. The decay of $\Lambda_b \to \Lambda \phi$ has not been well explored.
- 3. The first work on $\Lambda_b \to \Lambda \eta^{(\prime)}$ predicted the branching ratios with uncertain form factors to be $\mathcal{B}(\Lambda_b \to \Lambda \eta, \Lambda \eta') = (5.0 14.5, 5.8 13.7) \times 10^{-6}$. (M.R. Ahmady, C.S. Kim, S. Oh, C. Yu, Phys. Lett. B 598, 203(2004))

$$\Lambda_b \to \Lambda \phi$$

According to the diagrams above, the amplitude can be derived as

$$\mathcal{A}(\Lambda_b o \Lambda \phi) = rac{G_F}{\sqrt{2}} lpha_3 \langle \phi | \bar{s} \gamma_\mu s | 0
angle \langle \Lambda | \bar{s} \gamma_\mu (1 - \gamma_5) b | \Lambda_b
angle$$
 with

•
$$\alpha_3 = V_{tb}V_{ts}^*(a_3 + a_4 + a_5 - \frac{1}{2}a_9)$$

- $V_{q_1q_2}$ is the Cabibbo-Kpbayashi-Maskawa (CKM) Matrix elements.
- $a_i = c_i^{eff} + c_{i\pm 1}^{eff}/N_c$ are composed of the effective Wilson coefficients.

$$\Lambda_b \to \Lambda \eta^{(\prime)}$$

Similarly, the amplitude of
$$\Lambda_b \to \Lambda \eta^{(\prime)}$$
 are given by :

$$\mathcal{A}(\Lambda_b \to \Lambda \eta^{(\prime)}) = \frac{G_F}{\sqrt{2}} \left\{ \left[\beta_2 \langle \eta^{(\prime)} | \bar{q} \gamma_\mu \gamma_5 q | 0 \rangle + \beta_3 \langle \eta^{(\prime)} | \bar{s} \gamma_\mu \gamma_5 s | 0 \rangle \right] \\
\langle \Lambda | \bar{s} \gamma_\mu (1 - \gamma_5) b | \Lambda_b \rangle + \beta_6 \langle \eta^{(\prime)} | \bar{s} \gamma_5 s | 0 \rangle \langle \Lambda | \bar{s} (1 - \gamma_5) b | \Lambda_b \rangle \right\}$$

with
$$q = u$$
 or d , $\beta_2 = -V_{ub}V_{us}^* a_2 + V_{tb}V_{ts}^*(2a_3 - 2a_5 + a_9/2)$,
 $\beta_3 = V_{tb}V_{ts}^*(a_3 + a_4 - a_5 - a_9/2)$, and $\beta_6 = V_{tb}V_{ts}^* 2a_6$

Yu-Heng Lin | National Tsing Hua University— Department of Physics

The meson production matrix element

$$\begin{aligned} \langle \phi | \bar{s} \gamma_{\mu} s | 0 \rangle &= m_{\phi} f_{\phi} \epsilon_{\mu}^{*} & \langle \eta^{(\prime)} | \bar{q} \gamma_{\mu} \gamma_{5} q | 0 \rangle = -\frac{i}{\sqrt{2}} f_{\eta^{(\prime)}}^{q} q_{\mu} ,\\ \langle \eta^{(\prime)} | \bar{s} \gamma_{\mu} \gamma_{5} s | 0 \rangle &= -i f_{\eta^{(\prime)}}^{s} q_{\mu} & 2m_{s} \langle \eta^{(\prime)} | \bar{s} \gamma_{5} s | 0 \rangle = -i h_{\eta^{(\prime)}}^{s} , \end{aligned}$$

 f_{ϕ} , $f^q_{\eta^{(\prime)}}$, $f^s_{\eta^{(\prime)}}$, $h^s_{\eta^{(\prime)}}$ is the decay constant, and ϵ^* is the polarization, q = u, d, and q_{μ} is the four momentum

the
$$\eta - \eta'$$
 mixing is adopted as :
 $\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix}$,
with mixing angle $\phi = (39.3 \pm 1.0)^o$. As a result, $f_{\eta^{(\prime)}}^q$ and $f_{\eta^{(\prime)}}^s$ mix with
the decay constants f_q and f_s .

The matrix element of $\Lambda_b \to \Lambda$ baryon transition have been parameterized as :

$$\langle \Lambda | \bar{s} \gamma_{\mu} (1 - \gamma_5) b | \Lambda_b \rangle = \bar{u}_{\Lambda} (f_1 \gamma_{\mu} - g_1 \gamma_{\mu} \gamma_5) u_{\Lambda_b}$$

$$\langle \Lambda | \bar{s}(1-\gamma_5) b | \Lambda_b \rangle = \bar{u}_\Lambda (f_S \gamma_\mu - g_P \gamma_\mu \gamma_5) u_{\Lambda_b}$$

where f_1, g_1 are the momentum dependent form factors $f_1 = \frac{f_1(0)}{(1-q^2/m_{\Lambda_b}^2)^2}, g_1 = \frac{g_1(0)}{(1-q^2/m_{\Lambda_b}^2)^2}$, and $f_S = (\frac{m_{\Lambda_b} - m_{\Lambda}}{m_1 - m_{\Lambda}})f_1, g_P = (\frac{m_{\Lambda_b} + m_{\Lambda}}{m_1 + m_{\Lambda}})g_1$

Yu-Heng Lin | National Tsing Hua University- Department of Physics

The CKM matrix elements are given by $(V_{ub}, V_{us}, V_{tb}, V_{ts}) = (A\lambda^3(\rho - i\eta), \lambda, 1, -A\lambda^2),$ with $(\lambda, A, \rho, \eta) = (0.225, 0.814, 0.120 \pm 0.022, 0.362 \pm 0.013).$

The decay constants are $f_{\phi} = 0.231 \text{ GeV}, \ (f_{\eta}^{q}, f_{\eta'}^{q}, f_{\eta}^{s}, f_{\eta'}^{s}) = (0.108, 0.089, -0.111, 0.136)GeV,$ $(h_{\eta}^{s}, h_{\eta'}^{s}) = (-0.055, \ 0.068)GeV^{3}.$

The form factors are $f_1(0) = g_1(0) = -\sqrt{2/3}(0.136)$

Results

-

We fixed $N_c=3$ for a_i , and our results show as

decay mode	data	our results
$10^6 \mathcal{B}(\Lambda_b \to \Lambda \phi)$	5.18 ± 1.29	$1.77^{+1.76}_{-1.71} \pm 0.24$
$10^6 \mathcal{B}(\Lambda_b \to \Lambda \eta)$	$9.3^{+7.3}_{-5.3}$	$1.47^{+0.29}_{-0.13}\pm0.20$
$10^6 \mathcal{B}(\Lambda_b \to \Lambda \eta')$	< 3.1	$1.83^{+0.55}_{-0.18}\pm0.25$

- The $\Lambda_b \to \Lambda \phi$ decay is judged to receive the non-factorizable effects with $N_c = 2$, such that $\mathcal{B}(\Lambda_b \to \Lambda \phi) = (3.53 \pm 0.24) \times 10^{-6}$.
- We prefer a smaller $\mathcal{B}(\Lambda_b \to \Lambda \eta)$.
- The relation of $\mathcal{B}(\Lambda_b \to \Lambda \eta) \simeq \mathcal{B}(\Lambda_b \to \Lambda \eta')$ holds as in the previous work.

Thank You