As as the symmetry of four generation leptons

Chian-Shu Chen (NCTS) arXiv:1011.3199 cooperated with Tom W. Kephart (Vanderbilt Univ.) and T.C. Yuan (AS) 2010/11/23

Outline

- Introduction
- Solution Non-abelian discrete symmetries A_4 and A_5
- The model
- Results
- Conclusion

Introduction

It is now generally accepted that the SM consists of three fermion families, however, the number of generations is not fixed by the theory.

Revival of interest in 4th generation:

- electroweak precision fit does not exclude 4th generation

 one of the simplest kinds of new physics is a sequential replication of the three generations of chiral matter

- LHC has the potential to discover or fully exclude SM4

Current bounds

 $m_{t'} > 256 \text{ GeV};$ $m_{b'} > 128 \text{ GeV}$ (CC decay; 199 GeV for 100% NC decay); $m_{\tau'} > 100.8 \text{ GeV};$ $m_{v'_{\tau}} > 90.3 \text{ GeV}$ (Dirac coupling; 80.5 GeV for Majorana coupling) CKM unitarity : current measurement errors of the CKM quark mixing matrix elements leave room for the possible extension from 3×3 to 4×4

The first row : $|V_{ub'}|^2 = 1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2 \simeq 0.0008 \pm 0.0011$ The second row : $|V_{cb'}|^2 = 1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2 \simeq -0.003 \pm 0.027$ The first column : $|V_{t'd}|^2 = 1 - |V_{ud}|^2 - |V_{cd}|^2 - |V_{td}|^2 \simeq -0.001 \pm 0.005$ $|V_{ub'}|, |V_{t'd}|, |V_{cb'}| \lesssim 0.04$ 1 σ T. Tait et al. 2007 overall For comparison and $|V_{ub}| \sim 0.004$ $|V_{cb}| \simeq 0.04$

PMNS mixings :

12

H.Lacker and A.Menzel 2010

$$\begin{split} &\Gamma\left(\mu^{-} \to e^{-} \bar{\nu}_{e} \,\nu_{\mu}(\gamma)\right) \,\propto \, G_{F}^{2} \sum_{i=1,2,3} \left| U_{\mu i} \right|^{2} \sum_{k=1,2,3} \left| U_{ek} \right|^{2} = G_{F}^{2} (1 - \left| U_{\mu 4} \right|^{2}) (1 - \left| U_{e4} \right|^{2}) \\ &\Gamma\left(\tau^{-} \to l^{-} \bar{\nu}_{l} \,\nu_{\tau}(\gamma)\right) \,\propto \, G_{F}^{2} \sum_{i=1,2,3} \left| U_{\tau i} \right|^{2} \sum_{k=1,2,3} \left| U_{lk} \right|^{2} = G_{F}^{2} (1 - \left| U_{\tau 4} \right|^{2}) (1 - \left| U_{l4} \right|^{2}) \quad l = e/\mu \end{split}$$

 Unitarity violation possible, but only observable if G_F can be extracted independently —— test universality violation

Perfect universality means

$$\frac{\left|U_{\mu 4}\right|^{2}}{\left|U_{e 4}\right|^{2}} = 1 \qquad \Longrightarrow \left|U_{e 4}\right| = \left|U_{\mu 4}\right| = \left|U_{\tau 4}\right| \longrightarrow \left|U_{e 4}\right|^{2} + \left|U_{\mu 4}\right|^{2} + \left|U_{\tau 4}\right|^{2} = 3\left|U_{e 4}\right|^{2} \le 1 \qquad \Longrightarrow \left|U_{e 4}\right| \le \frac{1}{\sqrt{3}}$$

G_r could be up to 50% larger than 3SM value

 $BF(\mu^{-} \to e^{-} \gamma) < 1.2 \cdot 10^{-11} \qquad BF(\tau^{-} \to e^{-} \gamma) < 3.3 \cdot 10^{-8} \quad BF(\tau^{-} \to \mu^{-} \gamma) < 4.4 \cdot 10^{-8}$

Plus semileptonic K decays and charged pion decays

$$R_K = BF(K^+ \to e^+\nu_e)/BF(K^+ \to \mu^+\nu_\mu)$$

$$R_{\pi} = \frac{BF(\pi^+ \to e^+ \nu_e)}{BF(\pi^+ \to \mu^+ \nu_e)}$$

to constrain
$$(1 - |U_{e4}|^2)/(1 - |U_{\mu4}|^2)$$

finally

		*	*	*	< 0.089 > 0.021
	$\left U^{4 \times 4} \right =$ @ 2 σ	*	*	*	< 0.029
		*	*	*	< 0.085
		< 0.115	< 0.115	< 0.115	< 0.9998 > 0.9934

One should also consider the electroweak constraints

$$\Delta S = \frac{N_c}{6\pi} \left(1 - 2Y \ln \frac{m_u^2}{m_d^2} \right)$$

Flavor symmetry of leptons A4 symmetry :

It was observed that A₄ symmetry can describe the neutrino mixing pattern

 $A_4 \rightarrow Z_3$: charged leptons and $A_4 \rightarrow Z_2$ in neutrino sector

A₄ is an even permutations of 4 objects (S₄) with order is equal to (4!)/2 = 12. A₄ group is isomorphic to the group of three dimensional rotations of a regular tetrahedron(T).

$$s^2 = t^3 = (st)^3 = e$$

A₄ continues...

Three one-dimensional unitary representations are given by 1 = s = 1, t = 1, t = 1,

1
$$s = 1, t = 1,$$

1' $s = 1, t = e^{i4\pi/3} = \omega^2,$
1'' $s = 1, t = e^{i2\pi/3} = \omega.$

and one three-dimensional unitary representation

$$t = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} \quad \text{and} \quad s = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

The 12 elements of A₄ can be represented by the 3×3 matrices given by : e,s,t,st,ts,t²,st²,sts,tst,t²s,tst,t²,t²s.

Or equivalently we can construct the 12 representation matrices by taking 3×3 identity matrix e, the reflection matrices = diag(1,-1,-1), r₂ = diag(-1,1,-1), and r₃ = diag(-1,-1,1), the cyclic and anticyclic matrices

$$c = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad c^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

as well as $r_i cr_i$ and $r_i c^{-1}r_i$

The A₄ has two subgroups

1 | 1' | 1'' A_4 3 1' 1" 1 1 3 1' 1''1 3 1″ 1″ 3 1' 3 3

 G_s : a reflection subgroup generated by \overline{s}

 G_t : the group generated by t, isomorphic to Z_3

A₅ symmetry

If we assume A₄ is the flavor symmetry of three generation leptons and adopt the hypothesis of the existence of fourth generation -- the simplest approach is to demand the A₄ model can be minimally embedded

$\Rightarrow A_5 \text{ group}$

A₅ is a symmetry of even permutation of five objects with order 60. A₅ is equivalent to the symmetry of a regular icosahedron (I).

- The icosahedron is built around the pentagon and the golden section. It seems absurd, since every face of the icosahedron is an equilateral triangle.

- The icosahedron is built around the pentagon and the golden section. It seems absurd, since every face of the icosahedron is an equilateral triangle.

Golden ratio $\Phi = FB/F$

$$\frac{1}{\phi} = \phi - 1$$

- The icosahedron is built around the pentagon and the golden section. It seems absurd, since every face of the icosahedron is an equilateral triangle.

Golden ratio $\Phi = FB/FC$

$$\frac{1}{\phi} = \phi - 1$$

- The icosahedron is built around the pentagon and the golden section. It seems absurd, since every face of the icosahedron is an equilateral triangle.

= red/green = green/blue = blue/purple

Golden ratio $\Phi = FB/FC$

$$\frac{1}{\phi} = \phi - 1$$

And also

- if we cut the vertices of icosahedron, we obtain

 Buckminsterfullerene, C60 1996 Nobel Chemistry Prize
 Let's go back to the group theory : a icosahedron consists of 20 identical equilateral triangular faces, 30 edges, and 12 vertices. The A₅ elements correspond to all the proper rotations of the icosahedron. They can be classified into five types of rotations

- no rotation (identity)
- π rotations about the midpoint of each edge
- rotations by $2\pi/3$ about axes through the center of each face
- rotations by $2\pi/5$ and $4\pi/5$ about an axis through each vertex

We define two elements a and b : a : rotation by π about midpoint of the edge between 1 and 2 $(1,2,3,4,5,6,7,8,9,10,11,12) \rightarrow (2,1, 3,4,5,6,7,8,9,10,11,12)$ b : rotation $2\pi/3$ about the axis

through the center of the face 10-11-12

- ab : $(1,2,3,4,5,6,7,8,9,10,11,12) \rightarrow (3,2,5,1,9,7,10,6,4,12,11,8)$, rotation by $2\pi/5$ about the 0 axis through the vertex 2

$$a^2 = b^3 = (ab)^5 = e$$

The 60 elements of A_5 are classified into five classes

 $C_1: \{e\}$,

C_{15} :

a(12),a(13),a(14),a(16),a(18),a(23),a(24),a(25),a(29),a(35),a(36),a(37),a(48),a(49),a(59)

C₂₀ : {b(123),b(124),b(126),b(136),b(168),b(235),b(249),b(259),b(357),b(36 7), and the inverse elements}

 C_{12} : {ab(1),ab(2),ab(3),ab(4),ab(5),ab(6), and the inverse elements}

C'₁₂ : {a²b²(1),a²b²(2),a²b²(3),a²b²(4),a²b²(5),a²b²(6), and the inverse elements}

Irreducible representations of A₅ are

one singlet 1, two triplets 3 and 3', one quartet 4, and one quintet 5

Multiplication rules

A_5	1	3	3′	4	5
1	1	3	3′	4	5
3	3	$1 \oplus 3 \oplus 5$	${f 4} \oplus {f 5}$	$\mathbf{3'} \oplus 4 \oplus 5$	$3\oplus\mathbf{3'}\oplus4\oplus5$
3′	3′	${f 4} \oplus {f 5}$	$1\oplus\mathbf{3'}\oplus5$	${f 3} \oplus {f 4} \oplus {f 5}$	$3 \oplus \mathbf{3'} \oplus 4 \oplus 5$
4	4	$\mathbf{3'} \oplus 4 \oplus 5$	$3 \oplus 4 \oplus 5$	$1\oplus 3\oplus 3'\oplus 4\oplus 5$	$3\oplus\mathbf{3'}\oplus4\oplus5\oplus5$
5	5	$3\oplus\mathbf{3'}\oplus4\oplus5$	$3\oplus\mathbf{3'}\oplus4\oplus5$	$3\oplus\mathbf{3'}\oplus4\oplus5\oplus5$	$1 \oplus 3 \oplus \mathbf{3'} \oplus 4 \oplus 4 \oplus 5 \oplus 5$

The model
 A₅×Z₂×Z₃ flavor symmetry of four generation leptons
 The left-handed lepton doublets

$$\underbrace{\begin{pmatrix} \nu_4 \\ l_4 \end{pmatrix}}_L \begin{pmatrix} \nu_3 \\ l_3 \end{pmatrix}_L \begin{pmatrix} \nu_2 \\ l_2 \end{pmatrix}_L \begin{pmatrix} \nu_1 \\ l_1 \end{pmatrix}_L$$

$$\underbrace{L_{L_4}(4+1\,\omega)}_L$$

$$\omega = e^{i2\pi/3}$$

Right-handed charged leptons

 $l_{R5}(\mathbf{5}, -1, +1)$, $l_{R3}^c(\mathbf{3}, -1, +1)$ and $l_{R1}^{(1)}(\mathbf{1}, -1, +1)$, $l_{R1}^{(2)}(\mathbf{1}, -1, +1)$

Right-handed neutrinos

$$N_{R5}(\mathbf{5}, +1, +1)$$
 and $N_R^{(1)}(\mathbf{1}, +1, +1)$

Higgs sector :

A₅ quartet and SM gauge singlet $S_4(4,+1,+1)$ A₅ triplet and SM gauge doublet $\Phi_3(3,+1,\omega^2)$ A₅ quartets and SM gauge doublet $H_4(4,+1,\omega^2)$, $H'_4(4,-1,\omega^2)$

The Yukawa interactions are

$$L_{\text{Yukawa}} = \frac{1}{2} M_1 N_R^{(1)} N_R^{(1)} + \frac{1}{2} M_5 N_{R5} N_{R5} + Y_{S1} (S_4 N_{R5} N_{R5}) + Y_{S2} (S_4 (l_{R3}^-)^c l_{R5}^-) + Y_1 (L_{L4} N_R^{(1)} H_4) + Y_2 (L_{L4} N_{R5} H_4) + Y_3 (L_{L4} N_{R5} \Phi_3) + Y_4 (L_{L4} l_{R5} H_4') + Y_5 (L_{L4} l_{R1}^{(1)} H_4') + Y_6 (L_{L4} l_{R1}^{(2)} H_4') + \text{H.c.}$$

The discrete Symmetry A₅ will break into A₄ causing the irreducible representations of A₅ to decompose as

$$egin{array}{ccccccc} A_5 & o & A_4 \ 1 & o & 1 \ 3 & o & 3 \ 3' & o & 3 \ 4 & o & 1+3 \ 5 & o & 1'+1''+3 \end{array}$$

Leptons become

$$L_{L_4} \to L_{L1}(\mathbf{1}, +1, \omega) + L_{L3}(\mathbf{3}, +1, \omega)$$
,

$$l_{R5} \rightarrow l_{R3}(\mathbf{3}, -1, +1) + l_{R1'}(\mathbf{1}', -1, +1) + l_{R1''}(\mathbf{1}'', -1, +1)$$
,

 $N_{R5} \rightarrow N_{R3}(\mathbf{3}, +1, +1) + N_R^{(2)}(\mathbf{1}', +1, +1) + N_R^{(3)}(\mathbf{1}'', +1, +1)$.

The discrete Symmetry A₅ will break into A₄ causing the irreducible representations of A₅ to decompose as

$$egin{array}{ccccccc} A_5 & o & A_4 \ 1 & o & 1 \ 3 & o & 3 \ 3' & o & 3 \ 4 & o & 1+3 \ 5 & o & 1'+1''+3 \end{array}$$

Leptons become

$$L_{L_4} \to L_{L1}(\mathbf{1}, +1, \omega) + L_{L3}(\mathbf{3}, +1, \omega) ,$$

$$l_{R5} \to l_{R3}(\mathbf{3}, -1, +1) + l_{R1'}(\mathbf{1}', -1, +1) + l_{R1''}(\mathbf{1}'', -1, +1) ,$$

$$N_{R5} \rightarrow N_{R3}(\mathbf{3}, +1, +1) + N_R^{(2)}(\mathbf{1}', +1, +1) + N_R^{(3)}(\mathbf{1}'', +1, +1)$$

Scalar fields decompose as

$$S_4 \to S_1(\mathbf{1}, +1, +1) + S_3(\mathbf{3}, +1, +1) ,$$

$$H_4 \to H_1(\mathbf{1}, +1, \omega^2) + H_3(\mathbf{3}, +1, \omega^2) ,$$

$$H'_4 \to H'_1(\mathbf{1}, -1, \omega^2) + H'_3(\mathbf{3}, -1, \omega^2) ,$$

$$\Phi_3 \to \Phi_3(\mathbf{3}, +1, \omega^2) .$$

The Yukawa interactions after A_5 → A_4 become

$$\begin{split} L_{Yukawa}^{A_4} &= \frac{1}{2} M_1 N_R^{(1)} N_R^{(1)} + \frac{1}{2} M_5 (N_R^{(2)} N_R^{(3)} + N_{R3} N_{R3}) \\ &+ Y_{S1} \left[(V_S + S_1) (N_R^{(2)} N_R^{(3)} + N_{R3} N_{R3}) + S_3 (N_{R3} N_{R3}) \right] \\ &+ Y_{S2} \left[(V_S + S_1) (l_{R3})^c l_{R3} + S_3 (l_{R3})^c (l_{R3} + l_{R1'} + l_{R1''}) \right] \\ &+ Y_1 \left[L_{L1} N_R^{(1)} H_1 + L_{L3} N_R^{(1)} H_3 \right] \\ &+ Y_2 \left[L_{L1} N_{R3} H_3 + L_{L3} N_{R3} (H_1 + H_3) + L_{L3} (N_R^{(2)} + N_R^{(3)}) H_3 \right] \\ &+ Y_3 \left[L_{L1} N_{R3} \Phi_3 + L_{L3} N_{R3} \Phi_3 + L_{L3} (N_R^{(2)} + N_R^{(3)}) \Phi_3 \right] \\ &+ Y_4 \left[L_{L1} l_{R3} H_3' + L_{L3} l_{R3} (H_1' + H_3') + L_{L3} (l_{R1'} + l_{R1''}) H_3' \right] \\ &+ Y_5 \left[L_{L1} l_{R1}^{(1)} H_1' + L_{L3} l_{R1}^{(1)} H_3' \right] + Y_6 \left[L_{L1} l_{R1}^{(2)} H_1' + L_{L3} l_{R1}^{(2)} H_3' \right] + \text{H.c.} \end{split}$$

Results

Charged lepton masses

The subsequent breaking of A_4 and SM gauge symmetries due to $\langle H_4 \rangle$, $\langle H'_4 \rangle$, $\langle \Phi_3 \rangle$ and $\langle S_3 \rangle$

Mass terms relate to charged leptons

 $L_{l} = Y_{S2} \left[(V_{S} + \langle S_{1} \rangle) (l_{R3})^{c} l_{R3} + \langle S_{3} \rangle (l_{R3})^{c} (l_{R3} + l_{R1'} + l_{R1''}) \right]$ $+ Y_{4} \left[L_{L1} l_{R3} \langle H_{3}' \rangle + L_{L3} l_{R3} (\langle H_{1}' \rangle + \langle H_{3}' \rangle) + L_{L3} (l_{R1'} + l_{R1''}) \langle H_{3}' \rangle \right]$ $+ Y_{5} \left[L_{L1} l_{R1}^{(1)} \langle H_{1}' \rangle + L_{L3} l_{R1}^{(1)} \langle H_{3}' \rangle \right] + Y_{6} \left[L_{L1} l_{R1}^{(2)} \langle H_{1}' \rangle + L_{L3} l_{R1}^{(2)} \langle H_{3}' \rangle \right]$

Taking $\langle H'_3 \rangle = (V'_{3_1}, V'_{3_2}, V'_{3_3})$ and $\langle H'_1 \rangle = V'_1$

\odot The 7×7 charged lepton mass matrix of the form

(Y_5V_1'	Y_6V_1'	0	0	$Y_4 V'_{3_1}$	$Y_4 V'_{3_2}$	$Y_4 V'_{3_3}$
	$Y_5V'_{3_1}$	$Y_6V_{3_1}^\prime$	$Y_4V'_{3_1}$	$Y_4V'_{3_1}$	Y_4V_1'	$Y_4 V'_{3_3}$	$Y_{4}V_{3_{2}}'$
	$Y_5V_{3_2}^\prime$	$Y_6V_{3_2}^\prime$	$\omega Y_4 V'_{3_2}$	$\omega^2 Y_4 V_{3_2}'$	$Y_4 V_{3_3}'$	Y_4V_1'	$Y_4 V'_{3_1}$
$M_l =$	$Y_5V_{3_3}^\prime$	$Y_6V_{3_3}^\prime$	$\omega^2 Y_4 V'_{3_3}$	$\omega Y_4 V'_{3_3}$	$Y_4 V'_{3_2}$	$Y_4V'_{3_1}$	Y_4V_1'
	0	0	$Y_{S2}\langle S_3 \rangle_1$	$Y_{S2}\langle S_3 \rangle_1$	$Y_{S2}(V_S + \langle S_1 \rangle)$	$Y_{S2}\langle S_3 \rangle_3$	$Y_{S2}\langle S_3 \rangle_2$
	0	0	$\omega Y_{S2} \langle S_3 \rangle_2$	$\omega^2 Y_{S2} \langle S_3 \rangle_2$	$Y_{S2}\langle S_3 \rangle_3$	$Y_{S2}(V_S + \langle S_1 \rangle)$	$Y_{S2}\langle S_3 \rangle_1$
(0	0	$\omega^2 Y_{S2} \langle S_3 \rangle_3$	$\omega Y_{S2} \langle S_3 \rangle_3$	$Y_{S2}\langle S_3\rangle_2$	$Y_{S2}\langle S_3 \rangle_1$	$Y_{S2}(V_S + \langle S_1 \rangle)$

under the left- and right-handed bases

 $(L_{L1}, L_{L3} = (L_{L3_1}, L_{L3_2}, L_{L3_3}), l_{R3}^c = (l_{R3_1}^c, l_{R3_2}^c, l_{R3_3}^c))$

 $(l_{R1}^{(1)}, l_{R1}^{(2)}, l_{R1'}, l_{R1''}, l_{R3_1}, l_{R3_2}, l_{R3_3})^T$

 $\operatorname{Det}(M_l) = 0.$

one massless eigenstate : me

and

$$m_e = 0 , \quad m_\mu = \sqrt{3}Y_4 V' ,$$

$$m_\tau = \frac{1}{2} \Big[(Y_5 V_1' + (Y_6 - Y_4)V') - \sqrt{(Y_5 V_1' + (Y_6 - Y_4)V')^2 + 4Y_4 (Y_5 V_1' + 3Y_6 V')V'} \Big]$$

and

$$m_{\tau'} = \frac{1}{2} \Big[(Y_5 V_1' + (Y_6 - Y_4) V') + \sqrt{(Y_5 V_1' + (Y_6 - Y_4) V')^2 + 4Y_4 (Y_5 V_1' + 3Y_6 V') V'} \Big] \\ (\geq 100.8 \text{ GeV, } 95\% \text{ C.L.}) \Big]$$

Calculable electron mass me

Many attempts try to derive the ratio $\frac{m_e/m_\mu}{\pi} \approx \frac{\alpha}{\pi}$

H. Georgi and S.L. Glashow 1973; S.M.Barr and A.Zee 1977,1978; B.S.Balakrishna 1988; Babu&Ma 1989;X.G.He et al. 1990;

$$m_e = 0 , \quad m_\mu = \sqrt{3}Y_4 V' ,$$

$$m_\tau = \frac{1}{2} \Big[(Y_5 V_1' + (Y_6 - Y_4)V') - \sqrt{(Y_5 V_1' + (Y_6 - Y_4)V')^2 + 4Y_4 (Y_5 V_1' + 3Y_6 V')V'} \Big]$$

and

$$m_{\tau'} = \frac{1}{2} \Big[(Y_5 V_1' + (Y_6 - Y_4) V') + \sqrt{(Y_5 V_1' + (Y_6 - Y_4) V')^2 + 4Y_4 (Y_5 V_1' + 3Y_6 V') V'} \Big] \\ (\geq 100.8 \text{ GeV, } 95\% \text{ C.L.}) \Big]$$

Calculable electron mass me

Many attempts try to derive the ratio $\frac{m_e/m_\mu \approx \frac{\alpha}{\pi}}{m_e}$

H. Georgi and S.L. Glashow 1973, S.M.Barr and A.Zee 1977,1978; B.S.Balakrishna 1988; Babu&Ma 1989;X.G.He et al. 1990;

Selectron mass can be generated via 1-loop

$$m_e \sim \frac{Y_4^2}{16\pi^2} \frac{m_H^2}{m_{L+R,3}} \approx \frac{Y_4^2}{16\pi^2 Y_{S2}} \frac{m_H^2}{V_S}$$

The construction provides another example of electronmuon universality proposed by S.M.Barr and A.Zee 1977. Finally

$$m_e/m_\mu \approx \frac{Y_4 m_H^2}{16\pi^2 Y_{S2} V_S V'} \approx \frac{\alpha}{\pi}.$$

in our model.

Neutrino mixings and masses

The full neutrino mass matrix of the model is a 10×10 matrix

$$M_{\nu} = \left(\begin{array}{c|c} M_{\nu_L}'(4 \times 4) = 0 & M_D(4 \times 6) \\ \hline & M_D^T(6 \times 4) & M_{N_R}(6 \times 6) \end{array} \right)$$

Right-handed neutrino masses after A₅ breaking are given by

$$M_{N_R} = \begin{pmatrix} M_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & M_2 & 0 & 0 & 0 \\ 0 & M_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2M_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2M_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2M_2 \end{pmatrix}$$

 $M_2 = \frac{1}{2}M_5 + Y_{S1}V_S.$

 $(N_R^{(1)}, N_R^{(2)}, N_R^{(3)}, N_{R3_1}, N_{R3_2}, N_{R3_3})$ basis

Neutrino mixings and masses

The full neutrino mass matrix of the model is a 10×10 matrix

$$M_{\nu} = \left(\begin{array}{c|c} M_{\nu_L}'(4 \times 4) = 0 & M_D(4 \times 6) \\ \hline & M_D^T(6 \times 4) & M_{N_R}(6 \times 6) \end{array} \right)$$

Right-handed neutrino masses after A₅ breaking are given by

$$M_{N_R} = \begin{pmatrix} M_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & M_2 & 0 & 0 & 0 \\ 0 & M_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2M_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2M_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2M_2 \end{pmatrix}$$

 $M_2 = \frac{1}{2}M_5 + Y_{S1}V_S$

 $(N_R^{(1)}, N_R^{(2)}, N_R^{(3)}, N_{R3_1}, N_{R3_2}, N_{R3_3})$ basis

A₄ breaking effects <s₃>

Dirac mass terms of neutrinos

$$L_{Dirac} = Y_1 \left[L_{L1} N_R^{(1)} H_1 + L_{L3} N_R^{(1)} H_3 \right] + Y_2 L_{L3} N_{R3} H_1 + L_{L1} N_{R3} \left[Y_2 H_3 + Y_3 \Phi_3 \right] + L_{L3} N_{R3} \left[Y_2 H_3 + Y_3 \Phi_3 \right] + L_{L3} \left(N_R^{(2)} + N_R^{(3)} \right) \left[Y_2 H_3 + Y_3 \Phi_3 \right] .$$

Ignoring H_3 3 terms, the Dirac mass matrix is

with VEVs

 $\langle \Phi_3 \rangle = (v_{\phi_1}, v_{\phi_2}, v_{\phi_3}) \text{ and } \langle H_1 \rangle = v_{H_1}$

Now we can calculate left-handed Majorana neutrino masses through seesaw mechanism

$$M_{\nu_L} = M_D M_{N_R}^{-1} M_D^T$$

$$\begin{split} M_{\nu_L(\nu_{L1},\nu_{L1})} &= \frac{Y_1^2 v_{H_1}^2}{M_1} + \frac{Y_3^2 (v_{\phi_1}^2 + v_{\phi_2}^2 + v_{\phi_3}^2)}{2M_2} \\ M_{\nu_L(\nu_{L1},\nu_{L3_1})} &= \frac{Y_2 Y_3 v_{\phi_1} v_{H_1} + 2Y_3^2 v_{\phi_2} v_{\phi_3}}{2M_2} \\ M_{\nu_L(\nu_{L1},\nu_{L3_2})} &= \frac{Y_2 Y_3 v_{\phi_2} v_{H_1} + 2Y_3^2 v_{\phi_1} v_{\phi_3}}{2M_2} \\ M_{\nu_L(\nu_{L1},\nu_{L3_3})} &= \frac{Y_2 Y_3 v_{\phi_3} v_{H_1} + 2Y_3^2 v_{\phi_1} v_{\phi_2}}{2M_2} \\ M_{\nu_L(\nu_{L3_1},\nu_{L3_1})} &= \frac{Y_2^2 v_{H_1}^2 + Y_3^2 (4v_{\phi_1}^2 + v_{\phi_2}^2 + v_{\phi_3}^2)}{2M_2} \end{split}$$

$$\begin{split} M_{\nu_L(\nu_{L3_1},\nu_{L3_2})} &= \frac{2Y_2Y_3v_{H_1}v_{\phi_3} - Y_3^2v_{\phi_1}v_{\phi_2}}{2M_2} ,\\ M_{\nu_L(\nu_{L3_1},\nu_{L3_3})} &= \frac{2Y_2Y_3v_{H_1}v_{\phi_2} - Y_3^2v_{\phi_1}v_{\phi_3}}{2M_2} ,\\ M_{\nu_L(\nu_{L3_2},\nu_{L3_2})} &= \frac{Y_2^2v_{H_1}^2 + Y_3^2(v_{\phi_1}^2 + 4v_{\phi_2}^2 + v_{\phi_3}^2)}{2M_2} ,\\ M_{\nu_L(\nu_{L3_2},\nu_{L3_3})} &= \frac{2Y_2Y_3v_{H_1}v_{\phi_1} - Y_3^2v_{\phi_2}v_{\phi_3}}{2M_2} ,\\ M_{\nu_L(\nu_{L3_3},\nu_{L3_3})} &= \frac{Y_2^2v_{H_1}^2 + Y_3^2(v_{\phi_1}^2 + v_{\phi_2}^2 + 4v_{\phi_3}^2)}{2M_2} .\end{split}$$

 $(\nu_{\tau'}, \nu_{\tau}, \nu_{\mu}, \nu_{e})$ basis

enoted
$$M_{\nu_L} = \begin{pmatrix} A & B & C & D \\ B & E & F & G \\ C & F & H & I \\ D & G & I & J \end{pmatrix}$$

${}$ By taking $v_{\phi_1}=v_{\phi_2}=v_{\phi_3}\equiv v$ or say $\langle \Phi_3 angle=(v,v,v)$ and

$$v_{H_1} = -\frac{2Y_3}{Y_2}v$$

${\ensuremath{ \ o \ } }$ We can diagonalize $M_{\nu L}$ via the unitary transformation

$$M_{diag} = U_{TBM}^{4g} M_{\nu_L} U_{TBM}^{4g^T}$$

with

$$U_{TBM}^{4g} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{3}} \\ 0 & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}} & \sqrt{\frac{2}{3}} \end{pmatrix}$$

And the four neutrino masses are written

$$\begin{split} m_{\nu_4} &= \frac{Y_1^2 v_{H_1}^2}{M_1} + \frac{3Y_3^2 v^2}{2M_2} \\ m_{\nu_3} &= \frac{15Y_3^2 v^2}{2M_2} \\ m_{\nu_2} &= 0 \\ m_{\nu_1} &= m_{\nu_3} \end{split}$$

The results are phenomenological unacceptable, therefore, the deviations from tribimaximal mixings are needed.

> <S₃> in right-handed Majorana neutrinos and <H₃> in Dirac masses

Retain the A₄ perturbations $\langle S_3 \rangle = (\delta_1, \delta_2, \delta_3)$ in right handed Majorana neutrino mass matrix

$$M_{N_R} = \begin{pmatrix} M_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & M_2 & 0 & 0 & 0 & 0 \\ 0 & M_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2M_2 & Y_{S1}\delta_3 & Y_{S1}\delta_2 \\ 0 & 0 & 0 & Y_{S1}\delta_3 & 2M_2 & Y_{S1}\delta_1 \\ 0 & 0 & 0 & Y_{S1}\delta_2 & Y_{S1}\delta_1 & 2M_2 \end{pmatrix}$$

The three light neutrino masses become

for
$$\delta_1 \neq 0$$
 and $\delta_2 = \delta_3 = 0$.

$$\begin{split} m_{\nu_3} &\approx \frac{9Y_3^2v^2}{2M_2} + \left[\frac{6M_2}{4M_2^2 - Y_{S1}^2\delta_2^2} + \frac{3}{2M_2 - Y_{S1}\delta_2}\right]Y_3^2v^2 \ , \\ m_{\nu_2} &\approx -\frac{3Y_3^2v^2}{2M_2} + \frac{2Y_3^2v^2}{2M_2 - Y_{S1}\delta_2} + \frac{(2M_2 + Y_{S1}\delta_2)Y_3^2v^2}{M_2(2M_2 - Y_{S1}\delta_2)} \ , \\ &\quad -\frac{(2M_2 + Y_{S1}\delta_2)Y_3^2v^2}{2M_2^2} + \frac{(2M_2 + Y_{S1}\delta_2)^2Y_3^2v^2}{2M_2(4M_2^2 - Y_{S1}^2\delta_2^2)} \ , \\ m_{\nu_1} &\approx \frac{9Y_3^2v^2}{2M_2} + \frac{2Y_3^2v^2}{2M_2 - Y_{S1}\delta_2} + \frac{(2M_2 + Y_{S1}\delta_2)Y_3^2v^2}{M_2(2M_2 - Y_{S1}\delta_2)} + \frac{(2M_2 + Y_{S1}\delta_2)Y_3^2v^2}{2M_2(4M_2^2 - Y_{S1}^2\delta_2^2)} \end{split}$$

for the case of $(0, \delta_2, 0)$, and $(0, 0, \delta_3)$

$$\begin{split} m_{\nu_3} &\approx \frac{3Y_3^2 v^2}{M_2} + \frac{9Y_3^2 v^2}{2M_2 - Y_{S1}\delta_3} \ , \\ m_{\nu_2} &\approx -\frac{3Y_3^2 v^2}{2M_2} + \frac{2Y_3^2 v^2}{2M_2 + Y_{S1}\delta_3} + \frac{Y_3^2 v^2 (2M_2 + Y_{S1}\delta_3)^2}{8M_2^3} \ , \\ m_{\nu_1} &\approx \frac{6Y_3^2 v^2}{M_2} + \frac{Y_3^2 v^2}{2M_2 + Y_{S1}\delta_3} + \frac{3Y_3^2 v^2 (2M_2 + Y_{S1}\delta_3)}{4M_2^2} + \frac{Y_3^2 v^2 (2M_2 + Y_{S1}\delta_3)^2}{8M_2^3} \end{split}$$

with the fourth neutrino mass

$$m_{\nu_4} = \frac{Y_1^2 v_{H_1}^2}{M_1} + \left(\frac{2}{2M_2 + Y_{S1}\delta_i} + \frac{1}{2M_2}\right)Y_3^2 v^2 > M_Z/2$$

\oslash Also the non-zero <H₃> in Dirac masses,

$$L_{Dirac} = Y_1 \left[L_{L1} N_R^{(1)} H_1 + L_{L3} N_R^{(1)} H_3 \right] + Y_2 L_{L3} N_{R3} H_1 + L_{L1} N_{R3} \left[Y_2 H_3 + Y_3 \Phi_3 \right] + L_{L3} N_{R3} \left[Y_2 H_3 + Y_3 \Phi_3 \right] + L_{L3} \left[N_R^{(2)} + N_R^{(3)} \right] \left[Y_2 H_3 + Y_3 \Phi_3 \right] .$$

Assuming new physics to be around O(1) TeV, we take

 $v_{H_1} = 220 \text{ GeV}, v = 10 \text{ GeV}$, $Y_{S_1}\delta_i = 100 \sim 500 \text{ GeV}$, $M_1 = 500 \text{ GeV}$, $M_2 = 10^8 \text{ GeV}$ $Y_1 = 1$ and $Y_3 = 10^{-2} \sim 10^{-4}$

≥90.3 GeV for Dirac coupling and ≥80.5 GeV for Majorana coupling

A huge parameter space for $m_{\nu 1} \sim m_{\nu 2} \sim m_{\nu 3} \sim 0.1~eV$, degenerate spectrum is preferred

Conclusion

The existence of 4th generation is not excluded by EW precision data and LHC has the potential to discover or fully exclude SM4

We study a model of four generation leptons under the A₅ symmetry, where the best features of the three family A₄ model survive

Electron mass is predicted to be massless at tree level but calculable through quantum corrections

A degenerate spectrum of three light neutrinos is preferred, and the splitting of the neutrino masses can be obtained as a result of the breaking of A₅ down to A₄