

A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

JAE SIK LEE

National Center for Theoretical Sciences, Hsinchu, TAIWAN

NCTS HEP Journal Club, November 9, 2010

* based on JHEP 1010:049,2010, arXiv:1006.3087 [hep-ph] and arXiv:1009.1151 [math.OC] with J. Ellis and A. Pilaftsis

- The SUSY models such as the MSSM contain many possible sources of flavour and CP violation in the soft SUSY-breaking sector:
 - Gaugino mass terms: $3 \oplus 3 = 6$

$$\mathcal{L}_{\text{soft}} \supset \frac{1}{2} (M_3 \,\widetilde{g}\widetilde{g} + M_2 \,\widetilde{W}\widetilde{W} + M_1 \,\widetilde{B}\widetilde{B} + \text{h.c.})$$

 $30 \oplus 33 \oplus 46 = 109$

- Trilinear a terms $\mathbf{a}_{\mathbf{f}ij} \equiv \mathbf{h}_{\mathbf{f}ij} \cdot \mathbf{A}_{\mathbf{f}ij}$: $3 \times (3 \oplus 6 \oplus 9) = 54$

$$-\mathcal{L}_{\text{soft}} \supset \left(\widetilde{u}_R^* \, \mathbf{a_u} \, \widetilde{Q} H_2 - \widetilde{d}_R^* \, \mathbf{a_d} \, \widetilde{Q} H_1 - \widetilde{e}_R^* \, \mathbf{a_e} \, \widetilde{L} H_1 + \text{h.c.}\right)$$

- Sfermion mass terms: $5 \times (3 \oplus 3 \oplus 3) = 45$

 $-\mathcal{L}_{\text{soft}} \supset \widetilde{Q}^{\dagger} \mathbf{M}_{\widetilde{\mathbf{Q}}}^{\mathbf{2}} \widetilde{Q} + \widetilde{L}^{\dagger} \mathbf{M}_{\widetilde{\mathbf{L}}}^{\mathbf{2}} \widetilde{L} + \widetilde{u}_{R}^{*} \mathbf{M}_{\widetilde{\mathbf{u}}}^{\mathbf{2}} \widetilde{u}_{R} + \widetilde{d}_{R}^{*} \mathbf{M}_{\widetilde{\mathbf{d}}}^{\mathbf{2}} \widetilde{d}_{R} + \widetilde{e}_{R}^{*} \mathbf{M}_{\widetilde{\mathbf{e}}}^{\mathbf{2}} \widetilde{e}_{R}$

– Higgs mass terms: $3 \oplus \mathbf{1} = 4$

$$-\mathcal{L}_{\text{soft}} \supset M_{H_u}^2 H_2^{\dagger} H_2 + M_{H_d}^2 H_1^{\dagger} H_1 - (m_{12}^2 H_1 H_2 + \text{h.c.})$$

• Recently, we have suggested MCPMFV framework with the maximal set of flavour-singlet mass scales: J. Ellis, JSL and A. Pilaftsis, Phys. Rev. D **76** (2007) 115011, [arXiv:0708.2079 [hep-ph]]

 $13 \oplus 6 = 19$ Parameters !

For related approaches, see,

- M. Argyrou, A. B. Lahanas and V. C. Spanos, JHEP 0805 (2008) 026; [arXiv:0804.2613 [hep-ph]]
- G Colangelo, E. Nikolidakis and C. Smith, Eur. Phys. J. C 59 (2009) 75; [arXiv:0807.0801 [hep-ph]]
- W. Altmannshofer, A. J. Buras and P. Paradisi, Phys. Lett. B 669 (2008) 239; [arXiv:0808.0707 [hep-ph]]
- L. Mercolli and C. Smith, Nucl. Phys. B 817 (2009) 1; [arXiv:0902.1949 [hep-ph]]
- A. L. Kagan, G. Perez, T. Volansky and J. Zupan, Phys. Rev. D 80 (2009) 076002; [arXiv:0903.1794 [hep-ph]]
- R. Zwicky and T. Fischbacher, Phys. Rev. D 80 (2009) 076009; [arXiv:0908.4182 [hep-ph]]
- J. Ellis, R. N. Hodgkinson, JSL and A. Pilaftsis, JHEP 1002 (2010) 016; [arXiv:0911.3611 [hep-ph]]

• Then, who ordered "more" CP violation beyond the SM CKM phase? A. D. Sakharov, JETP Letters 5(1967)24

CP violation in the SM is too weak to explain the matter dominance of the Universe J. Cline, arXiv:hep-ph/0609145

The matter-dominated Universe did!

• Electric Dipole Moments (EDMs): T violation \Rightarrow CP violation (under CPT)

 $|d_{\rm Tl}| < 9 \times 10^{-25} {\rm e\,cm}$, $|d_{\rm Hg}| < 3.1 \times 10^{-29} {\rm e\,cm}$, $|d_{\rm n}| < 3 \times 10^{-26} {\rm e\,cm}$ B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, PRL**88** (2002) 071805; W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and E. N. Fortson, PRL**102** (2009) 101601; C. A. Baker *et al.*, PRL**97** (2006) 131801

Question: No large CP phases?

<u>A scan method</u>: See, for example, V. D. Barger, T. Falk, T. Han, J. Jiang, T. Li and T. Plehn, Phys. Rev. D 64 (2001) 056007 [arXiv:hep-ph/0101106].

 \diamond 15 parameter MSSM:

I				
0	\leq	$ heta_{\mu}, \phi_{1,3}, heta_{Ad,e,u,t}$	\leq	2π
$100~{ m GeV}$	\leq	μ	\leq	$1 \mathrm{TeV}$
$100~{ m GeV}$	\leq	$2M_1, M_2, M_3$	\leq	$1 \mathrm{TeV}$
$0~{ m GeV}$	\leq	A	\leq	$1 \mathrm{TeV}$
$0~{ m GeV}$	\leq	$m_{ ilde{e}_R}, m_{ ilde{u}_R}$	\leq	$1 { m TeV}$
2	<	$\tan \beta$	<	10

Open circles suffer from parameter tuning $\Delta X/X$ worse than 1%. Green dots correspond to configurations with a light Higgs $m_h < 113~GeV.$

<u>A scan method</u>: See, for example, V. D. Barger, T. Falk, T. Han, J. Jiang, T. Li and T. Plehn, Phys. Rev. D 64 (2001) 056007 [arXiv:hep-ph/0101106].

• A scan method: J. R. Ellis, JSL and A. Pilaftsis, JHEP 0810 (2008) 049 [arXiv:0808.1819 [hep-ph]]

• <u>A scan method</u> is like "shooting in the dark" ...

blind, time consuming, no quiding principle, etc

Any analytic, exact, and more effective method?

• A linear approximation: We consider the case with N CP-violating phases

In the N-dimensional CP-phase space, we define

N-D phase vector $\boldsymbol{\Phi} = (\Phi_1, \Phi_2, \cdots, \Phi_N)$

and then any CP-odd observable O and any EDM E can be expanded as

$$O = \mathbf{\Phi} \cdot \mathbf{O} + \cdots; \quad E = \mathbf{\Phi} \cdot \mathbf{E} + \cdots$$

Formally, we define

$$\mathbf{O} \equiv \nabla O; \qquad \mathbf{E} \equiv \nabla E$$

with $\nabla \equiv (\partial/\partial \phi_1, \partial/\partial \phi_2, \cdots, \partial/\partial \phi_N)$

• [Simple 3D example] with 3 CP phases and 1 EDM constraints: EDM-free subspace and Optimal direction in the linear approximation

• THE HIGHER-DIMENSIONAL GENERALIZATION | with

N CP phases and n EDM constraints

The N-dimensional vector of the optimal direction

$$\Phi^*{}_{\alpha} = \epsilon_{\alpha\beta_1\cdots\beta_n\gamma_1\cdots\gamma_{N-n-1}} E^{(1)}_{\beta_1}\cdots E^{(n)}_{\beta_n} B_{\gamma_1\cdots\gamma_{N-n-1}}$$

where (N-n-1)-dimensional B form is

$$B_{\gamma_1\cdots\gamma_{N-n-1}} = \epsilon_{\gamma_1\cdots\gamma_{N-n-1}\sigma\beta_1\cdots\beta_n} O_{\sigma} E_{\beta_1}^{(1)}\cdots E_{\beta_n}^{(n)}$$

The maximum allowed value of O is:

$$O^{\max} = (\phi^*)^{\max} \widehat{\Phi}^* \cdot \phi^*$$

with the

normalized optimal-direction vector $\widehat{\Phi}^*$ and ϕ^* which may be practically determined by the validity of the small-phase approximation of the EDMs.

• How good is the linear approximation? The quadratic fit to the Thallium EDM that is used to obtain the 6D vector $\mathbf{E}^{d_{\text{Tl}}} \equiv \nabla(d_{\text{Tl}}/d_{\text{Tl}}^{\text{EXP}})$ in an expansion around $\widetilde{\varphi}_{\alpha} = 0^{\circ}$ for the MCPMFV scenario: $|M_{1,2,3}| = 250 \text{ GeV}, M_{H_u}^2 = M_{H_d}^2 = \widetilde{M}_Q^2 = \widetilde{M}_U^2 = \widetilde{M}_D^2 = \widetilde{M}_L^2 = \widetilde{M}_E^2 = (100 \text{ GeV})^2, |A_u| = |A_d| = |A_e| = 100 \text{ GeV}$, and $\tan \beta = 40$.

- We are considering J. Ellis, JSL, and A. Pilaftsis, JHEP 0810:049,2008, arXiv:0808.1819 [hep-ph]; K. Cheung, O. C. W. Kong, and JSL, JHEP 0906:020,2009, arXiv:0904.4352 [hep-ph]; J. Ellis, JSL and A. Pilaftsis, Phys. Rev. D 76 (2007) 115011, [arXiv:0708.2079 [hep-ph]]
 - Thallium EDM
 - Neutron EDM
 - Mercury EDM
 - Deuteron EDM
 - muon EDM
 - $A_{\rm CP}(b \rightarrow s\gamma)$

These are all implemented in CPsuperH2.2

• Thallium EDM;I.B. Khriplovich and S.K. Lamoreaux, *CP Violation Without Strangeness* (Springer, New York, 1997); M. Pospelov and A. Ritz, Annals Phys. **318** (2005) 119,[arXiv:hep-ph/0504231]

$$d_{\rm Tl} [e \,{\rm cm}] = -585 \cdot d_e^E [e \,{\rm cm}] - 8.5 \times 10^{-19} [e \,{\rm cm}] \cdot (C_S \,{\rm TeV}^2) + \cdots$$

$$d_{e}^{E} = (d_{e}^{E})^{\tilde{\chi}^{\pm}} + (d_{e}^{E})^{\tilde{\chi}^{0}} + (d_{e}^{E})^{H}$$
$$C_{S} = (C_{S})^{4f} + (C_{S})^{g}$$

where $(C_S)^{4f} = C_{de} \frac{29 \operatorname{MeV}}{m_d} + C_{se} \frac{\kappa \times 220 \operatorname{MeV}}{m_s}$ with $\kappa \equiv \langle N | m_s \bar{s}s | N \rangle / 220 \operatorname{MeV} \simeq 0.50 \pm 0.25$ and $(C_S)^g = (0.1 \operatorname{GeV}) \frac{m_e}{v^2} \sum_{i=1}^3 \frac{g_{H_i gg}^S g_{H_i \bar{e}e}^P}{M_{H_i}^2}$

Neutron EDM [QCD sum rule techniques (QCD)];M. Pospelov and A. Ritz, Phys. Rev. Lett. 83 (1999) 2526, [arXiv:hep-ph/9904483]; M. Pospelov and A. Ritz, Nucl. Phys. B 573 (2000) 177, [arXiv:hep-ph/9908508];
 M. Pospelov and A. Ritz, Phys. Rev. D 63 (2001) 073015, [arXiv:hep-ph/0010037]; D. A. Demir, M. Pospelov and A. Ritz, Phys. Rev. D 67 (2003) 015007,[arXiv:hep-ph/0208257]; D. A. Demir, O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Nucl. Phys. B 680 (2004) 339, [arXiv:hep-ph/0311314]; K. A. Olive, M. Pospelov, A. Ritz and Y. Santoso, Phys. Rev. D 72 (2005) 075001, [arXiv:hep-ph/0506106]

$$d_n = d_n(d_q^E, d_q^C) + d_n(d^G) + d_n(C_{bd}) + \cdots,$$

$$d_n(d_q^E, d_q^C) = (1.4 \pm 0.6) (d_d^E - 0.25 d_u^E) + (1.1 \pm 0.5) e (d_d^C + 0.5 d_u^C) / g_s,$$

$$d_n(d^G) \sim \pm e (20 \pm 10) \text{ MeV } d^G,$$

$$d_n(C_{bd}) \sim \pm e 2.6 \times 10^{-3} \text{ GeV}^2 \left[\frac{C_{bd}}{m_b} + 0.75 \frac{C_{db}}{m_b} \right]$$

where $d^G = d^G(1 \text{ GeV}) \simeq 8.5 d^G(\text{EW})$

Mercury EDM; D. A. Demir, O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Nucl. Phys. B 680 (2004) 339, [arXiv:hep-ph/0311314]; K. A. Olive, M. Pospelov, A. Ritz and Y. Santoso, Phys. Rev. D 72 (2005) 075001, [arXiv:hep-ph/0506106]

$$\begin{aligned} d_{\rm Hg} &= 7 \times 10^{-3} e \left(d_u^C - d_d^C \right) / g_s \ + \ 10^{-2} d_e^E \\ &- 1.4 \times 10^{-5} e \,{\rm GeV}^2 \, \left[\frac{0.5 C_{dd}}{m_d} + 3.3 \kappa \frac{C_{sd}}{m_s} + (1 - 0.25 \kappa) \frac{C_{bd}}{m_b} \right] \\ &+ (3.5 \times 10^{-3} \,\,{\rm GeV}) e \, C_S \\ &+ (4 \times 10^{-4} \,\,{\rm GeV}) e \, \left[C_P + \left(\frac{Z - N}{A} \right)_{\rm Hg} \, C'_P \right] \\ \end{aligned}$$
where $\mathcal{L}_{C_P} = C_P \, \bar{e} e \, \bar{N} i \gamma_5 N \ + \ C'_P \, \bar{e} e \, \bar{N} i \gamma_5 \tau_3 N$ with

$$C_P = (C_P)^{4f} \simeq -375 \text{ MeV} \sum_{q=c,s,t,b} \frac{C_{eq}}{m_q},$$

 $C'_P = (C'_P)^{4f} \simeq -806 \text{ MeV} \frac{C_{ed}}{m_d} - 181 \text{ MeV} \sum_{q=c,s,t,b} \frac{C_{eq}}{m_q}$

Deuteron EDM; O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Phys. Rev. D 70 (2004) 016003, [arXiv:hep-ph/0402023]

$$d_D \simeq -\left[5^{+11}_{-3} + (0.6 \pm 0.3)\right] e \left(d_u^C - d_d^C\right)/g_s$$

-(0.2 \pm 0.1) e $\left(d_u^C + d_d^C\right)/g_s + (0.5 \pm 0.3)(d_u^E + d_d^E)$
+(1 \pm 0.2) \times 10^{-2} e \text{ GeV}^2 $\left[\frac{0.5C_{dd}}{m_d} + 3.3\kappa\frac{C_{sd}}{m_s} + (1 - 0.25\kappa)\frac{C_{bd}}{m_b}\right]$
\pm e (20 \pm 10) MeV d^G

The projective sensitivity: Y. K. Semertzidis *et al.* [EDM Collaboration], AIP Conf. Proc. **698** (2004) 200, [arXiv:hep-ex/0308063]; Y. F. Orlov, W. M. Morse and Y. K. Semertzidis, Phys. Rev. Lett. **96** (2006) 214802, [arXiv:hep-ex/0605022]; and also see http://www.bnl.gov/edm/deuteron_proposal_080423_final.pdf

$$|d_D| < 3 \times 10^{-27} - 10^{-29} \ e \,\mathrm{cm}$$

For our numerical study, we take $3 \times 10^{-27} e \,\mathrm{cm}$ as a representative expected value

CP-violating QCD θ-term: O. Lebedev, K. A. Olive, M. Pospelov and A. Ritz, Phys. Rev. D 70 (2004) 016003, [arXiv:hep-ph/0402023]; M. Pospelov and A. Ritz, Annals Phys. 318 (2005) 119, [arXiv:hep-ph/0504231]; J. Ellis, JSL, and A. Pilaftsis, arXiv:1006.3087 [hep-ph]

$$\mathcal{L} = \frac{\alpha_s}{8\pi} \bar{\theta} \, G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \quad \text{with} \quad \bar{\theta} = \theta_{\text{QCD}} + \text{Arg Det } M_q$$

$$d_n(\bar{\theta}) = (1 \pm 0.5) \frac{|\langle \bar{q}q \rangle|}{(225 \text{ MeV})^3} \bar{\theta} \times 2.5 \times 10^{-16} e \text{ cm}$$

$$d_{\rm Hg}(\bar{\theta}) \simeq +2.0 \times 10^{-6} \,\bar{\theta} \, e \, {\rm GeV}^{-1} \simeq 3.9 \times 10^{-20} \,\bar{\theta} \, e \, {\rm cm}$$
$$d_D(\bar{\theta}) \simeq -e \left[(3.5 \pm 1.4) + (1.4 \pm 0.4) \right] \times 10^{-3} \,\bar{\theta} \, {\rm GeV}^{-1} \simeq -9.7 \times 10^{-17} \,\bar{\theta} \, e \, {\rm cm}$$

• [Summary] EDMs and Observables under consideration

$$d_{\rm Tl}/d_{\rm Tl}^{\rm EXP}, \quad d_{\rm n}/d_{\rm n}^{\rm EXP}, \quad d_{\rm Hg}/d_{\rm Hg}^{\rm EXP},$$
$$d_{\rm D}/d_{\rm D}^{\rm EXP}, \quad d_{\mu}/d_{\mu}^{\rm EXP}, \quad A_{\rm CP}(b \to s\gamma)[\%],$$

where we choose the following normalization factors

$$\begin{split} d_{\rm Tl}^{\rm EXP} &= 9 \times 10^{-25} \, e \, {\rm cm} \,, \ \ d_{\rm n}^{\rm EXP} = 3 \times 10^{-26} \, e \, {\rm cm} \,, \ \ d_{\rm Hg}^{\rm EXP} = 3.1 \times 10^{-29} \, e \, {\rm cm} \,, \\ d_{\rm D}^{\rm EXP} &= 3 \times 10^{-27} \, e \, {\rm cm} \,, \ \ d_{\mu}^{\rm EXP} = 1 \times 10^{-24} \, e \, {\rm cm} \end{split}$$

• The EDMs and Observables under consideration are functions of

7 parameters

$$\Phi_1, \quad \Phi_2, \quad \Phi_3, \quad \Phi_{A_u}, \quad \Phi_{A_d}, \quad \Phi_{A_e}, \quad \overline{\theta}$$

and then

$$\nabla_{\alpha} \equiv \left(\frac{\partial}{\partial \Phi_{1}}, \ \frac{\partial}{\partial \Phi_{2}}, \ \frac{\partial}{\partial \Phi_{3}}, \ \frac{\partial}{\partial \Phi_{A_{u}}}, \ \frac{\partial}{\partial \Phi_{A_{d}}}, \ \frac{\partial}{\partial \Phi_{A_{e}}}, \ \frac{\partial}{\partial \widehat{\Phi}_{A_{e}}}, \ \frac{\partial}{\partial \widehat{\theta}}\right)$$

The CP-violating phases $\Phi_{1,2,3}$ and Φ_{A_u,A_d,A_e} are specified in degrees and we normalize $\bar{\theta}$ in units of 10^{-10} : $\hat{\theta} \equiv \bar{\theta} \times 10^{10}$

• <u>A scenario</u>: We consider CP-violating variants of a typical CMSSM scenario with

$$\begin{split} |M_{1,2,3}| &= 250 \text{ GeV}, \\ M_{H_u}^2 &= M_{H_d}^2 = \widetilde{M}_Q^2 = \widetilde{M}_U^2 = \widetilde{M}_D^2 = \widetilde{M}_L^2 = \widetilde{M}_E^2 = (100 \text{ GeV})^2, \\ |A_u| &= |A_d| = |A_e| = 100 \text{ GeV}, \end{split}$$

at the GUT scale, varying $an eta \left(M_{\mathrm{SUSY}}
ight)$

We adopt the convention that $\Phi_{\mu} = 0^{\circ}$, and we vary independently the following six MCPMFV phases at the GUT scale:

$$\Phi_1, \quad \Phi_2, \quad \Phi_3, \quad \Phi_{A_u}, \quad \Phi_{A_d}, \quad \Phi_{A_e}$$

in addition to the QCD θ term: $\overline{\theta}$

This scenario becomes the SPS1a point when $\tan \beta = 10$, $\Phi_{1,2,3} = 0^{\circ}$ and $\Phi_{Au,A_d,Ae} = 180^{\circ}$

• Components of the vectors $\mathbf{E} \equiv \nabla E$, $\mathbf{O} \equiv \nabla O$; $\widehat{\mathbf{\Phi}}^*$

 $\widehat{\Phi}^*{}_{\alpha} = \mathcal{N} \varepsilon_{\alpha\beta\gamma\delta\mu\nu\rho} E_{\beta}^{d_{\mathrm{Tl}}} E_{\gamma}^{d_{\mathrm{Hg}}} B_{\mu\nu\rho}$ with the 3-form $B_{\mu\nu\rho} = \varepsilon_{\mu\nu\rho\lambda\sigma\tau\omega} O_{\lambda} E_{\sigma}^{d_{\mathrm{Tl}}} E_{\tau}^{d_{\mathrm{Hg}}} E_{\omega}^{d_{\mathrm{Hg}}}$ or $N_{\mu}^{(1)} N_{\nu}^{(2)} N_{\rho}^{(3)}$ for some reference directions

• The products
$$\Phi^* \cdot \mathbf{O}$$
 Recall the relation $O^{\max} = (\phi^*)^{\max} \widehat{\Phi}^* \cdot \mathbf{O}$

• The maximum values of the observables along the optimal directions $\tan \beta = 10$ Again, recall the relation $O^{\max} = (\phi^*)^{\max} \widehat{\Phi}^* \cdot \mathbf{O}$

♦ The maximum values of ϕ^* for each EDM-free direction from the figure: $(\phi^*)^{\max} \sim 25 (d_{\rm D}\text{-optimal}), 25 (d_{\mu}\text{-optimal}), 50 (A_{\rm CP}\text{-optimal}), 40 (\Delta \Phi_{1,A_e} = \hat{\theta} = 0), \text{ and } 45 (\Delta \Phi_{2,3} = \hat{\theta} = 0),$ which are mainly constrained by $d_{\rm Tl}, d_{\rm Tl}, d_{\rm Tl}, d_{\rm Hg},$ and $d_{\rm Tl}$, respectively.

◇ The maximum values of the observables

• The maximum values of the CP phases along the optimal directions $\tan \beta = 10$

In the top panels we see that Φ_1 and Φ_2 can be as large as $\sim 20^{\circ}$ and $\sim 5^{\circ}$, respectively, for $(\phi^*)^{\max} \sim 25$ along the $d_{\rm D}$ - and d_{μ} -optimal directions denoted by the thick solid and dashed lines.

We also note in the middle and bottom panels that the phases of $A_{d,u,e}$ could be are large, in general, though they are suppressed at the M_{SUSY} scale.

Finally, we note (not shown) that $\bar{\theta}$ could be as large as $\sim 2 \times 10^{-9}$ along the $d_{\rm D}$ - and d_{μ} -optimal directions with $(\phi^*)^{\rm max} \sim 25$.

♠ Summary

- We are proposing a geometric method which provides an accurate parametric determination of the optimal cancellation regions where any given physical observable is maximized in the linear approximation
- Our geometric approach is exact, efficient and less computationally-intensive than a naive scan of a multi-dimensional space
- This constitutes an *analytic* solution to the so-called *linear programming problem*
- You may want to apply this method to your problem if you are trying to achieve the best outcome in a given requirements expressed in linear equations