News from the lattice

Laurent Lellouch

CPT Marseille

with

Dürr, Fodor, Frison, Hoelbling, Katz, Krieg, Kurth, Lellouch, Lippert, Portelli, Ramos, Szabo, Vulvert (Budapest-Marseille-Wuppertal Collaboration)

Some of the questions that we would like to answer

- Can one show that the mass of ordinary matter comes from QCD?
- What are the masses of the light u, d (and s) quarks which are the building blocks of ordinary matter?
- Is our understanding of quark flavor mixing and the fundamental asymmetry between matter and antimatter, which it leads to, correct?
- Does dark matter couple strongly enough to ordinary matter to make it visible with current detectors?
- Can one show that QCD and QED explain why the proton is lighter than the neutron? (If $M_p > M_N$, there would be no atoms . . .)
- Heisenberg's uncertainty principle allows the creation of particle-antiparticle pairs which can induce the decay of other particles (e.g. vac. $\rightarrow \bar{u}u \Rightarrow \rho \rightarrow \pi\pi$)

Does QCD describe $\rho \rightarrow \pi \pi$ correctly?

 Can a confining gauge theory such as QCD explain electroweak symmetry breaking and the masses of elementary particles? (Technicolor at LHC?)
 → ask C.-J. David Lin!

All require quantitative understanding of nonperturbative strong interaction effects

 \Rightarrow only known ab initio approach is Lattice QCD

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

~ ~ ~ ~ ~

What is Lattice QCD (LQCD)?

Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:

• UV (and IR) cutoffs and a well defined path integral in Euclidean spacetime:

$$\langle O \rangle = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \, e^{-S_G - \int \bar{\psi} D[M]\psi} \, O[U, \psi, \bar{\psi}]$$

=
$$\int \mathcal{D}U \, e^{-S_G} \det(D[M]) \, O[U]_{\text{Wick}}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 and finite # of dof's
 → evaluate numerically using stochastic methods

<ロ > < 回 > < 回 > < 回 > < 回 > <

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

NOT A MODEL: LQCD is QCD when $a \rightarrow 0$, $V \rightarrow \infty$ and stats $\rightarrow \infty$

In practice, limitations ...

Limitations: statistical and systematic errors

Limited computer resources $\rightarrow a$, *L* and m_q are compromises and statistics finite

- Quenching: in past, $det(D[M]) \rightarrow cst$ Being removed w/ difficult 2+1 calculations
- Statistical: $1/\sqrt{N_{conf}}$ Eliminate w/ $N_{conf} \rightarrow \infty$
- Discretization: $a \Lambda_{QCD}$, $a m_q$, $a |\vec{p}|$, with $a^{-1} \sim 2 4 \, \text{GeV}$

Eliminate w/ $a \rightarrow 0$: need at least three a's

- Chiral extrapolation: m_{ud}^{ph} barely reachable $\Rightarrow m_q[>m_{ud}^{ph}] \rightarrow m_{ud}^{ph}$ Difficult calculations w/ $M_{\pi} \leq 350 \text{ MeV} + \chi \text{PT}$ or Taylor expansions Better: simulate directly at m_{ud}^{ph}
- Finite volume: simple quantities $\sim \left(\frac{M_{\pi}}{\pi F_{\pi}}\right)^2 \frac{e^{-M_{\pi}L}}{(M_{\pi}L)^{3/2}} \rightarrow M_{\pi}L \gtrsim 4$ usually safe Resonant states more complicated Eliminate with $L \rightarrow \infty (+\chi PT)$
- Renormalization: in all field theories must renormalize;
 Can be done in PT, best done nonperturbatively

Why is LQCD so numerically difficult?

- # of d.o.f. ~ $\mathcal{O}(10^9)$ and large overhead for $\det(D[M])$ (~ $10^9 \times 10^9$ matrix)
- cost of simulations increases rapidly when $m_{u,d} \rightarrow m_{u,d}^{\text{phys}} \& a \rightarrow 0$

Wilson fermions (≤ 2004)

- $cost \sim N_{conf} V^{5/4} m_{u,d}^{-3} a^{-7}$ (Ukawa '02)
- Serious cost wall
- \Rightarrow can physical $m_{u,d}$ ever be reached?

Observe very long-lived autocorrelations of topological charge vs MC time (Schaefer et al

'09, quenched)

 $\Rightarrow a \rightarrow 0$ may be even harder than anticipated

Dürr et al (BMW), PRD79 2009

<ロ> < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

 $N_f = 2 + 1$ QCD: degenerate u & d w/ mass m_{ud} and s quark w/ mass $m_s \sim m_s^{\rm phys}$

1) Discretization which balances improvement in gauge/fermionic sector and CPU cost:

- tree-level $O(a^2)$ -improved gauge action (Lüscher et al '85)
- tree-level O(a)-improved Wilson fermion (Sheikholeslami et al '85) w/ 6-stout or 2-HEX smearing (Morningstar et al '04, Hasenfratz et al '01, Capitani et al '06)
 - \Rightarrow approach to continuum is improved ($O(\alpha_s a, a^2)$) instead of O(a))
- 2) Highly optimized algorithms (see also Urbach et al '06):
 - Hybrid Monte Carlo (HMC) for u and d and Rational HMC (RHMC) for s
 - mass preconditioning (Hasenbusch '01)
 - multiple timescale integration of molecular dynamics (MD) (Sexton et al '92)
 - Higher-order (Omelyan) integrator for MD (Takaishi et al '06)
 - mixed precision acceleration of inverters via iterative refinement
- 3) Highly optimized codes

Where does the mass of ordinary matter come from?

→ Higgs? SEWSB? ...?
⇒ mass of fundamental particles
⇒ mass of ordinary matter

<ロ > < 同 > < 三 > < 三 > < 三 > <

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- > 99% of mass of visible universe is in the form of p & n
- Mass of object usually sum of mass of constituents: not true for light hadrons

Light hadron masses are generated by QCD through energy imparted to q & g via:

Laurent Lellouch

$$m = E/c^2$$

NCTS, Hsinchu, 26 Oct. 2010

Ab initio calculation of the light hadron spectrum

Dürr et al, Science 322 (2008) 1224

<ロト < 団 > < 団 > < 豆 > < 豆 > < 亘 < 三 > < 亘 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Aim: determine light hadron spectrum, at few percent level, directly in QCD in calculation w/ all sources of systematic errors under control

- ⇒ i. Inclusion of $N_f = 2 + 1$ sea quark effects w/ an exact algorithm and w/ a unitary, local action whose universality class is known to be QCD (→ see above)
- ⇒ ii. 3 parameters of $N_f=2+1$ QCD (m_{ud} , $m_s \& \Lambda_{QCD}$) by observables w/ small undisputed errors, transparent connection to experiment and no hidden assumptions
- \Rightarrow iii. Complete spectrum for the light mesons and octet and decuplet baryons
- \Rightarrow iv. Large volumes to guarantee negligible finite-size effects (\rightarrow check)
- \Rightarrow **v.** Controlled interpolations to m_s^{ph} (straightforward) and extrapolations to m_{ud}^{ph} (difficult)

Of course, simulating directly around m_{ud}^{ph} would be better!

- \Rightarrow vi. Controlled extrapolations to the continuum limit \rightarrow at least 3 *a*'s in the scaling regime
- ⇒ vii. Complete analysis of systematic uncertainties

Simulation parameters: BMW '08

β, a [fm]	am _{ud}	M_{π} [GeV]	am _s	$L^3 \times T$	# traj.
3.3	-0.0960	0.65	-0.057	$16^3 \times 32$	10000
	-0.1100	0.51	-0.057	$16^3 imes 32$	1450
\sim 0.125	-0.1200	0.39	-0.057	$16^3 imes 64$	4500
	-0.1233	0.33	-0.057	$16^3 imes 64$ $24^3 imes 64$ $32^3 imes 64$	5000 2000 1300
	-0.1265	0.27	-0.057	$24^3 \times 64$	700
3.57	-0.03175	0.51	0.0	$24^3 imes 64$	1650
	-0.03175	0.51	-0.01	$24^3 imes 64$	1650
\sim 0.085	-0.03803	0.42	0.0	$24^3 imes 64$	1350
	-0.03803	0.41	-0.01	$24^3 imes 64$	1550
	-0.044	0.31	0.0	$32^3 \times 64$	1000
	-0.044	0.31	-0.07	$32^3 \times 64$	1000
	-0.0483	0.20	0.0	$48^3 imes 64$	500
	-0.0483	0.19	-0.07	$48^3 \times 64$	1000
3.7	-0.007	0.65	0.0	$32^3 \times 96$	1100
	-0.013	0.56	0.0	$32^3 \times 96$	1450
\sim 0.065	-0.02	0.43	0.0	$32^3 \times 96$	2050
	-0.022	0.39	0.0	$32^3 \times 96$	1350
	-0.025	0.31	0.0	$40^3 \times 96$	1450

- # of trajectories given is after thermalization
- autocorrelation times (plaquette, n_{CG}) less than ≈ 10 trajectories
- 2 runs with 10000 and 4500 trajectories \longrightarrow no long-range correlations found

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ の�?

ad ii, iii: QCD parameters and light hadron masses

 $N_f = 2+1$ QCD in isospin limit has 3 parameters which have to be fixed w/ expt:

- Λ_{QCD} : fixed w/ Ω or Ξ mass
 - don't decay through the strong interaction
 - have good signal
 - have a weak dependence on *m_{ud}*
 - \rightarrow 2 separate analyse and compare
- (m_{ud}, m_s) : fixed using M_{π} and M_K

Determine masses of remaining non-singlet light hadrons in

ad iii: fits to 2-point functions in different channels

e.g. in pseudoscalar channel, M_{π} from correlated fit

$$C_{PP}(t) \equiv \frac{1}{(L/a)^3} \sum_{\vec{x}} \langle [\bar{d}\gamma_5 u](x) [\bar{u}\gamma_5 d](0) \rangle \stackrel{0 \ll t \ll T}{\longrightarrow} \frac{\langle 0 | \bar{d}\gamma_5 u | \pi^+(\vec{0}) \rangle \langle \pi^+(\vec{0}) | \bar{u}\gamma_5 d | 0 \rangle}{2M_{\pi}} e^{-M_{\pi}t}$$

Effective mass $aM(t + a/2) = \log[C(t)/C(t + a)]$

Effective masses for simulation at $a \approx 0.085 \,\mathrm{fm}$ and $M_{\pi} \approx 0.19 \,\mathrm{GeV}$

Gaussian sources and sinks with $r \sim 0.32 \text{ fm}$ (BMW '08)

=

< □

.∃ →

E

ad iv: (I) Virtual pion loops around the world

- In large volumes $FVE \sim e^{-M_{\pi}L}$
- $M_{\pi}L \ge 4$ expected to give $L \to \infty$ masses within our statistical errors
- For $a \approx 0.125 \,\mathrm{fm}$ and $M_{\pi} \approx 0.33 \,\mathrm{GeV}$, perform FV study $M_{\pi}L = 3.5 \rightarrow 7$

Well described by (Dürr and Colangelo et al, 2005)

$$\frac{M_X(L) - M_X}{M_X} = C \left(\frac{M_\pi}{\pi F_\pi}\right)^2 \frac{1}{(M_\pi L)^{3/2}} e^{-M_\pi L}$$

Though very small, we fit them out

< □ > < □ > < □ > < □ > < □ > .

王

ad iv: (II) Finite volume effects for resonances

Important since 5/12 of hadrons studied are resonances Systematic treatment of resonant states in finite volume (Lüscher, '85-'91) e.g., the $\rho \leftrightarrow \pi\pi$ system in the COM frame 3.5 Non-interacting: $E_{2\pi} = 2(M_{\pi}^2 + k^2)^{1/2}, \ \vec{k} = 2\pi \vec{n}/L,$ $E_{2\pi}/M_{\pi}$ $\vec{n} \in Z^3$ Interacting case: k solution of $M_{0}/M_{\pi} = 3$ 2.5 $n\pi - \delta_{11}(k) = \phi(q), \ n \in \mathbb{Z}, \ q = kL/2\pi$ 5 $M_{\pi}L$

Know *L* and lattice gives $E_{2\pi}$ and M_{π}

- \Rightarrow infinite volume mass of resonance and coupling to decay products
 - in this calculation, low sensitivity to width (compatible w/ expt w/in large errors)
 - small but dominant FV correction for resonances

<ロ > < 同 > < 同 > < 三 > < 三 > 、

3

ad v: extrapolation to m_{ud}^{ph} and interpolation to m_s^{ph}

Consider two approaches to the physical QCD limit for a hadron mass M_X :

- Mass-independent scale setting
- 2 Simulation-by-simulation normalization

For both normalization procedures, use parametrization

$$M_X = M_X^{(0)} + \alpha_K M_K^2 + \alpha_\pi M_\pi^2 + \text{h.o.t.}$$

- linear term in M_K^2 is sufficient for interpolation to m_s^{ph}
- curvature in M_{π}^2 is visible in extrapolation to m_{ud}^{ph} in some channels
- \rightarrow two options for h.o.t.:
 - ChPT: expansion about $M_{\pi}^2 = 0$ and h.o.t. $\propto M_{\pi}^3$ (Langacker et al '74)
 - Flavor: expansion about center of M_{π}^2 interval considered and h.o.t. $\propto M_{\pi}^4$
- Further estimate of contributions of neglected h.o.t. by restricting fit interval: $M_{\pi} \leq 650 \rightarrow 550 \rightarrow 450 \,\text{MeV}$
- \rightarrow use 2 \times 2 \times 3 combinations of options for error estimate

< □ > < □ > < □ > .

- ₹ € ►

ad vi: including the continuum extrapolation

- Cutoff effects formally $O(\alpha_s a)$ and $O(a^2)$
- Small and cannot distinguish a and a^2
- Include through

$$M_X^{ph} \rightarrow M_X^{ph} [1 + \gamma_X a]$$
 or $M_X^{ph} [1 + \gamma_X a^2]$

 \rightarrow difference used for systematic error estimation

not sensitive to <u>ams</u> or <u>amud</u>

Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

ad vii: systematic and statistical error estimate

Uncertainties associated with:

- Continuum extrapolation $\rightarrow O(a)$ vs $O(a^2)$
- Extrapolation to physical mass point
 - \rightarrow ChPT vs Taylor expansion
 - $\rightarrow~3~\ensuremath{\textit{M}_{\pi}}\xspace$ ranges $\leq 650~\ensuremath{\textit{MeV}}\xspace,~550~\ensuremath{\textit{MeV}}\xspace,~450~\ensuremath{\textit{MeV}}\xspace$
- Normalization → M_X vs R_X
 ⇒ contributions to physical mass point extrapolation (and continuum extrapolation) uncertainties
- *Excited state contamination* \rightarrow **18** time fit ranges for **2pt** fns
- Volume extrapolation \rightarrow include or not leading exponential correction

 \Rightarrow 432 procedures which are applied to 2000 bootstrap samples, for each of Ξ and Ω scale setting

<ロ > < 同 > < 三 > < 三 > < 三 > <

3

ad vii: systematic and statistical error estimate

 \rightarrow distribution for M_X : weigh each of the 432 results for M_X in original bootstrap sample by fit quality

- Median \rightarrow central value
- Central 68% CI \rightarrow systematic error
- Central 68% CI of bootstrap distribution of medians \rightarrow statistical error

<ロ > < 回 > < 回 > < 回 > < 回 > 、

王

Post-dictions for the light hadron spectrum

Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Ē.

500

$|V_{us}/V_{ud}|$ from $K, \pi \to \mu \overline{\nu}(\gamma)$

In experiment see

 \propto V_{ud} $\langle 0|ar{u}\gamma_{\mu}\gamma_{5}{m d}|\pi^{-}
angle \propto$ V_{ud} F_{\pi}

<ロ > < 同 > < 三 > < 三 > < 三 > <

E.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Have (Marciano '04, Flavianet '08)

$$\frac{\Gamma(K \to \mu \bar{\nu}(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}(\gamma))} \longrightarrow \frac{|V_{us}|}{|V_{ud}|} \frac{F_{\kappa}}{F_{\pi}} = 0.2760(6) \ [0.22\%]$$

- \Rightarrow need high precision nonperturbative calculation of F_K/F_{π}
 - Use our '08 data sets ($M_{\pi} \rightarrow 190 \text{ MeV}$, $a \approx 0.065 \div 0.125 \text{ fm}$, $L \rightarrow 4 \text{ fm}$) to compute F_{κ}/F_{π}
 - Perform 1512 independent full analyses of our data

 \Rightarrow systematic error distribution for F_{κ}/F_{π} (as above)

• Get statistical error from bootstrap analysis on 2000 samples

 F_K/F_π in QCD

Dürr et al, PRD81 '10

Main source of sytematic error: extrapolation $m_{ud} \rightarrow m_{ud}^{\text{phys}}$; then $a \rightarrow 0$

 ・ イヨト イヨト モラ シュへ

 Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

F_K/F_{π} summary and CKM unitarity

(Flavianet Lattice Averaging Group (FLAG) '10)

Find

$$\frac{G_q^2}{G_{\mu}^2} |V_{ud}|^2 \left[1 + |V_{us}/V_{ud}|^2 + |V_{ub}/V_{ud}|^2 \right] = 1.0001(9) \left[0.09\% \right]$$

If assume true result within 2σ then, naively, $\Lambda_{NP} \ge 1.9 \text{ TeV}$

FLAG '10 estimates (direct)

1.193(6) $N_f = 2 + 1$

SQ (~

 $= 1.210(6)(17) \qquad N_f = 2$

(x) FLAG determinations assuming the SM: expt for $\Gamma_{K\ell_2}$,

 $\Gamma_{K\ell_3}$ and $|V_{ub}|$ (neglible contribution), plus SM

 $\Rightarrow F_K/F_{\pi}$, $|V_{ud}|$ and $|V_{us}|$ in terms of lattice $f_+(0)$

universality and CKM unitarity

 $(|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1)$

 $\frac{F_{K}}{F_{\pi}}$

 $rac{F_K}{F_\pi}$

Light quark masses at the physical mass point

- Masses of light *u*, *d* and *s* quarks → fundamental parameters of the Standard Model (SM)
- Stability of atoms, nuclear reactions which power stars, presence or absence of strong CP violation, etc. depend critically on precise values
- Values carry information about flavor structure of BSM physics
- Quarks are confined w/in hadrons
 a nonperturbative computation is required
- Deviation of $m_{ud} \equiv (m_u + m_d)/2$ from zero brings only very small corrections to most hadronic observables
 - \Rightarrow its determination is a needle in haystack problem
- Fortunately, QCD spontaneously breaks chiral symmetry
 - masses of resulting Nambu-Goldstone mesons very sensitive the light quark masses
 - \Rightarrow presence of chiral logs near physical point
 - \Rightarrow must get very close to m_{ud}^{ph} to control mass dependence precisely
- → quark masses are an interesting first "measurement" to make w/ physical point LQCD simulations

<ロト < 団 > < 団 > < 豆 > < 豆 > < 亘 < 三 > < 亘 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Current knowledge of the light quark masses

FLAG has performed a detailed analysis of unquenched lattice determinations of the light quark masses ("our estimate" = FLAG estimate)

Even extensive study by MILC does not control all systematics:

- $M_{\pi}^{\text{RMS}} \ge 260 \,\text{MeV} \implies m_{ud}^{\text{MILC,eff}} \ge 3.7 \times m_{ud}^{\text{phys}}$
- perturbative renormalization (albeit 2 loops)

<ロ > < 同 > < 同 > < 三 > < 三 > 、

E.

Requirements for ab initio calculations (i-vii) given earlier

+ 2 ingredients which guarantee added precision:

- $N_f = 2 + 1$ calculations **all the way down to** $M_{\pi} \sim 130$ MeV to allow small interpolation to physical mass point $(M_{\pi} = 134.8(3)$ MeV)
- Full nonperturbative renormalization and nonperturbative continuum extrapolated running for determining renormalization group invariant (RGI) quark masses

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All simulations w/ $N_f \ge 2 + 1$ and $M_{\pi} \le 400 \text{ MeV} \dots$ (points for our currently running, next-to-finest simulations at $\beta = 3.7$ are estimates)

Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

Ē.

... and w/ unitary, local gauge and fermion actions...

<ロト < 回 > < 回 > < 回 > < 回 > <

E.

5900

... and w/ sea u and d quarks clearly in the chiral regime, i.e. $M_{\pi}^{min} \leq 250 \, \text{MeV}...$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E.

5900

 \ldots and w/ sea u and d quarks at or below physical mass point \ldots

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

... and w/ volumes such that FV errors $\leq 0.5\%$ – PACS-CS has $LM_{\pi} = 1.97$...

Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

<ロト < 回 > < 回 > < 回 > < 回 > <

÷.

5900

... and w/ at least three $a \le 0.1 \text{ fm}$ – PACS-CS has only 1 $a \sim 0.09 \text{ fm}$

Laurent Lellouch NCTS, Hsinchu, 26 Oct. 2010

<ロト < 回 > < 巨 > < 巨 >

E.

5900

Does our smearing enhance discretization errors?

 \Rightarrow scaling study: $N_f = 3 \text{ w/ 2 HEX}$ action, 4 lattice spacings ($a \simeq 0.06 \div 0.15 \text{fm}$), $M_{\pi}L > 4$ fixed and

$$M_{\pi}/M_{
ho} = \sqrt{2(M_{K}^{
hoh})^2 - (M_{\pi}^{
hoh})^2/M_{\phi}^{
hoh}} \sim 0.67$$

i.e. $m_q \sim m_s^{ph}$

- M_N and M_{Δ} are linear in $\alpha_s a$ out to $a \sim 0.15 \, \text{fm}$
- \Rightarrow very good scaling: discret. errors $\leq 2\%$ out to $a \sim 0.15$ fm

590

王

(口) () (三) (三)

Does our smearing enhance discretization errors?

Perhaps 2 HEX works for spectral quantities but not for short distance dominated quantities

 \Rightarrow repeat ALPHA's 2000 quenched milestone determination of $r_0(m_s + m_{ud})^{MS}(2 \text{ GeV})$

Perform quenched calculation w/ Wilson glue and 2 HEX fermions

- 5 β w/ $a \sim 0.06 \div 0.15$ fm
- At least 4 m_q per β w/ $M_{\pi}L > 4$ and fixed $L \simeq 1.84$ fm
- Calculate

$$m(\mu) = rac{(1-am^W/2)m^W}{Z_S(\mu)}$$

w/ $m^W = m^{\text{bare}} - m^{\text{crit}}$

- Determine $Z_S(\mu)$ using RI/MOM NPR (Martinelli et al '95) and run *nonperturbatively in continuum* to $\mu = 4$ GeV (see below)
- Interpolate in $r_0 M_{PS}$ to $r_0 M_K^{\text{phys}}$
- $m^{\text{RI}}(4 \text{ GeV}) \longrightarrow m^{\overline{\text{MS}}}(2 \text{ GeV})$ perturbatively

◆□▶ ◆□▶ ▲ ■▶ ▲ ■▶ ● ● ● ●

Quenched check: determination of $r_0(m_s + m_{ud})$

Perform continuum extrapolation of $r_0(m_s + m_{ud})^{MS}(2 \text{ GeV})$ (preliminary)

With full systematic analysis

 $r_0(m_s + m_{ud})^{\overline{\text{MS}}}(2 \,\text{GeV}) = 0.262(4)(3)$

Excellent agreement w/ ALPHA $r_0(m_s + m_{ud})^{\overline{\text{MS}}}(2 \text{ GeV}) = 0.261(9)$

< 行 ▶

590

æ

38 + 9, $N_f = 2 + 1$ phenomenological runs:

- 5 *a* ~ 0.054 ÷ 0.116 fm
- $M_{\pi}^{min} \simeq 135, 130, 120, 180, 220 \,\mathrm{MeV}$
- *L* up to 6 fm and such that $\delta_{\rm FV} \leq 0.5\%$ on M_{π} for all runs
- 10 + 3 different values of m_s around m_s^{phys}
- Determine lattice spacing using M_{Ω}

17 + 4, $N_f = 3$ RI/MOM runs at same β as phenomenological runs:

- At least 4 $m_q \in [m_s^{\text{phys}}/3, m_s^{\text{phys}}]$ per β for chiral extrapolation
- $L \ge 1.7 \, \text{fm}$ in all runs

- 《 同 》 《 ヨ 》 《 ヨ 》 - ヨ

Do we see chiral logs?

Simultaneous fit of M_{π}^2 and F_{π} vs m_{ud} to NLO $SU(2) \chi$ PT expressions (Gasser et al, '84)

$$M_{\pi}^2 = M^2 \left[1 - \frac{1}{2} x \log \left(\frac{\Lambda_3^2}{M^2} \right) \right] \qquad F_{\pi} = F \left[1 + x \log \left(\frac{\Lambda_4^2}{M^2} \right) \right]$$

w/ $M^2 = 2Bm_{ud}$ and $x = M^2/(4\pi F)^2$

Fixed $a \simeq 0.09 \,\mathrm{fm}$ and $M_{\pi} \simeq 130 \rightarrow 400 \,\mathrm{MeV}$ (preliminary)

Consistent w/ NLO χ PT ...

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

590

王

VWI and AWI masses: ratio-difference method

With $N_f = 2 + 1$, O(a)-improved Wilson fermions, can construct the following renormalized, O(a)-improved quantities (using Bhattacharya et al '06)

$$(m_s - m_{ud})^{\text{VWI}} = (m_s^{\text{bare}} - m_{ud}^{\text{bare}}) \frac{1}{Z_s} \left[1 - \frac{b_s}{2} a(m_{ud}^{\text{W}} + m_s^{\text{W}}) - \bar{b}_s a(2m_{ud}^{\text{W}} + m_s^{\text{W}}) \right] + O(a^2)$$

w/ $m^{W} = m^{bare} - m^{crit}$ and

$$\frac{m_s^{\text{AWI}}}{m_{ud}^{\text{AWI}}} = \frac{m_s^{\text{PCAC}}}{m_{ud}^{\text{PCAC}}} \left[1 + (b_A - b_P) a(m_s^{\text{bare}} - m_{ud}^{\text{bare}}) \right]$$

w/

$$m^{ ext{PCAC}} \equiv rac{1}{2} rac{\sum_{ec{x}} \langle ar{\partial}_{\mu} \left[A_{\mu}(x) + a c_{A} \partial_{\mu} P(x)
ight] P(0)
angle}{\sum_{ec{x}} \langle P(x) P(0)
angle}$$

and $b_{A,P,S} = 1 + O(\alpha_s)$, $\bar{b}_{A,P,S} = O(\alpha_s^2)$, $c_A = O(\alpha_s)$

Ratio-difference method (cont'd)

Define

$$d \equiv am_s^{\text{bare}} - am_{ud}^{\text{bare}}, \qquad r \equiv \frac{m_s^{\text{PCAC}}}{m_{ud}^{\text{PCAC}}}$$

and subtracted bare masses

$$am_{ud}^{\mathrm{sub}} \equiv rac{d}{r-1}, \qquad am_s^{\mathrm{sub}} \equiv rac{rd}{r-1}$$

Then, with our tree-level O(a)-improvement, renormalized masses can be written

$$m_{ud} = \frac{m_{ud}^{\text{sub}}}{Z_S} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_s^{\text{sub}}) \right] + O(\alpha_s a)$$
$$m_s = \frac{m_s^{\text{sub}}}{Z_S} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_s^{\text{sub}}) \right] + O(\alpha_s a)$$

Benefits:

- Only Z_S (non-singlet) is required and difficult RI/MOM Z_P is circumvented
- No need to determine *m*^{crit}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Improved RI/MOM for Z_S

Determine $Z_S^{\text{RI}}(\mu, a)$ nonperturbatively in RI/MOM scheme, from truncated, forward quark two-point functions in Landau gauge (Martinelli et al '95), computed on specifically generated $N_f = 3$ gauge configurations

Use $S(\rho)
ightarrow ar{S}(\rho) = S(\rho) - \, {
m Tr}_D[S(\rho)]/4$ (Becirevic et al '00)

- \Rightarrow tree-level O(a) improvement
- \Rightarrow significant improvement in S/N
- \Rightarrow recover usual massless RI/MOM scheme for $m^{\text{RGI}} \rightarrow 0$

For controlled errors, require:

- (a) $\mu \ll 2\pi/a$ for $a \to 0$ extrapolation
- (b) $\mu \gg \Lambda_{QCD}$ if masses are to be used in perturbative context
- i.e. the window problem, which we solve as follows

Ad (a): RI/MOM at sufficiently low scale

Controlled continuum extrapolation of renormalized mass

 \Rightarrow renormalize at μ where RI/MOM $O(\alpha_s a)$ errors are small for all β

- For coarsest ($\beta = 3.31$) lattice, $2\pi/a \simeq 11 \text{ GeV}$
- Restrict study of $Z_S^{\text{RI}}(\mu, a)$ to $\mu \leq \pi/2a \simeq 2.7 \text{ GeV} \ (\beta = 3.31)$
- Pick $\mu_{\rm ren} \sim 2 \,{\rm GeV}$ as common renormalization point for all β
- Can take $a \rightarrow 0$

 \Rightarrow continuum $m^{\text{RI}}(\mu_{\text{ren}})$ determined fully nonperturbatively ...

 ... but not very useful for phenomenology since RI/MOM perturbative error still significant at such μ_{ren}

Ad (b): nonperturbative continuum running to 4 GeV

To make result useful, run nonperturbatively in *continuum limit* up to perturbative scale

For μ : $\mu_{\rm ren} \rightarrow 4$ GeV, always have at least 3 *a* w/ $\mu \lesssim \pi/2a$

 \Rightarrow can determine nonperturbative running in continuum limit

王

For $\mu > 4$ GeV, 4-loop perturbative running agrees w/ nonperturbative running on our finer lattices

· < 토 > < 토 >

< □ ▶ < @ ▶

Э

5900

Renormalized quark masses **interpolated** in $M_{\pi}^2 \& M_{K}^2$ to physical point using:

- *SU*(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 380 \,\mathrm{MeV}$

Example of continuum extrapolations (only statistical errors on data)

Renormalized quark masses **interpolated** in $M_{\pi}^2 \& M_K^2$ to physical point using:

- *SU*(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 380 \,\mathrm{MeV}$

Example of continuum extrapolations (only statistical errors on data)

... and syst. error due to chiral interp.

Renormalized quark masses **interpolated** in $M_{\pi}^2 \& M_{K}^2$ to physical point using:

- *SU*(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 380 \,\mathrm{MeV}$

Example of continuum extrapolations (only statistical errors on data)

... and syst. error due to chiral extrap. if $M_{\pi} \ge M_{\pi}^{\text{val}}|_{\text{MILC}}^{\text{min}} \simeq 180 \,\text{MeV}$

Renormalized quark masses **interpolated** in $M_{\pi}^2 \& M_{K}^2$ to physical point using:

- *SU*(2) χPT
- or low-order polynomial anszätze
- w/ cuts on pion mass $M_{\pi} < 340, 380 \,\mathrm{MeV}$

Example of continuum extrapolations (only statistical errors on data)

... and syst. error due to chiral extrap. if $M_{\pi} \geq M_{\pi}^{\text{RMS}} |_{\text{MILC}}^{\text{min}} \simeq 260 \text{ MeV}$ (very small range)

Conclusions

- Ab initio calculation of light hadrons masses
 - \rightarrow excellent agreement w/ experiment
 - \Rightarrow vindication of (lattice) QCD in nonperturbative domain
- F_{κ}/F_{π} in same approach
 - \rightarrow very competitive determination of $|V_{us}|$
 - \rightarrow stringent tests of the SM and constraints on NP
- $N_f = 2 + 1$ simulations have been performed all the way down to m_{ud}^{phys} and below w/ $m_s \simeq m_s^{phys}$:
 - $5 a \simeq 0.054 \div 0.116 \, \text{fm}$
 - $M_{\pi}^{min} \simeq 135, 130, 120, 180, 220 \,\mathrm{MeV}$
 - *L* up to 6 fm and such that $\delta_{\rm FV} \leq 0.5\%$ on M_{π} for all runs
- \rightarrow eliminates large systematic error associated w/ reaching $m_{ud}^{\rm phys}$
- Described an RI/MOM procedure which includes continuum limit, nonperturbative running
- \rightarrow eliminates large systematic error associated w/ the "window" problem
- Currently finalizing analysis of light quark masses

(日)

- Systematic error will be estimated following an extended frequentist approach (Dürr et al, Science '08)
 - \rightarrow expect total uncertainty on m_{ud} and m_s to be of order 2%
- ⇒ will significantly improve knowledge of m_{ud} and m_s whose errors are, at present, 12% [FLAG] ÷ 30% [PDG]
- HPQCD published results on m_{ud} w/ similar uncertainties, but these are obtained by fixing $N_f = 2 + 1$ QCD parameters w/:
 - r_1 for the scale their r_0 is 3.5 σ away from PACS-CS '09
 - *m_c* for the scale (?) and for renormalization their *m_c* has an error 13 times smaller than PDG!
 - $M_{\bar{s}s}$ for m_s but m_s is needed to determine $M_{\bar{s}s}$!?
 - MILC m_s/m_{ud} for m_{ud} not their m_s/m_{ud} !?

◆□▶ ◆圖▶ ◆ె₽▶ ◆ ె₽▶ ── ె₽

Conclusions

- In addition, these results are obtained from simulations w/ $M_{\pi}^{\text{RMS}} \ge 260 \,\text{MeV}$
- Imposing the cut $M_{\pi} \ge 260 \,\mathrm{MeV}$ on our results

 $\Rightarrow \delta_{\chi} m_{ud} \sim 0.1\% \longrightarrow \delta_{\chi} m_{ud} \sim 15\%$

• Imposing the cut $M_{\pi} \ge 180 \,\mathrm{MeV}$ (lightest MILC valence pion) on our results

 $\Rightarrow \delta_{\chi} m_{ud} \sim 0.1\% \longrightarrow \delta_{\chi} m_{ud} \sim 2\%$

- ⇒ smaller error requires assumptions on mass dependence of results which go beyond (partially quenched) NLO $SU(2) \chi$ PT
- Fully controlled LQCD calculations can now be envisaged w/out any assumptions on light quark mass dependence of results
- The dream of simulating QCD w/ no ifs nor buts is finally becoming a reality

Our "particle accelerators"

IBM Blue Gene/P (Babel), GENCI-IDRIS Paris 139 Tflop/s peak

IBM Blue Gene/P (JUGENE), FZ Jülich 1. Pflop/s peak

BULL cluster (1024 Nehalem 8 core nodes), GENCI-CCRT Bruyère-le-Châtel 100 Tflop/s peak

- ▲ 白型

.∃ →

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

And computer clusters at Uni. Wuppertal and CPT Marseille