CP violation in charged Higgs production and decays in the Complex 2HDM

Abdesslam Arhrib

National Cheung Keung University (NCKU), Faculté des Sciences et Techniques Tangier, Morocco

Based on: A.A, H. Eberl, E. Ginina, K. Christova , JHEP'11

Plan

Complex 2HDM: Motivations

parametrization of C2HDM and constraints

CP violation in charged Higgs production $bg \to tH^-$ and decays $H^{\pm} \to tb$, $W^{\pm}h_{1,2}$

CP violation in neutral Higgs decays $h_1 \rightarrow \tau^+ \tau^-$, ...

Conclusions

In the SM, the amount of C/P in CKM, may be enough to explain the observed size of C/P in B and K meson system.

In the SM, the amount of C/P in CKM, may be enough to explain the observed size of C/P in B and K meson system.

However, it is too small to generate the observable Baryon Asymmetry in the Universe. [A.D. Sakharov '67]

In the SM, the amount of C/P in CKM, may be enough to explain the observed size of C/P in B and K meson system.

However, it is too small to generate the observable Baryon Asymmetry in the Universe. [A.D. Sakharov '67]

Therefore, models with extra CP violating phases are welcome (SUSY, SM4, extended Higgs sector ...)

In the SM, the amount of C/P in CKM, may be enough to explain the observed size of C/P in B and K meson system.

However, it is too small to generate the observable Baryon Asymmetry in the Universe. [A.D. Sakharov '67]

Therefore, models with extra CP violating phases are welcome (SUSY, SM4, extended Higgs sector ...)

Those large CP violating phases can give contributions to the EDM which exceed the experimental upper bound.

With 2HDM $\Phi_{1,2}$, CP can be violated either explicitly or spontaneously in the Higgs sector [T.D.Lee'73, Weinberg'76, G. Branco'85, Liu, Wolfstein'87]

With 2HDM $\Phi_{1,2}$, CP can be violated either explicitly or spontaneously in the Higgs sector [T.D.Lee'73, Weinberg'76, G. Branco'85, Liu, Wolfstein'87]

Scalar sector of the MSSM is a special case of the 2HDM scalar sector

With 2HDM $\Phi_{1,2}$, CP can be violated either explicitly or spontaneously in the Higgs sector [T.D.Lee'73, Weinberg'76, G. Branco'85, Liu, Wolfstein'87]

Scalar sector of the MSSM is a special case of the 2HDM scalar sector

Some models of dynamical electroweak symmetry breaking yields the 2HDM as their low-energy effective theory [H. J. He et al, PRD65, (2002) hep-ph/0108041].

With 2HDM $\Phi_{1,2}$, CP can be violated either explicitly or spontaneously in the Higgs sector [T.D.Lee'73, Weinberg'76, G. Branco'85, Liu, Wolfstein'87]

Scalar sector of the MSSM is a special case of the 2HDM scalar sector

Some models of dynamical electroweak symmetry breaking yields the 2HDM as their low-energy effective theory [H. J. He et al, PRD65, (2002) hep-ph/0108041].

EW phase transition with 4th generation requires 2 SU(2) doublet Higgs fields [Y.Kikukawa, M. Kohda, J.Yasuda, Prog.Theor.Phys'09]

arameterization of C2HDM and constrain

$$V = m_{11}^{2} (\Phi_{1}^{+} \Phi_{1}) + m_{22}^{2} (\Phi_{2}^{+} \Phi_{2}) + \lambda_{1} (\Phi_{1}^{+} \Phi_{1})^{2} + \lambda_{2} (\Phi_{1}^{+} \Phi_{1})^{2} + \lambda_{3} (\Phi_{1}^{+} \Phi_{1}) (\Phi_{2}^{+} \Phi_{2}) + \lambda_{4} |\Phi_{1}^{+} \Phi_{2}|^{2} + \{m_{12}^{2} (\Phi_{1}^{+} \Phi_{2}) + h.c\} + [\lambda_{5} (\Phi_{1}^{+} \Phi_{2})^{2} + h.c]$$

arameterization of C2HDM and constrain

$$V = m_{11}^{2} (\Phi_{1}^{+} \Phi_{1}) + m_{22}^{2} (\Phi_{2}^{+} \Phi_{2}) + \lambda_{1} (\Phi_{1}^{+} \Phi_{1})^{2} + \lambda_{2} (\Phi_{1}^{+} \Phi_{1})^{2} + \lambda_{3} (\Phi_{1}^{+} \Phi_{1}) (\Phi_{2}^{+} \Phi_{2}) + \lambda_{4} |\Phi_{1}^{+} \Phi_{2}|^{2} + \{m_{12}^{2} (\Phi_{1}^{+} \Phi_{2}) + h.c\} + [\lambda_{5} (\Phi_{1}^{+} \Phi_{2})^{2} + h.c]$$

• One can have: Explicit CP if $\Im(m_{12}^4 \lambda_5^*) \neq 0$

arameterization of C2HDM and constrain

$$V = m_{11}^2 (\Phi_1^+ \Phi_1) + m_{22}^2 (\Phi_2^+ \Phi_2) + \lambda_1 (\Phi_1^+ \Phi_1)^2 + \lambda_2 (\Phi_1^+ \Phi_1)^2 + \lambda_3 (\Phi_1^+ \Phi_1) (\Phi_2^+ \Phi_2) + \lambda_4 |\Phi_1^+ \Phi_2|^2 + \{m_{12}^2 (\Phi_1^+ \Phi_2) + h.c\} + [\lambda_5 (\Phi_1^+ \Phi_2)^2 + h.c]$$

- One can have: Explicit CP if $\Im(m_{12}^4 \lambda_5^*) \neq 0$
- For $\Im(m_{12}^4\lambda_5^*) = 0$: we can have Spontaneous QP if: $|\frac{m_{12}^2}{\lambda_5 v_1 v_2}| < 1$; $< \Phi_1 >= v_1$, $< \Phi_2 >= v_2 e^{i\theta}$, the minimum occurs for:

$$\cos \theta = \frac{m_{12}^2}{\lambda_5 v_1 v_2} \quad ; \lambda_5 \neq 0$$

Stability condition $\frac{\partial^2 V}{\partial \theta^2} > 0 \Rightarrow \lambda_5 > 0$,

parameterization of C2HDM

$$\Phi_1 = \begin{pmatrix} \varphi_1^+ \\ (v_1 + \eta_1 + i\chi_1)/\sqrt{2} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \varphi_2^+ \\ (v_2 + \eta_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

The physical Higgs eigenstates are obtained as follows.

The charged Higgs H^{\pm} and the charged Goldstone fields G^{\pm} are a mixture of $\varphi_{1,2}^{\pm}$:

$$H^{\pm} = -\sin\beta\varphi_1^{\pm} + \cos\beta\varphi_2^{\pm},$$

$$G^{\pm} = \cos\beta\varphi_1^{\pm} + \sin\beta\varphi_2^{\pm},$$

 $\tan\beta = v_2/v_1.$

The neutral physical Higgs states are obtained:

• One rotates the imaginary parts of: (χ_1, χ_2) into (G^0, η_3) :

$$G^{0} = \cos \beta \chi_{1} + \sin \beta \chi_{2},$$

$$\eta_{3} = -\sin \beta \chi_{1} + \cos \beta \chi_{2},$$

 G^0 is the Goldstone boson. The CP-odd η_3 mixes with the neutral CP-even components $\eta_{1,2}$.

•
$$\mathcal{M}_{ij}^2 = \partial^2 V_{\text{Higgs}} / (\partial \eta_i \partial \eta_j)$$
, $i, j = 1, 2, 3$
 $\mathcal{R}\mathcal{M}^2 \mathcal{R}^T = \text{diag}(M_{H_1^0}^2, M_{H_2^0}^2, M_{H_3^0}^2)$, $M_{H_1^0} \leq M_{H_2^0} \leq M_{H_3^0}$
with $(H_1^0, H_2^0, H_3^0)^T = \mathcal{R} \ (\eta_1, \eta_2, \eta_3)^T$
The mass eigenstates H_i^0 have a mixed CP structure.

 \mathcal{R} is parametrized by three rotation angles α_i , i = 1, 2, 3:

$$\mathcal{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_3 & s_3 \\ 0 & -s_3 & c_3 \end{pmatrix} \begin{pmatrix} c_2 & 0 & s_2 \\ 0 & 1 & 0 \\ -s_2 & 0 & c_2 \end{pmatrix} \begin{pmatrix} c_1 & s_1 & 0 \\ -s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix},$$

with $s_i = \sin \alpha_i$ and $c_i = \cos \alpha_i$,

$$-\frac{\pi}{2} < \alpha_1 \le \frac{\pi}{2}; \quad -\frac{\pi}{2} < \alpha_2 \le \frac{\pi}{2}; \quad 0 \le \alpha_3 \le \frac{\pi}{2}$$

The potential has 12 real parameters: 2 real masses: $m_{11,22}^2$, 2 VEVs, 4 reals: $\lambda_{1,2,3,4}$, 2 complex: λ_5, m_{12}^2 .

The potential has 12 real parameters: 2 real masses: $m_{11,22}^2$, 2 VEVs, 4 reals: $\lambda_{1,2,3,4}$, 2 complex: λ_5, m_{12}^2 .

2 minimization conditions eliminates $m_{11,22}^2$ and also relates Im (m_{12}^2) and Im (λ_5) : Im $(m_{12}^2) = v_1 v_2 \operatorname{Im}(\lambda_5)$.

The potential has 12 real parameters: 2 real masses: $m_{11,22}^2$, 2 VEVs, 4 reals: $\lambda_{1,2,3,4}$, 2 complex: λ_5, m_{12}^2 .

2 minimization conditions eliminates $m_{11,22}^2$ and also relates Im (m_{12}^2) and Im (λ_5) : Im $(m_{12}^2) = v_1 v_2 \operatorname{Im}(\lambda_5)$.

 $v_1^2 + v_2^2$ is fixed at the EW scale $v = (\sqrt{2}G_F)^{-1/2}$ = 246 GeV.

The potential has 12 real parameters: 2 real masses: $m_{11,22}^2$, 2 VEVs, 4 reals: $\lambda_{1,2,3,4}$, 2 complex: λ_5, m_{12}^2 .

2 minimization conditions eliminates $m_{11,22}^2$ and also relates Im (m_{12}^2) and Im (λ_5) : Im $(m_{12}^2) = v_1 v_2 \operatorname{Im}(\lambda_5)$.

 $v_1^2 + v_2^2$ is fixed at the EW scale $v = (\sqrt{2}G_F)^{-1/2}$ = 246 GeV.

remains: 8 real independent parameters:

 $\lambda_{1,2,3,4}, \operatorname{Re}(\lambda_5), \operatorname{Re}(m_{12}^2), \tan\beta, \operatorname{Im}(m_{12}^2).$

or

$$M_{H_1^0}, M_{H_2^0}, M_{H^+}, \alpha_1, \alpha_2, \alpha_3, \tan\beta, \operatorname{Re}(m_{12}).$$

$$M_{H_3^0}^2 = \frac{M_{H_1^0}^2 R_{13}(R_{12}\tan\beta - R_{11}) + M_{H_2^0}^2 R_{23}(R_{22}\tan\beta - R_{21})}{R_{33}(R_{31} - R_{32}\tan\beta)},$$

Higgs couplings to gauge bosons

The interactions relevant to our study are:

 $\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}\mathbf{W}) = \cos\beta R_{i1} + \sin\beta R_{i2},$ $\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}^{\pm}\mathbf{H}^{\mp}) = \mp i(\sin\beta R_{i1} - \cos\beta R_{i2}) \pm R_{i3}.$

Higgs couplings to gauge bosons

The interactions relevant to our study are:

$$\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}\mathbf{W}) = \cos\beta R_{i1} + \sin\beta R_{i2},$$

$$\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}^{\pm}\mathbf{H}^{\mp}) = \mp i(\sin\beta R_{i1} - \cos\beta R_{i2}) \pm R_{i3}.$$

One can derives the following sum rules:

 $\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{WW})^{2} + |\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}^{+}\mathbf{H}^{-})|^{2} = 1 \text{ for each } i = 1, 2, 3$ $\sum_{i=1}^{3} \mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{WW})^{2} = 1$

Higgs couplings to gauge bosons

The interactions relevant to our study are:

$$\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}\mathbf{W}) = \cos\beta R_{i1} + \sin\beta R_{i2},$$

$$\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}^{\pm}\mathbf{H}^{\mp}) = \mp i(\sin\beta R_{i1} - \cos\beta R_{i2}) \pm R_{i3}.$$

One can derives the following sum rules:

$$\begin{split} \mathcal{C}({\rm H}_{i}^{0}{\rm WW})^{2} + |\mathcal{C}({\rm H}_{i}^{0}{\rm W}^{+}{\rm H}^{-})|^{2} &= 1 \quad \text{for each } i = 1, 2, 3\\ \sum_{i=1}^{3} \mathcal{C}({\rm H}_{i}^{0}{\rm WW})^{2} &= 1 \end{split}$$
For a fixed *i*, if $|\mathcal{C}({\rm H}_{i}^{0}{\rm W}^{+}{\rm H}^{-})|^{2}$ is suppressed, then

 $(\sin\beta R_{i1} - \cos\beta R_{i2})^2 \approx 0$ and $R_{i3}^2 \approx 0$

 \Rightarrow H_i^0 is dominantly a CP-even state.

$$\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{WW})^{2} + |\mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{W}^{+}\mathbf{H}^{-})|^{2} = 1 \text{ for each } i = 1, 2, 3$$
$$\sum_{i=1}^{3} \mathcal{C}(\mathbf{H}_{i}^{0}\mathbf{WW})^{2} = 1$$

For a fixed *i*, if $|\mathcal{C}(\mathrm{H}_{i}^{0} \mathrm{W}^{+} \mathrm{H}^{-})|^{2}$ is suppressed, the second sum rule $\Rightarrow \mathcal{C}(\mathrm{H}_{j}^{0} \mathrm{WW})^{2} \approx 0$ for $j \neq i$.

Higgs couplings to fermions

if Φ_1 and Φ_2 couple to all fermions

$$\mathcal{L}_{Yukawa}^{2HDM} = -h_{ij}^{d,1} (\overline{\Psi_q^L})_i \Phi_1 d_j^R - h_{ij}^{u,1} (\overline{\Psi_q^L})_i \widetilde{\Phi}_1 u_j^R + (\Phi_1 \longleftrightarrow \Phi_2)$$

The mass term is: $M_{ij}^q = h_{ij}^{q,1} v_1 + h_{ij}^{q,2} v_2$

Higgs couplings to fermions

if Φ_1 and Φ_2 couple to all fermions

$$\mathcal{L}_{Yukawa}^{2HDM} = -h_{ij}^{d,1} (\overline{\Psi_q^L})_i \Phi_1 d_j^R - h_{ij}^{u,1} (\overline{\Psi_q^L})_i \widetilde{\Phi}_1 u_j^R + (\Phi_1 \longleftrightarrow \Phi_2)$$

The mass term is: $M_{ij}^{q} = h_{ij}^{q,1} v_1 + h_{ij}^{q,2} v_2$

Diagonalization of M_{ij}^q does not diagonalize $h_{ij}^{q,k}$.

Higgs couplings to fermions

if Φ_1 and Φ_2 couple to all fermions

$$\mathcal{L}_{Yukawa}^{2HDM} = -h_{ij}^{d,1} (\overline{\Psi_q^L})_i \Phi_1 d_j^R - h_{ij}^{u,1} (\overline{\Psi_q^L})_i \widetilde{\Phi}_1 u_j^R + (\Phi_1 \longleftrightarrow \Phi_2)$$

The mass term is: $M_{ij}^q = h_{ij}^{q,1} v_1 + h_{ij}^{q,2} v_2$

Diagonalization of M_{ij}^q does not diagonalize $h_{ij}^{q,k}$.

We would have FCNC at tree level!

Symétrie Z_2 (Théorème de Glashow-Weinberg): $\Phi_2 \rightarrow -\Phi_2$, $u_{iR} \rightarrow -u_{iR}$: 2HDM-II (pareil qu'au MSSM)

Symétrie Z_2 (Théorème de Glashow-Weinberg): $\Phi_2 \rightarrow -\Phi_2$, $u_{iR} \rightarrow -u_{iR}$: 2HDM-II (pareil qu'au MSSM)

	2HDM-I	2HDM-II	2HDM-III	2HDM-(IV) (2HDM-L)
up	Φ_2	Φ_2	Φ_2	Φ_2
down	Φ_2	Φ_1	Φ_1	Φ_2
lepton	Φ_2	Φ_1	Φ_2	Φ_1

2HDM-IV ou 2HDM-L: (Lepton-specific model)

Symétrie Z_2 (Théorème de Glashow-Weinberg): $\Phi_2 \rightarrow -\Phi_2$, $u_{iR} \rightarrow -u_{iR}$: 2HDM-II (pareil qu'au MSSM)

	2HDM-I	2HDM-II	2HDM-III	2HDM-(IV) (2HDM-L)				
up	Φ_2	Φ_2	Φ_2	Φ_2				
down	Φ_2	Φ_1	Φ_1	Φ_2				
lepton	Φ_2	Φ_1	Φ_2	Φ_1				
2HDM-IV ou 2HDM-L: (Lepton-specific model)								
$H_i b\bar{b} = -i\frac{gm_b}{2m_W} \left(\frac{R_{i1}}{\cos\beta} - iR_{i3}\tan\beta\gamma_5\right)$								
$H_i t \bar{t} = -i \frac{g m_t}{2m_W} \left(\frac{R_{i2}}{\sin \beta} - i R_{i3} \cot \beta \gamma_5 \right)$								

Feynman Diagrams

Feynman Diagrams

f

g

h

j

i.

р

r

t

s

NCTS, 24th May 2011 - p.15/30

Feynman Diagrams: vetex & selfenergies

Feynman Diagrams: vetex & selfenergies

Feynman Diagrams: boxes

Decay rate asymmetries $A_{D,f}^{CP}$, defined by: $A_{D,f}^{CP} (H^{\pm} \to f) = \frac{\Gamma(H^{+} \to f) - \Gamma(H^{-} \to \bar{f})}{2\Gamma^{\text{tree}}(H^{+} \to f)}, \ f = t\bar{b}; \ W^{\pm}H_{i}^{0}$

Decay rate asymmetries $A_{D,f}^{CP}$, defined by: $A_{D,f}^{CP} (H^{\pm} \to f) = \frac{\Gamma(H^{+} \to f) - \Gamma(H^{-} \to \bar{f})}{2\Gamma^{\text{tree}}(H^{+} \to f)}, \ f = t\bar{b}; \ W^{\pm}H_{i}^{0}$

Production rate asymmetry A_P^{CP} defined by:

 $A_P^{CP} = \frac{\sigma(pp \to H^+ \bar{t}) - \sigma(pp \to H^- t)}{2\sigma^{\text{tree}}(pp \to H^+ \bar{t})} ,$

Decay rate asymmetries $A_{D,f}^{CP}$, defined by: $A_{D,f}^{CP} (H^{\pm} \to f) = \frac{\Gamma(H^{+} \to f) - \Gamma(H^{-} \to \bar{f})}{2\Gamma^{\text{tree}}(H^{+} \to f)}, \ f = t\bar{b}; \ W^{\pm}H_{i}^{0}$

Production rate asymmetry A_P^{CP} defined by: $A_P^{CP} = \frac{\sigma(pp \rightarrow H^+ \bar{t}) - \sigma(pp \rightarrow H^- t)}{2\sigma^{\text{tree}}(pp \rightarrow H^+ \bar{t})},$

Asymmetries A_f^{CP} for production and subsequent decays: $A_f^{CP} = \frac{\sigma(pp \rightarrow \bar{t}H^+ \rightarrow \bar{t}f) - \sigma(pp \rightarrow tH^- \rightarrow t\bar{f})}{2\sigma^{\text{tree}}(pp \rightarrow \bar{t}H^+ \rightarrow \bar{t}f)}.$

Decay rate asymmetries $A_{D,f}^{CP}$, defined by: $A_{D,f}^{CP} (H^{\pm} \to f) = \frac{\Gamma(H^{+} \to f) - \Gamma(H^{-} \to \bar{f})}{2\Gamma^{\text{tree}}(H^{+} \to f)}, \ f = t\bar{b}; \ W^{\pm}H_{i}^{0}$

Production rate asymmetry A_P^{CP} defined by: $A_P^{CP} = \frac{\sigma(pp \rightarrow H^+ \bar{t}) - \sigma(pp \rightarrow H^- t)}{2\sigma^{\text{tree}}(pp \rightarrow H^+ \bar{t})},$

Asymmetries A_f^{CP} for production and subsequent decays: $A_f^{CP} = \frac{\sigma(pp \rightarrow \bar{t}H^+ \rightarrow \bar{t}f) - \sigma(pp \rightarrow tH^- \rightarrow t\bar{f})}{2\sigma^{\text{tree}}(pp \rightarrow \bar{t}H^+ \rightarrow \bar{t}f)}.$

In the narow width approximation:

$$A_f^{CP} = A_P^{CP} + A_{D,f}^{CP}$$

• $m_{H\pm} \gtrsim 290$ GeV: ($b \rightarrow s\gamma$)

- $m_{H\pm} \gtrsim 290$ GeV: ($b \rightarrow s\gamma$)
- ρ parameter: extra-contribution: $-0.0011 \le \Delta \rho \le 0.0029$.

- $m_{H\pm} \gtrsim 290$ GeV: ($b \rightarrow s\gamma$)
- ρ parameter: extra-contribution: $-0.0011 \le \Delta \rho \le 0.0029$.

Theoretical constraints: Potential bounded from bellow: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0$, $\lambda_4 + \lambda_4 - |\lambda_5| + \sqrt{\lambda_1 \lambda_2} > 0$

- $m_{H\pm} \gtrsim 290$ GeV: ($b \rightarrow s\gamma$)
- ρ parameter: extra-contribution: $-0.0011 \le \Delta \rho \le 0.0029$.

Theoretical constraints: Potential bounded from bellow: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0$, $\lambda_4 + \lambda_4 - |\lambda_5| + \sqrt{\lambda_1 \lambda_2} > 0$

Perturbative unitarity constraints:

$$\left| \begin{pmatrix} \lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4|\lambda_5|^2} \end{pmatrix} \right| < 16\pi, \\ \left| \begin{pmatrix} \lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \end{pmatrix} \right| < 16\pi,$$

$$\left|3(\lambda_1+\lambda_2)\pm\sqrt{9(\lambda_1-\lambda_2^2+4(\lambda_3+\lambda_4)^2)}\right| < 16\pi,$$

Numerics: $H^{\pm} \rightarrow tb$

Figure 1: Left: $A_{D,tb}^{CP}$ as a function of M_{H^+} . $M_{H_1^0,H_2^0} = 120,220$ GeV, $\text{Re}(m_{12}) = 170$ GeV, $\alpha_1 = 0.8$, $\alpha_2 = -0.9$ and $\alpha_3 = \pi/3$. Right: Cancellation for $\tan \beta = 1.5$.

Numerics: $H^{\pm} \rightarrow W^{\pm}H_1$

Figure 2: Left: $A_{D,WH_1^0}^{CP}$ as a function of M_{H^+} . Right: Cancellation in $A_{D,WH_1^0}^{CP}$ for $\tan \beta = 1.5$.

Figure 3: The allowed regions in (α_1, α_2) plan together with $|A_{D,tb}^{CP}|$. $M_{H_1^0,H_2^0,H^{\pm}} = 120,220,350$ GeV, $\operatorname{Re}(m_{12}) = 170$ GeV, and $\alpha_3 = \pi/3$. On the top left plot $\tan \beta = 1.5$ and $\tan \beta = 3$

Figure 4: The BR $(H^+ \rightarrow W^+ H_1^0)$ as a function of α_1 with α_2 in the allowed parameter range, $\tan \beta = 1.5$ (left), $\tan \beta = 3$ (right)

Production: $pp \rightarrow tH^+$

Figure 5: A_P^{CP} as a function of $m_{H\pm}$ with $M_{H_1^0,H_2^0} = 120,220$ GeV, $\operatorname{Re}(m_{12}) = 170$ GeV, $\alpha_1 = 0.8$, $\alpha_2 = -0.9$ and $\alpha_3 = \pi/3$; Right: cancellation in A_P^{CP} as a function of M_{H^+} for $\tan \beta = 1.5$

Production: $pp \rightarrow tH^+$

Figure 6: The allowed parameter regions in the (α_1, α_2) plan in the C2HDM together with $|A_P^{CP}|$.

Production and decays

NCTS, 24th May 2011 - p.26/30

CPV in neutral Higgs decays into fermion

At the LHC, the expected accuracy for $h \to \tau^+ \tau -$ is about 20% .

CPV in neutral Higgs decays into fermion

At the LHC, the expected accuracy for $h \to \tau^+ \tau -$ is about 20% .

$$A_{CP} = \frac{\Gamma^1(H_1 \to f_L \bar{f}_L) - \Gamma^1(H_1 \to f_R \bar{f}_R)}{\Gamma^0(H_1 \to f_L \bar{f}_L) + \Gamma^0(H_1 \to f_R \bar{f}_R)}$$

CPV in neutral Higgs decays into fermion

At the LHC, the expected accuracy for $h \to \tau^+ \tau -$ is about 20% .

$$A_{CP} = \frac{\Gamma^1(H_1 \to f_L \bar{f}_L) - \Gamma^1(H_1 \to f_R \bar{f}_R)}{\Gamma^0(H_1 \to f_L \bar{f}_L) + \Gamma^0(H_1 \to f_R \bar{f}_R)}$$

 $Br(H_1 \to \tau^+ \tau^- \& b\bar{b}) \text{ suppressed for } \alpha_2 \approx 0 \text{ and } \alpha_1 \approx \pm \pi/2$ $H_1 b\bar{b} = -i \frac{gm_b}{2m_W c_\beta} (\cos \alpha_1 \cos \alpha_2 - i \sin \alpha_2 \sin \beta \gamma_5)$

 $H_1 \to \tau^+ \tau^-$

 $H_2 \to t\bar{t}$

Production: $pp \rightarrow tH^+$

- In C2HDM with softly broken Z_2 , the complex m_{12}^2 parameter of the tree-level potential gives CPV in $pp \rightarrow H^{\pm}t + X$, and H^{\pm} to tb, and to WH_i , i=1,2
- The parameters space of C2HDM is severely constrained by vacuum stability, perturbative unitarity ... CPA cannot be greater than \sim 3 %.
- In the CMSSM, the CPVA can reach more than 20%. However, at the LHC they will have roughly same statistical significance. Not enough for a clear observation at the LHC.
- need for SLHC!
- Calculations have been done with FeynArts & FormCalc. A new model file has been created and corresponding fortran drivers have been written and tested.