Phenomenology in HTM with A4 Symmetry

PRESENTATION

Koji TSUMURA (NTU) NCTS seminar 22 March 2011

Phenomenology in the Higgs Triplet Model (HTM) with the A_4 Symmetry T. Fukuyama, H. Sugiyama and K.T. Phys. Rev. D82 036004 (2010)

Outline

- Introduction
- Higgs Triplet Model (HTM)
- A4 symmetry
- **D** HTM with A4
- Phenomenology
- Summary

Neutrino

Neutrinos are massless in the SM

But, solar/atmospheric neutrino deficits are observed. → ... Massive neutrino?

Neutrino oscillation

Manifestly oscillating

→ Massive Neutrino (a clear evidence of BSM)

ncts seminar, 22 Mar 2011

Introduction

Oscillation data:

Why are neutrino masses so important?

Comparison with other fermions

■ Extremely small mass → suggest new phys. Scale?

Large mixing \rightarrow new phys. in lepton sector?

Majorana nature for neutral fermions

Mass term can be written by left-handed field.

$$\underbrace{\frac{1}{2}m(\nu_L)^c}_{\nu_L} + \text{H.c.}$$

cf. Charged fermion mass term:

 $m\overline{f_L}f_R$ + H.c.

Dim.5 Weinberg op.

$$\mathcal{O}_W = (L\Phi)^{\dagger}(L\Phi) \qquad \rightarrow \frac{1}{2}m\overline{(\nu_L)^c}\nu_L + \text{H.c.}$$

Possible origin of neutrino Majorana mass in the eff. SM

→ Seesaw I, II and III (tree-level decomposition)

 \rightarrow New source of mass scale other than EW vev

Higgs Triplet Model:

A model for Majorana neutrino mass

D Motivations:

- Rich LFV phenomenology
- Interesting collider phenomenology

ncts seminar, 22 Mar 2011

Higgs Triplet Model (HTM)

Adding a complex SU(2) triplet scalar with Y=2

Doubly charged Higgs boson

Neutrino mass generation in HTM

$$h_{\ell\ell'} \left(-\overline{(\ell_L)^c}, \overline{(\nu_{\ell L})^c} \right) \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ / \sqrt{2} \end{pmatrix} \begin{pmatrix} \nu_{\ell' L} \\ \ell'_L \end{pmatrix} + \text{h.c.}$$

Triplet scalar develops vev: $v_\Delta\equiv\sqrt{2}\langle\Delta^0
angle\simeqrac{\mu\,v^2}{2M^2}$

$$\frac{1}{2}\sqrt{2} \, \underline{v}_{\Delta} h_{\ell\ell'} \, \overline{(\nu_{\ell L})^c} \nu_{\ell' L} + \text{h.c.} + \cdots$$

L# violation generates NGB?

HTM potential

Explicit L# breaking to avoid NGB (Majoron)

Soft L# breaking parameter

Possible realizations

$$(M_{\nu})_{\ell\ell'} = \sqrt{2} \, v_{\Delta} \, h_{\ell\ell'} \simeq \frac{\mu v^2}{\sqrt{2}M^2} \, h_{\ell\ell'}$$

Heavy triplet scalar (M) : often called type2-seesaw
 Small Yukawa (h_II)

\square Small L# breaking (μ): moderate (M & h_II)

 \rightarrow h_II can affect low energy LFV, and triplet scalar can be discovered at the LHC

HTM at the LHC

ncts seminar, 22 Mar 2011

Phenomenology of double charged Higgs bosons

Discovery pot. of triplet Higgs boson @ LHC

Akeroyd, Chiang, JHEP11(2010)005

ncts seminar, 22 Mar 2011

LHC vs Low energy data

ncts seminar, 22 Mar 2011

Rich Higgs phenomenology in HTM

Yukawa (h_II) prop. to Neutrino mass

$$(M_{\nu})_{\ell\ell'} = \sqrt{2} \, \boldsymbol{v}_{\Delta} \, h_{\ell\ell'} \simeq \frac{\mu v^2}{\sqrt{2}M^2} \, h_{\ell\ell'}$$

Rich Higgs phenomenology

H++ can be produced at LHC; M < 1 TeV
 H++ decays (Testable!!)

 vs neutrino oscillation data
 vs low energy LFV (Lepton flavor violation)
 vs low energy L#V (Lepton number violation)

A4 flavor symmetry

A4 group: alternating group for 4 letters flavor sym.: Origin of fermion masses and mixings

Why are we focusing on A4 symmetry?

ncts seminar, 22 Mar 2011

Oscillation data:

Neutrino mixing

■ Tri-Bi-Maximal mixing: good agreement with experiments.

$$U_{\rm MNS} = U_{\rm TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\sim \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 $\omega = e^{2\,i\,\pi/3}$

Z3 symmetry in charged lepton sector **Z2** symmetry in neutrino sector

Z6, S3 also contain Z2 and Z3, but there is no irr. 3-rep. \rightarrow A4

A4 group (alternating group for 4 letters)

even-permutation of 4 letters (12 elements)

- **\square** Elemental transposition S: S² = I \rightarrow Z2
- **D** Elemental transposition T: $T^3 = I \rightarrow Z3$

others can be obtained from products of S and T, ex., ST, STS, ...

$$(1, 2, 3, 4) \begin{cases} \underbrace{e}_{a_1 \equiv S} & (1, 2, 3, 4) \\ a_1 \equiv S & (2, 1, 4, 3) \\ a_2 \equiv T & (1, 3, 4, 2) \\ \vdots \\ a_{11} & (2, 3, 1, 4) \end{cases} \xrightarrow{1} \\ (2, 3, 1, 4) \xrightarrow{1} \\ (4) \end{cases} \xrightarrow{T}$$

Irreducible representations of A4

$\Box \text{ Transformations under A4} \qquad \begin{array}{c} S^2 = T^3 = (ST)^3 = 1 \end{array}$ 1-dim. rep. : $\begin{cases} \underline{1} : S \underline{1} = \underline{1}, & T \underline{1} = \underline{1} \\ \underline{1}' : S \underline{1}' = \underline{1}', & T \underline{1}' = \omega \underline{1}' \\ \underline{1}'' : S \underline{1}'' = \underline{1}'', & T \underline{1}' = \omega^2 \underline{1}'' \end{cases} \qquad \omega \equiv \exp\left(\frac{2\pi i}{3}\right)$ 3-dim. rep. : $\underline{3} = \begin{pmatrix} 3_x \\ 3_y \\ 3_z \end{pmatrix} : S \underline{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \underline{3}, \quad T \underline{3} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \underline{3}$

3-dim. rep. may be related for 3 generation of fermion family

Computation rules

 $\underline{\mathbf{3}}\otimes\underline{\mathbf{3}}=\underline{\mathbf{1}}\oplus\underline{\mathbf{1}}'\oplus\underline{\mathbf{1}}''\oplus\underline{\mathbf{3}}_s\oplus\underline{\mathbf{3}}_a$ $\mathbf{3} \otimes \mathbf{3} \rightarrow \mathbf{1}$: $(ab)_{\mathbf{1}} \equiv \mathbf{a}_{x}\mathbf{b}_{x} + a_{y}b_{y} + \mathbf{a}_{z}b_{z}$ $\mathbf{3} \otimes \mathbf{3} \rightarrow \mathbf{1}'$: $(ab)_{\mathbf{1}'} \equiv \mathbf{a}_x \mathbf{b}_x + \omega^2 a_y b_y + \omega \mathbf{a}_z \mathbf{b}_z$ $\begin{cases} \xrightarrow{S} a_x b_x + \omega^2 (-a_y)(-b_y) + \omega (-a_z)(-b_z) \\ = a_x b_x + \omega^2 a_y b_y + \omega a_z b_z \\ \xrightarrow{T} a_y b_y + \omega^2 a_z b_z + \omega a_x b_x \\ = \omega (a_x b_x + \omega^2 a_y b_y + \omega a_z b_z) \end{cases}$ $\underline{\mathbf{3}} \otimes \underline{\mathbf{3}} \to \underline{\mathbf{1}}'' : (ab)_{\mathbf{1}''} \equiv \underline{\mathbf{a}}_{x} \underline{\mathbf{b}}_{x} + \omega a_{y} b_{y} + \omega^{2} \underline{\mathbf{a}}_{z} \underline{\mathbf{b}}_{z}$ $\underline{\mathbf{3}} \otimes \underline{\mathbf{3}} \to \underline{\mathbf{3}}_s : (ab)_{\mathbf{3}_s} \equiv \begin{pmatrix} a_y b_z + a_z b_y \\ a_z b_x + a_x b_z \\ a_x b_y + a_y b_z \end{pmatrix} \quad (ab)_{\mathbf{3}_s} = (ba)_{\mathbf{3}_s}$ $\underline{\mathbf{3}} \otimes \underline{\mathbf{3}} \to \underline{\mathbf{3}}_a : (ab)_{\mathbf{3}_a} \equiv \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \quad (ab)_{\mathbf{3}_a} = -(ba)_{\mathbf{3}_a}$

ncts seminar, 22 Mar 2011

A4HTM:

The minimal A4 symmetric extension of the Higgs triplet model with soft A4 breaking terms

A4HTM (particle contents)

		ψ_{1R}^-	ψ_{2R}^-	ψ^{3R}	$ \Psi_{AL} =$	$\left(egin{array}{c} \psi^0_{{m A}L} \ \psi^{{m A}L} \end{array} ight)$		
A_4		1	<u>1</u> ′	<u>1</u> "		<u>3</u>		
$SU(2)_L$ sin		singlet	singlet	singlet	doublet			
U(1)	Y	-2	-2	-2		-1		
	Φ_A	$\mathbf{q} = \begin{pmatrix} \phi_A^+\\ \phi_A^0 \end{pmatrix}$	$\Big) \left \delta =$	$ \begin{pmatrix} \frac{\delta^+}{\sqrt{2}} \\ \delta^0 & - \end{pmatrix} $	$ \begin{pmatrix} \delta^{++} \\ -\frac{\delta^{+}}{\sqrt{2}} \end{pmatrix} $	$\Delta_{\mathbf{A}} = \begin{pmatrix} \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \end{pmatrix}$	$ \begin{array}{c} \Delta_{\underline{A}}^{+} & \Delta_{\underline{A}}^{++} \\ \overline{\sqrt{2}} & \Delta_{\underline{A}}^{0} & -\frac{\Delta_{\underline{A}}^{+}}{\sqrt{2}} \end{array} \right) $	_
	<u>3</u>			<u>1</u>		<u>3</u>		-
	doublet			triplet		triplet		
				2		2		

ncts seminar, 22 Mar 2011

A4 Yukawa interaction for charged fermions

• Mass generation

$$\left(\overline{\Psi_{xL}} \Phi_x, \ \overline{\Psi_{yL}} \Phi_y, \ \overline{\Psi_{zL}} \Phi_z\right) \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} y_1 \Psi_{1R}^-\\ y_2 \Psi_{2R}^-\\ y_3 \Psi_{3R}^- \end{pmatrix} + \text{h.c.}$$

 \blacksquare Developing aligned vev: $\langle \phi^0_x \rangle = \langle \phi^0_y \rangle = \langle \phi^0_z \rangle = v/\sqrt{6}$

Mass eigenvalues:

$$\left(m_e \equiv \frac{y_1}{\sqrt{2}}, \quad m_\mu \equiv \frac{y_2}{\sqrt{2}}, \quad m_\tau \equiv \frac{y_3}{\sqrt{2}} \right)$$

Structures are same for up and down quarks

A4HTM potetial 1

$$\begin{split} V_{\text{A4HTM}} \equiv & V_m + V_1 + V_2 + V_3 + V_4 + V_5 + V_\mu, \\ V_m \equiv & -m_{\Phi}^2 \left(\Phi^{\dagger} \Phi \right)_1 + M_{\delta}^2 \operatorname{Tr}(\delta^{\dagger} \delta) + M_{\Delta}^2 \operatorname{Tr}(\Delta^{\dagger} \Delta)_1, \\ V_4 \equiv & \lambda_{4\delta} \left(\Phi^{\dagger} \Phi \right)_1 \operatorname{Tr}(\delta^{\dagger} \delta) + \lambda_{4\Delta} \left(\Phi^{\dagger} \Phi \right)_1 \operatorname{Tr}(\Delta^{\dagger} \Delta)_1 \\ & + \left\{ \lambda'_{4\Delta p} \left(\Phi^{\dagger} \Phi \right)_{1''} \operatorname{Tr}(\Delta^{\dagger} \Delta)_{3_s} + \lambda_{4\Delta aa} \left(\Phi^{\dagger} \Phi \right)_{3_a} \operatorname{Tr}(\Delta^{\dagger} \Delta)_{3_a} \\ & + \lambda_{4\Delta sa} \left(\Phi^{\dagger} \Phi \right)_{3_s} \operatorname{Tr}(\Delta^{\dagger} \Delta)_{3_a} + i\lambda_{4\Delta aa} \left(\Phi^{\dagger} \Phi \right)_{3_a} \operatorname{Tr}(\Delta^{\dagger} \Delta)_{3_s} \\ & + \left\{ \lambda'_{4s} \delta^*_{\beta \alpha} \left[\Delta_{\beta \alpha} \left(\Phi^{\dagger} \Phi \right)_{3_s} \right]_1 + \lambda'_{4a} \delta^*_{\beta \alpha} \left[\Delta_{\beta \alpha} \left(\Phi^{\dagger} \Phi \right)_{3_a} \right]_1 + \text{h.c.} \right\}, \\ V_5 \equiv & \lambda_{5\delta} \left(\Phi^{\dagger} \sigma^i \Phi \right)_1 \operatorname{Tr}(\delta^{\dagger} \sigma^i \Delta)_{1'} + \text{h.c.} \right\} \\ & + \left\{ \lambda'_{5\Delta p} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{1''} \operatorname{Tr}(\Delta^{\dagger} \sigma^i \Delta)_{3_s} + \lambda_{5\Delta aa} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{3_a} \operatorname{Tr}(\Delta^{\dagger} \sigma^i \Delta)_{3_a} \\ & + i\lambda_{5\Delta sa} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{3_s} \operatorname{Tr}(\Delta^{\dagger} \sigma^i \Delta)_{3_a} + i\lambda_{5\Delta as} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{3_a} \operatorname{Tr}(\Delta^{\dagger} \sigma^i \Delta)_{3_s} \\ & + \left\{ \lambda'_{5s} \left(\delta^{\dagger} \sigma^i \right)_{\alpha \beta} \left[\Delta_{\beta \alpha} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{3_s} \right]_1 \\ & + \left\{ \lambda'_{5s} \left(\delta^{\dagger} \sigma^i \right)_{\alpha \beta} \left[\Delta_{\beta \alpha} \left(\Phi^{\dagger} \sigma^i \Phi \right)_{3_a} \right]_1 + \text{h.c.} \right\}. \end{split}$$

A4HTM potential 2

$$\begin{split} V_{\text{A4HTM}} &\equiv V_m + V_1 + V_2 + V_3 + V_4 + V_5 + V_\mu, \\ V_1 &= \lambda_1 \left[(\Phi^{\dagger} \Phi)_1 \right]^2 + \lambda_{1p} (\Phi^{\dagger} \Phi)_{1'} (\Phi^{\dagger} \Phi)_{1''} \\ &+ \lambda_{1ss} ((\Phi^{\dagger} \Phi)_{3_s} (\Phi^{\dagger} \Phi)_{3_s})_1 + \lambda_{1aa} ((\Phi^{\dagger} \Phi)_{3_a} (\Phi^{\dagger} \Phi)_{3_a})_1 \\ &+ i\lambda_{1sa} (\Phi^{\dagger} \Phi)_{3_s} (\Phi^{\dagger} \Phi)_{3_a}, \\ V_2 &= \lambda_{2\delta} \left[\text{Tr} (\delta^{\dagger} \delta) \right]^2 \\ &+ \lambda_{2\Delta} \left[\text{Tr} (\Delta^{\dagger} \Delta)_1 \right]^2 + \lambda_{2\Delta p} \text{Tr} (\Delta^{\dagger} \Delta)_{1'} \text{Tr} (\Delta^{\dagger} \Delta)_{1''} \\ &+ \lambda_{2\Delta ss} \left(\text{Tr} (\Delta^{\dagger} \Delta)_{3_s} \text{Tr} (\Delta^{\dagger} \Delta)_{3_s} \right)_1 + \lambda_{2\Delta aa} \left(\text{Tr} (\Delta^{\dagger} \Delta)_{3_a} \text{Tr} (\Delta^{\dagger} \Delta)_{3_a} \right)_1 \\ &+ i\lambda_{2\Delta sa} \left(\text{Tr} (\Delta^{\dagger} \Delta)_{3_s} \text{Tr} (\Delta^{\dagger} \Delta)_{3_a} \right)_1 \\ &+ \lambda_{2\delta \Delta 1} \text{Tr} (\delta^{\dagger} \delta) \text{Tr} (\Delta^{\dagger} \Delta)_1 + \lambda_{2\delta \Delta 2} (\delta^*_{\beta \alpha} \delta_{\omega \gamma}) (\Delta_{\beta \alpha} \Delta^*_{\omega \gamma})_1 \\ &+ \left\{ \lambda'_{2\delta \Delta s} \left(\delta^*_{\beta \alpha} \delta^*_{\omega \gamma} \right) \left[\Delta_{\beta \alpha} \Delta_{\omega \gamma} \right]_1 + \text{h.c.} \right\} \\ &+ \left\{ \lambda'_{2\delta \Delta a} \delta^*_{\beta \alpha} \left[\Delta_{\beta \alpha} (\Delta^*_{\omega \gamma} \Delta_{\omega \gamma})_{3_a} \right]_1 + \text{h.c.} \right\}. \end{split}$$

A4HTM potential 3

$$\begin{split} V_{\text{A4HTM}} &\equiv V_m + V_1 + V_2 + V_3 + V_4 + V_5 + V_\mu, \\ V_3 &= \frac{1}{2} \lambda_{3\delta} \left\{ \left[\text{Tr}(\delta^{\dagger} \delta) \right]^2 - \text{Tr}\left(\left[\delta^{\dagger} \delta \right]^2 \right) \right\} \\ &+ \frac{1}{2} \lambda_{3\Delta} \left\{ \left[\text{Tr}(\Delta^{\dagger} \Delta)_1 \right]^2 - \text{Tr}\left(\left[(\Delta^{\dagger} \Delta)_1 \right]^2 \right) \right\} \\ &+ \frac{1}{2} \lambda_{3\Delta p} \left\{ \text{Tr}(\Delta^{\dagger} \Delta)_{1'} \text{Tr}(\Delta^{\dagger} \Delta)_{1''} - \text{Tr}\left((\Delta^{\dagger} \Delta)_{1'} (\Delta^{\dagger} \Delta)_{1''} \right) \right\} \\ &+ \frac{1}{2} \lambda_{3\Delta ss} \left\{ \left(\text{Tr}(\Delta^{\dagger} \Delta)_{3_s} \text{Tr}(\Delta^{\dagger} \Delta)_{3_s} \right)_1 - \text{Tr}\left((\Delta^{\dagger} \Delta)_{3_s} (\Delta^{\dagger} \Delta)_{3_s} \right)_1 \right\} \\ &+ \frac{1}{2} \lambda_{3\Delta aa} \left\{ \left(\text{Tr}(\Delta^{\dagger} \Delta)_{3_s} \text{Tr}(\Delta^{\dagger} \Delta)_{3_a} \right)_1 - \text{Tr}\left((\Delta^{\dagger} \Delta)_{3_a} (\Delta^{\dagger} \Delta)_{3_a} \right)_1 \right\} \\ &+ \frac{1}{2} \lambda_{3\Delta aa} \left\{ \left(\text{Tr}(\Delta^{\dagger} \Delta)_{3_s} \text{Tr}(\Delta^{\dagger} \Delta)_{3_a} \right)_1 - \text{Tr}\left((\Delta^{\dagger} \Delta)_{3_s} (\Delta^{\dagger} \Delta)_{3_a} \right)_1 \right\} \\ &+ \frac{1}{2} \lambda_{3\delta\Delta 1} \left\{ \text{Tr}(\delta^{\dagger} \delta) \text{Tr}(\Delta^{\dagger} \Delta)_1 - \text{Tr}\left((\delta^{\dagger} \delta) (\Delta^{\dagger} \Delta)_1 \right) \right\} \\ &+ \frac{1}{2} \lambda_{3\delta\Delta 2} \left\{ \delta^*_{\beta\alpha} (\Delta_{\beta\alpha} \Delta^*_{\omega\gamma})_1 \delta_{\omega\gamma} - \text{Tr}\left(\delta^{\dagger} (\Delta\Delta^{\dagger})_1 \delta \right) \right\} \\ &+ \dots \end{split}$$

A4HTM potential 4

$$\begin{split} V_{\text{A4HTM}} &\equiv V_m + V_1 + V_2 + V_3 + V_4 + V_5 + V_\mu, \\ V_3 &= \dots \\ &+ \left\{ \frac{1}{2} \lambda'_{3\delta\Delta3} \left(\left(\delta^*_{\beta\alpha} \delta^*_{\omega\gamma} \right) \left[\Delta_{\beta\alpha} \Delta_{\omega\gamma} \right]_1 - \delta^*_{\beta\alpha} \delta^*_{\omega\gamma} \left[\Delta_{\beta\gamma} \Delta_{\omega\alpha} \right]_1 \right) + \text{h.c.} \right\} \\ &+ \left\{ \frac{1}{2} \lambda'_{3\delta\Delta3} \left(\delta^*_{\beta\alpha} \left[\Delta_{\beta\alpha} (\Delta^*_{\omega\gamma} \Delta_{\omega\gamma})_{\mathbf{3}_s} \right]_1 - \delta^*_{\beta\alpha} \left[\Delta_{\beta\gamma} (\Delta^*_{\omega\gamma} \Delta_{\omega\alpha})_{\mathbf{3}_s} \right]_1 \right) + \text{h.c.} \right\} \\ &+ \left\{ \frac{1}{2} \lambda'_{3\delta\Delta a} \delta^*_{\beta\alpha} \left[\Delta_{\beta\alpha} (\Delta^*_{\omega\gamma} \Delta_{\omega\gamma})_{\mathbf{3}_a} \right]_1 + \text{h.c.} \right\}, \\ V_\mu &= \frac{1}{\sqrt{2}} \mu_\delta \left[\Phi_\alpha \Phi_\beta \right]_1 (i\sigma^2 \delta^\dagger)_{\alpha\beta} + \frac{1}{\sqrt{2}} \mu_\Delta \left((\Phi_\alpha \Phi_\beta)_{\mathbf{3}_s} (i\sigma^2 \Delta^\dagger)_{\alpha\beta} \right)_1 + \text{h.c.} \end{split}$$

Soft A4 breaking terms

$$\tilde{V}_{\mu} = \frac{1}{\sqrt{2}} \mu_{\delta} \left[\Phi_{\alpha} \Phi_{\beta} \right]_{\mathbf{1}} (i\sigma^2 \delta^{\dagger})_{\alpha\beta} + \frac{1}{\sqrt{2}} \mu_{\Delta_x} (2\Phi_{y\alpha} \Phi_{z\beta}) (i\sigma^2 \Delta_x^{\dagger})_{\alpha\beta} + \text{h.c.}$$

D Unitary transf.

$$\begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} \equiv U_L^{\dagger} \begin{pmatrix} \Psi_{xL} \\ \Psi_{yL} \\ \Psi_{zL} \end{pmatrix} \qquad \begin{pmatrix} e_R \\ \mu_R \\ \tau_R \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_{1R}^- \\ \psi_{2R}^- \\ \psi_{3R}^- \end{pmatrix}$$

$$L_{\ell} \equiv \begin{pmatrix} \nu_{\ell L} \\ \ell_{L} \end{pmatrix} \qquad \left(\begin{array}{ccc} U_{L} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right)$$

Z3 sym. in quark and charged lepton mixing

Quark CKM mixing

$$U_{\rm CKM} = (U_L^d)^{\dagger} U_L^u = U_L^{\dagger} U_L = I$$

Unit matrix at LO. (or Quarks can be coupled with other $\Phi[1]$, next slide)

Effectively Type-X 2HDM

Quarks and leptons couple to other Higgs doublet

$$\Phi_1 = rac{1}{\sqrt{3}}(\Phi_x + \Phi_y + \Phi_z): ext{ for leptons}$$

 Φ_2 : for quarks

	$\psi_{iR}^{2\over 3}$	$\psi_{iR}^{-rac{1}{3}}$	$ \left \begin{array}{c} \Psi_{iQ} = \begin{pmatrix} \psi_{iL}^{\frac{2}{3}} \\ \psi_{iL}^{-\frac{1}{3}} \end{pmatrix} \right $	Φ_2
A_4	1	<u>1</u>	<u>1</u>	<u>1</u>
$SU(2)_L$	singlet	singlet	doublet	doublet
$U(1)_Y$	4/3	-2/3	1/3	1

Neutrino mixing

■ Tri-Bi-Maximal mixing: good agreement with experiments.

$$U_{\rm MNS} = U_{\rm TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\sim \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Z3 symmetry in charged lepton sector $\langle \phi_x^0 \rangle = \langle \phi_y^0 \rangle = \langle \phi_z^0 \rangle = v/\sqrt{6}$ Z2 symmetry in neutrino sector

Triplet Yukawa interaction for neutrino masses

$$\begin{split} \left(\overline{(\Psi_{xL})^c}, \ \overline{(\Psi_{yL})^c}, \ \overline{(\Psi_{zL})^c} \right) \begin{pmatrix} h_{\delta} i \sigma^2 \delta & h_{\Delta} i \sigma^2 \Delta_z & h_{\Delta} i \sigma^2 \Delta_y \\ h_{\Delta} i \sigma^2 \Delta_z & h_{\delta} i \sigma^2 \Delta_x & h_{\delta} i \sigma^2 \Delta_x \\ h_{\Delta} i \sigma^2 \Delta_y & h_{\Delta} i \sigma^2 \Delta_x & h_{\delta} i \sigma^2 \delta \end{pmatrix} \begin{pmatrix} \Psi_{xL} \\ \Psi_{yL} \\ \Psi_{yL} \end{pmatrix} + \text{h.c.} \\ \\ \blacksquare 2-3 \text{ maximal mixing is preferred in this basis} \\ \langle \delta^0 \rangle = \frac{v_{\delta}}{\sqrt{2}}, \quad \langle \Delta^0_x \rangle = \frac{v_{\Delta}}{\sqrt{2}}, \quad \langle \Delta^0_y \rangle = \langle \Delta^0_z \rangle = 0 \\ \\ \frac{1}{\sqrt{2}} \left(\overline{(\psi_{xL}^0)^c}, \ \overline{(\psi_{yL}^0)^c}, \ \overline{(\psi_{zL}^0)^c} \right) \begin{pmatrix} h_{\delta} v_{\delta} & 0 & 0 \\ 0 & h_{\delta} v_{\delta} & h_{\Delta} v_{\Delta} \\ 0 & h_{\Delta} v_{\Delta} & h_{\delta} v_{\delta} \end{pmatrix} \begin{pmatrix} \psi_{xL}^0 \\ \psi_{yL}^0 \\ \psi_{yL}^0 \\ \psi_{zL}^0 \end{pmatrix} + \dots + \text{h.c.} \\ \\ \\ M_{\nu} = \sqrt{2} U_L^T \begin{pmatrix} h_{\delta} v_{\delta} & 0 & 0 \\ 0 & h_{\delta} v_{\delta} & h_{\Delta} v_{\Delta} \\ 0 & h_{\Delta} v_{\Delta} & h_{\delta} v_{\delta} \end{pmatrix} U_L \\ \\ \end{bmatrix}$$

ncts seminar, 22 Mar 2011

Neutrino mixing

■ Tri-Bi-Maximal mixing: good agreement with experiments.

$$U_{\rm MNS} = U_{\rm TB} \equiv \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\sim \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ 0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Z3 symmetry in charged lepton sector $\langle \phi_x^0 \rangle = \langle \phi_y^0 \rangle = \langle \phi_z^0 \rangle = v/\sqrt{6}$ **Z2** symmetry in neutrino sector

$$\langle \Delta_x^0 \rangle = \frac{v_\Delta}{\sqrt{2}}, \langle \Delta_y^0 \rangle = \langle \Delta_z^0 \rangle = 0$$

Neutrino masses and mixings under A4

Diagonalize: diag $(m_1 e^{i\alpha_{12}}, m_2, m_3 e^{i\alpha_{32}}) = U_{\text{MNS}}^T M_{\nu} U_{\text{MNS}}$

■ A4 sym. + vev alignment → TriBiMaximal mixing

Good agreement with experiments.

Description Note: TB-mixing can be obtained in model without δ[1], but it is required to solve mass degeneracy of m1 & m3.

 $egin{aligned} M_{
u} = \sqrt{2} \; U_L^T egin{pmatrix} h_{\delta} v_{\delta} & 0 & 0 \ 0 & h_{\delta} v_{\delta} & h_{\Delta} v_{\Delta} \ 0 & h_{\Delta} v_{\Delta} & h_{\delta} v_{\delta} \end{pmatrix} U_L \ 0 & h_{\Delta} v_{\Delta} & h_{\delta} v_{\delta} \end{pmatrix} U_L \ \end{aligned}$

ncts seminar, 22 Mar 2011

Approximate symmetry in the broken phase

Doublet vev is symmetric under T

$$\begin{pmatrix} v/\sqrt{6} \\ v/\sqrt{6} \\ v/\sqrt{6} \end{pmatrix} \xrightarrow{T} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} v/\sqrt{6} \\ v/\sqrt{6} \\ v/\sqrt{6} \end{pmatrix} = \begin{pmatrix} v/\sqrt{6} \\ v/\sqrt{6} \\ v/\sqrt{6} \end{pmatrix}$$
 A4 \rightarrow Z3 sym

Tiny Triplet vev is symmetric under S

$$\begin{pmatrix} v_{\Delta}/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} \xrightarrow{S} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} v_{\Delta}/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} v_{\Delta}/\sqrt{2} \\ 0 \\ 0 \end{pmatrix}$$

A4 \rightarrow Z2 sym

D EW precision obs. ρ : $v \sim 246 \text{GeV}, \sqrt{v_{\delta}^2 + v_{\Delta}^2} \lesssim 1 \text{GeV} \ll v$

Approx. Z3 symmetry (slightly broken by triplet vev)

All the particle in A4HTM can be classified by approx. Z3 charge !!

ncts seminar, 22 Mar 2011

Z3 classification

Singlets: by default

$$\underline{\mathbf{1}} : T \, \underline{\mathbf{1}} = \underline{\mathbf{1}}$$
$$\underline{\mathbf{1}}' : T \, \underline{\mathbf{1}}' = \omega \underline{\mathbf{1}}'$$
$$\underline{\mathbf{1}}'' : T \, \underline{\mathbf{1}}'' = \omega^2 \underline{\mathbf{1}}''$$

Triplets

Hets

$$\underbrace{\mathbf{3}: \begin{pmatrix} a_{\xi} \\ a_{\eta} \\ a_{\zeta} \end{pmatrix} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} \end{pmatrix} \begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix}} \\
\sqrt{3}a_{\xi} = a_{x} + a_{y} + a_{z} \xrightarrow{T} a_{y} + a_{z} + a_{x} = \sqrt{3}a_{\xi} \\
\sqrt{3}a_{\eta} = a_{x} + \omega^{2}a_{y} + \omega a_{z} \xrightarrow{T} a_{y} + \omega^{2}a_{z} + \omega a_{x} = \omega\sqrt{3}a_{\eta} \\
\sqrt{3}a_{\zeta} = a_{x} + \omega a_{y} + \omega^{2}a_{z} \xrightarrow{T} a_{y} + \omega a_{z} + \omega^{2}a_{x} = \omega^{2}\sqrt{3}a_{\zeta} \\
\underbrace{ \begin{vmatrix} \mathbf{1} & \mathbf{1} & a_{\xi} & \mathbf{1}' & a_{\eta} & \mathbf{1}'' & a_{\zeta} \\
\overline{Z_{3}-\text{charge}} & \mathbf{1} & \omega & \omega^{2} \\ \end{vmatrix}$$

ncts seminar, 22 Mar 2011

Z3 charges for leptons

		ψ^{1R}	ψ^{2R}	ψ^{3R}	$\Psi_{\mathbf{A}L} = \left(\begin{array}{c}\psi_{\mathbf{A}L}^{0}\\\psi_{\mathbf{A}L}^{-}\end{array}\right)$	
	A_4	1	<u>1</u> ′	<u>1</u> "	<u>3</u>	
	$SU(2)_L$	singlet	singlet	singlet	doublet	
	$U(1)_Y$	-2	-2	-2	-1	
Z 3				A4	Z3	A4
$\frac{1}{\omega} \begin{pmatrix} \epsilon \\ \mu \end{pmatrix}$	$\begin{pmatrix} e_R \\ u_R \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} \psi_{1R}^-\\ \psi_{2R}^- \end{pmatrix}$	<u>1</u> 1′	$egin{array}{c} 1 \ \mathbf{\omega} \ \begin{pmatrix} L_e \ L_\mu \end{pmatrix} \equiv U_L^\dagger \end{pmatrix}$	$\begin{pmatrix} \Psi_{xL} \\ \Psi_{yL} \end{pmatrix} \frac{3}{3}$

ncts seminar, 22 Mar 2011

 ω^2

Koji Tsumura (ntu)

Τ

 Mass eigenstates can be determined approximately by neglecting tiny effects from triplet vev

$$\begin{pmatrix} H_1^{++} \\ H_2^{++} \\ H_3^{++} \\ H_4^{++} \end{pmatrix} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{\pm\pm} & s_{\pm\pm} \\ 0 & 0 & -s_{\pm\pm} & c_{\pm\pm} \end{pmatrix} \begin{pmatrix} 1 & \omega & \omega^2 & 0 \\ 1 & \omega^2 & \omega & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & \sqrt{3} e^{-i\alpha_{\pm\pm}} \end{pmatrix} \begin{pmatrix} \Delta_x^{++} \\ \Delta_y^{++} \\ \Delta_z^{++} \\ \delta^{++} \end{pmatrix}$$

-		H_3^{++}, H_4^{++}	H_2^{++}	H_1^{++}
-	Z_3 -charge	1	ω	ω^2

Doubly charged Higgs Yukawa interaction

$$\begin{array}{c} 1 & \omega & \omega^{2} & \omega^{2} & \omega^{2} \\ \hline (h_{i\pm\pm})_{\ell\ell'} \overline{(\ell_{L})^{c}} \ell_{L}' H_{i}^{++} + \text{h.c.} & \frac{2}{\sqrt{3}} h_{\Delta} \left\{ -\overline{(e_{L})^{c}} \mu_{L} + \overline{(\tau_{L})^{c}} \tau_{L} \right\} H_{1}^{++} \\ \hline h_{1\pm\pm} = \frac{1}{\sqrt{3}} h_{\Delta} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} & \text{Zeros are consequence of Z3 sym.} \\ h_{2\pm\pm} = \frac{1}{\sqrt{3}} h_{\Delta} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ h_{3\pm\pm} = \frac{1}{\sqrt{3}} h_{\Delta} c_{\pm\pm} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_{\delta} s_{\pm\pm} e^{i\alpha_{\pm\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ h_{4\pm\pm} = -\frac{1}{\sqrt{3}} h_{\Delta} s_{\pm\pm} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_{\delta} c_{\pm\pm} e^{i\alpha_{\pm\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ \end{array}$$

ncts seminar, 22 Mar 2011

BRs of doubly charged Higgs bosons

A4HTM predicts unique Ratios of BRs.

$$\begin{array}{c} \ell_{i}^{+} \\ R_{3}^{\pm\pm} \equiv \frac{|2h_{\Delta}c_{\pm\pm} + \sqrt{3}h_{\delta}s_{\pm\pm}e^{i\alpha_{\pm\pm}}|^{2}}{2|h_{\Delta}c_{\pm\pm} - \sqrt{3}h_{\delta}s_{\pm\pm}e^{i\alpha_{\pm\pm}}|^{2}} \\ R_{4}^{\pm\pm} \equiv \frac{|2h_{\Delta}s_{\pm\pm} - \sqrt{3}h_{\delta}c_{\pm\pm}e^{i\alpha_{\pm\pm}}|^{2}}{2|h_{\Delta}s_{\pm\pm} + \sqrt{3}h_{\delta}c_{\pm\pm}e^{i\alpha_{\pm\pm}}|^{2}} \end{array}$$

Lepton flavor violation $\ell_i^- \rightarrow \ell_j^- \ell_k^- \ell_l^+$

■ A4HTM (approx. Z3 sym.) forbids specific LFV modes In particular, $\mu^- \rightarrow e^- e^- e^+$

Same for
$$\tau^- \rightarrow e^+ e^- e^-, \mu^+ \mu^- \mu^-, e^+ e^- \mu^-, \mu^+ \mu^- e^-$$

 $\omega^2 \qquad 1 \qquad 1 \qquad 1 \qquad \omega^2 \qquad \omega \qquad 1 \qquad 1 \qquad \omega \qquad \omega^2 \qquad \omega \qquad 1$

A4HTM predicts specific LFV tau decays

$$\begin{array}{cccc} \tau^- \rightarrow e^+ \mu^- \mu^-, \mu^+ e^- e^- \\ \omega^2 & \mathbf{1} & \omega & \omega^2 & \mathbf{1} & \mathbf{1} \end{array} \end{array}$$

(Triplet-like) Singly charged Higgs Yukawa interaction

 $\sqrt{2}(h_{i\pm})_{\ell\ell'} \overline{(\nu_L)^c} \,\ell'_L \,H_i^+ + \text{h.c.}$

$$\begin{aligned} h_{1\pm} &= h_{1\pm\pm} = \frac{1}{\sqrt{3}} h_{\Delta} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \\ h_{2\pm} &= h_{2\pm\pm} = \frac{1}{\sqrt{3}} h_{\Delta} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ h_{3\pm} &= \frac{1}{\sqrt{3}} h_{\Delta} \frac{c_{\pm}}{c_{\pm}} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_{\delta} \frac{s_{\pm}}{s_{\pm}} e^{i\alpha_{\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ h_{4\pm} &= -\frac{1}{\sqrt{3}} h_{\Delta} \frac{s_{\pm}}{s_{\pm}} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_{\delta} \frac{c_{\pm}}{c_{\pm}} e^{i\alpha_{\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \end{aligned}$$

Decays of singly charged Higgs bosons

□ Ratios of BRs $\begin{array}{c|c}
\mathcal{B}(H^- \to \ell\nu) \equiv \sum_i \mathcal{B}(H^- \to \ell\nu_i) \\
\hline & & \\
\hline \\ \hline & & \\
\hline & & \\
\hline \\ \hline & & \\
\hline \\ \hline & & \\
\hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline$

Lepton flavor violation $\ell_i^- \rightarrow \ell_j^- \gamma$

Discovery of $\mu \rightarrow e \gamma$ excludes A4HTM

It can be excluded by coming MEG data

ncts seminar, 22 Mar 2011

Only couple to neutrinos

■ H0, A0 phenomenology may be pooooooor

Summary

- □ HTM provides new source for neutrino mass.
- A4 sym. can give large neutrino mixing and small quark mixing even in HTM.
- **Remaining Z3 sym.** plays an important role in A4HTM.
 - Unique predictions of triplet Higgs decays
 - Natural suppression of muon LFV

Thank you very much for your attention.

Back up

ncts seminar, 22 Mar 2011

Lepton universality

Charged Higgs contributes to leptonic decay

 $2\sqrt{2}(G_W + G_{\mu e\ell\ell'})(\bar{\nu}_{\ell}\gamma_{\mu}P_L\mu)(\bar{e}\gamma^{\mu}P_L\nu_{\ell'})$

$$G_{\mu e \ell \ell'} = \sum_{i} \frac{(h_{i\pm})_{\ell'\mu} (h_{i\pm}^*)_{\ell e}}{2\sqrt{2}m_{H_i^+}^2}$$

Non-standard neutrino interactions

Charged Higgs contributes to NSI

$$2\sqrt{2}G_F \epsilon_{\ell\ell'}^{fX} (\bar{f}\gamma_\mu P_X f) (\bar{\nu}_\ell \gamma^\mu P_L \nu_{\ell'})$$

$$\epsilon_{\ell\ell}^{eL} = \sum_{i} \frac{(h_{i\pm})_{\ell'\mu} (h_{i\pm}^*)_{\ell e}}{2\sqrt{2}G_F m_{H_i^+}^2}$$

Doublet like charged Higgs bosons

Doublet-triplet mixing is suppressed by vev ratio

$$\begin{pmatrix} H_{1D}^+ \\ H_{2D}^+ \\ H_{NG}^+ \end{pmatrix} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \phi_x^+ \\ \phi_y^+ \\ \phi_z^+ \end{pmatrix}$$