

Theoretical strategies for constraining dark energy : challenges and pitfalls

Seokcheon (sky) Lee

skylee@phys.sinica.edu.tw

Institute of Physics, Academia Sinica

•

Outline

- Evidences for the current accelerating expansion
 - Geometrical tests : H(z), SNe, CMB, BAO
 - Dynamical tests : Linear growth factor (EG), Nonlinear growth (SCM), Cluster numbers
 - Optimal strategies
 - **Parametrizations of** ω
 - Pitfalls
- Future work : SZe, WL
- Summary

Make sense ?

NCTS HEP Journal Club: Theoretical strategies for constraining DE: sky Lee May 31, 2011 - p. 3/18

- •
- •

Geometrical Probes

Geometrical probes : SNe Type Ia

Dataset SNLS1	Redshift Range $0.015 \le z \le 1.01$	# of SN 115	Filtered subsets SNLS, LR	Released 2005
	$0.024 \le z \le 1.76$	182	SNLS1, HST, SCP, HZSST	2006
ESSENCE	$0.016 \le z \le 1.76$	192	SNLS1, HST, ESSENCE	2007
Union	$0.015 \le z \le 1.55$	307	Gold06, ESSENCE	2008
Constitution	$0.015 \le z \le 1.55$	397	Union, CfA3	2009
SDSS	$0.022 < \alpha < 1.55$	288	Nearby, SDSS-II, ESSENCE,	2009
	$-0.022 \le 2 \le 1.00$	200	SNLS, HST	

luminosity distance : $d_{\rm L}(z) = c(1+z) \int_0^z \frac{dz'}{H(z')} , \text{ where}$ $H(z) = H_0 \left(\Omega_{\rm m0} (1+z)^3 + (1-\Omega_{\rm m0}) \right)$ $\times \left[\exp[3 \int_0^z (1+\omega(x)) d \ln(1+x)] \right]^{\frac{1}{2}}$

distance modulus : $\mu_{th} = m_{th} - M$ $= 5 \log_{10}[d_L(z)] + 42.38$

Geometrical probes : SNe Type Ia

Dataset SNLS1	Redshift Range $0.015 \le z \le 1.01$	# of SN 115	Filtered subsets SNLS, LR	Released 2005
	$0.024 \le z \le 1.76$	182	SNLS1, HST, SCP, HZSST	2006
ESSENCE	$0.016 \le z \le 1.76$	192	SNLS1, HST, ESSENCE	2007
Union	$0.015 \le z \le 1.55$	307	Gold06, ESSENCE	2008
Constitution	$0.015 \le z \le 1.55$	397	Union, CfA3	2009
SDSS	$0.022 \le z \le 1.55$	288	Nearby, SDSS-II, ESSENCE, SNLS, HST	2009

Union > ESSENCE > Golden06

Geometrical probes : SNe Type Ia

Dataset SNLS1	Redshift Range $0.015 \le z \le 1.01$	# of SN 115	Filtered subsets SNLS, LR	Released 2005
	$0.024 \le z \le 1.76$	182	SNLS1, HST, SCP, HZSST	2006
ESSENCE	$0.016 \le z \le 1.76$	192	SNLS1, HST, ESSENCE	2007
Union	$0.015 \le z \le 1.55$	307	Gold06, ESSENCE	2008
Constitution	$0.015 \le z \le 1.55$	397	Union, CfA3	2009
SDSS	$0.022 < \alpha < 1.55$	288	Nearby, SDSS-II, ESSENCE,	2009
	<u>-0.022 S 2 S</u> 1.00	200	SNLS, HST	

luminosity distance : $d_{L}(z) = c(1+z) \int_{0}^{z} \frac{dz'}{H(z')} \text{, where}$ $H(z) = H_{0} \left(\Omega_{m0}(1+z)^{3} + (1-\Omega_{m0}) \right)^{\frac{1}{2}}$ $\times \exp[3 \int_{0}^{z} (1+\omega(x)) d \ln(1+x)] \int^{\frac{1}{2}}$ Models : $\mu_{th} = m_{th} - M$ $= 5 \log_{10}[d_{L}(z)] + 42.38$

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 5/18

H(z) from passively evolving galaxies da	ata
D.Stern <i>et.al.</i> [2010]	

z H(z)	$\begin{array}{c} \textbf{0.09} \\ 69 \pm 12 \end{array}$	0.17 83 ± 8	0.27 77 ± 14	$\begin{array}{c} \textbf{0.4} \\ 95 \pm 17 \end{array}$	0.48 97 ± 62
0.88	0.9	1.3	1.43	1.53	1.75
90 ± 40	117 ± 23	168 ± 17	177 ± 18	140 ± 14	202 ± 40

H(z) from different models. Orange(PCA),Red(linear), Blue(logarithmic), Magenta(CPL),Skyblue(tanh)

- H(z) from different models. Orange(PCA),Red(linear), Blue(logarithmic), Magenta(CPL),Skyblue(tanh)
- Relative errors of different model w.r.t Λ CDM : SL[2011]

2.5

- H(z) from different models. Orange(PCA),Red(linear), Blue(logarithmic), Magenta(CPL),Skyblue(tanh)
- Relative errors of different model w.r.t Λ CDM : SL[2011]

2.5

Contour plots of ω_a and ω_b for the corresponding models 1 and 2- σ

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 6/18

Geometrical probes : CMB & BAO

CMB :

Shift parameter R : the ratio of the location of the first acoustic peak of a reference flat SCDM model to one of a fiducial model : J.R.Bond *et.al.* [1997], $R_{WMAP} = \frac{l'_1}{l_1} = 1.123 \pm 0.03$

$$R = \frac{2}{\sqrt{\Omega_{\rm m0}}} \frac{q(\Omega_r, a_{rec})}{H_0 r(z)} \text{ , where } q \equiv \left(\sqrt{\Omega_r' + 1} - \sqrt{a_{rec}' + \Omega_r'}\right)$$

Both CMB and BAO also provide the dynamical probes : ISW effect SL [MPLA,2008] $\Theta_l(k, \eta_0) = (2l+1) \int_{\eta_{rec}}^{\eta_0} d\eta e^{-\tau} 2\dot{\Phi} j_l[k(\eta_0 - \eta)]$ and changing amplitude of BAO SL *et.al.* [PRDR,2010]

Geometrical probes : CMB & BAO

CMB :

Shift parameter R : the ratio of the location of the first acoustic peak of a reference flat SCDM model to one of a fiducial model : J.R.Bond *et.al.* [1997], $R_{WMAP} = \frac{l'_1}{l_1} = 1.123 \pm 0.03$

 $R = \frac{2}{\sqrt{\Omega_{\rm m0}}} \frac{q(\Omega'_r, a_{rec})}{H_0 r(z)} \text{ , where } q \equiv \left(\sqrt{\Omega'_r + 1} - \sqrt{a'_{rec} + \Omega'_r}\right)$

Both CMB and BAO also provide the dynamical probes : ISW effect SL [MPLA,2008] $\Theta_l(k, \eta_0) = (2l+1) \int_{\eta_{rec}}^{\eta_0} d\eta e^{-\tau} 2\dot{\Phi} j_l[k(\eta_0 - \eta)]$ and changing amplitude of BAO SL *et.al.* [PRDR,2010]

BAO :

Radial size : $AB = \Delta r = rac{\Delta t}{a} = rac{\Delta z}{H(z)}$

Transverse size :
$$CD = r\Delta heta = \Delta heta \int_0^z rac{dz}{H(z)}$$

Dilation scale :

$$D_V(z) = \left[\left(\int_0^{z_{\text{BAO}}} \frac{dz}{H(z)} \right)^2 \frac{z_{\text{BAO}}}{H(z_{\text{BAO}})} \right]^{\frac{1}{3}}$$

SDSS : $z_{
m BAO} \simeq 0.35$: D.J. Einstein et.al. [2005]

 $D_V(z_{
m BAO}) = 1370 \pm 64 \; {
m Mpc}$

Similar to Alcock-Pazcynski (AP) test $\frac{\Delta z}{\Delta \theta} = H(z)r(z)$

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 7/18

- •
- •

Dynamical Probes

Linear growth factor

at sub-horizon scale, matter density perturbation $\delta_m(\vec{k}, a) = \delta_0(k)D_g(a)$ grows uniformly as long as DE does not cluster : $\frac{d^2D}{da^2} + \left(\frac{d\ln H}{da} + \frac{3}{a}\right)\frac{dD}{da} - \frac{3}{2}\frac{\Omega_{m0}}{a^5}f(k, a)D = 0$ $D(a) = c_1\left(\frac{\Omega_{m0}}{\Omega_{de}^0}\right)^{\frac{3\omega-1}{6\omega}}a^{\frac{3\omega-1}{2}}F\left[\frac{1}{2} - \frac{1}{2\omega}, \frac{1}{2} + \frac{1}{3\omega}, \frac{3}{2} - \frac{1}{6\omega}, -\frac{\Omega_{m0}}{\Omega_{de}^0}a^{3\omega}\right] + c_2F\left[-\frac{1}{3\omega}, \frac{1}{2\omega}, \frac{1}{2} + \frac{1}{6\omega}, -\frac{\Omega_{m0}}{\Omega_{de}^0}a^{3\omega}\right]$: SL *et.al.* [PRD2010, PLB2010]

Linear growth factor

NCTS HEP Journal Club: Theoretical strategies for constraining DE: sky Lee May 31, 2011 - p. 9/18

Spherical collapse model

$$\begin{aligned} & \text{spherical collapse model } \frac{\ddot{R}}{R} = -\frac{4\pi G}{3} \left[\rho_{\text{cluster}} + (1+3\omega)\rho_{\text{dec}} \right], \dot{\rho}_{\text{cluster}} + 3\left(\frac{\dot{R}}{R}\right)\rho_{\text{cluster}} = 0 \\ & \dot{\rho}_{\text{dec}} + 3(1+\omega)\left(\frac{\dot{R}}{R}\right)\rho_{\text{dec}} = \alpha\Gamma \text{ where } \Gamma = 3(1+\omega)\left(\frac{\dot{R}}{R} - \frac{\dot{a}}{a}\right)\rho_{\text{dec}} \text{ with } 0 \leq \alpha \leq 1 \ \zeta \equiv \frac{\rho_{\text{cluster}}}{\rho_{m}} \Big|_{ta} \\ & D(a) = c_1\left(\frac{\Omega_{\text{m0}}}{\Omega_{\text{de}}^0}\right)^{\frac{3\omega-1}{6\omega}} a^{\frac{3\omega-1}{2}} F\left[\frac{1}{2} - \frac{1}{2\omega}, \frac{1}{2} + \frac{1}{3\omega}, \frac{3}{2} - \frac{1}{6\omega}, -\frac{\Omega_{\text{m0}}}{\Omega_{\text{de}}^0} a^{3\omega}\right] + \\ & c_2 F\left[-\frac{1}{3\omega}, \frac{1}{2\omega}, \frac{1}{2} + \frac{1}{6\omega}, -\frac{\Omega_{\text{m0}}}{\Omega_{\text{de}}^0} a^{3\omega}\right] : \text{ SL et.al. [JCAP2010, PLB2010]} \end{aligned}$$

Spherical collapse model

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 10/18

 $\begin{aligned} \text{linear perturbation of DE} &: \delta \ddot{Q} + 3H \delta \dot{Q} + (k^2 + V_{,QQ}) \delta Q = -\frac{1}{2} \dot{h} \dot{Q}_0 \\ \text{linear power spectrum of } \delta_m : P(k, a) &= A_Q k^{n_S} T_Q^2(k) \left(\frac{D(a)}{D(a_0)}\right)^2, \text{ where } A_Q = 2\pi^2 \delta_H^2(c/H_0)^{n_S+3}, \\ \delta_H &= 2.05 \times 10^{-5} \alpha_0^{-1} (\Omega_m)^{c_1+c_2} \ln \Omega_m \exp[c_3(n_S-1) + c_4(n_S-1)^2] \text{ with } \\ c_1 &= -0.789 |\omega|^{0.0754 - 0.211 \ln |\omega|}, c_2 &= -0.118 - 0.0727 \omega, c_3 &= -1.037, c_4 &= -0.138, \\ \alpha &= (-\omega)^S, \\ s &= (0.012 - 0.036 \omega - 0.017 \omega^{-1}) \left(1 - \Omega_m(a)\right) + (0.098 + 0.029 \omega - 0.085 \omega^{-1}) \ln \Omega_m(a) : \text{ Ma et.al.} \\ \text{[1999], SL et.al. [2010]} \end{aligned}$

linear perturbation of DE : $\delta\ddot{Q} + 3H\delta\dot{Q} + (k^2 + V_{,QQ})\delta Q = -\frac{1}{2}\dot{h}\dot{Q}_0$ linear power spectrum of δ_m : $P(k, a) = A_Q k^{n_S} T_Q^2(k) \left(\frac{D(a)}{D(a_0)}\right)^2$, where $A_Q = 2\pi^2 \delta_H^2 (c/H_0)^{n_S+3}$, $\delta_H = 2.05 \times 10^{-5} \alpha_0^{-1} (\Omega_m)^{c_1+c_2} \ln \Omega_m \exp[c_3(n_S-1) + c_4(n_S-1)^2]$ with $c_1 = -0.789 |\omega|^{0.0754 - 0.211 \ln |\omega|}$, $c_2 = -0.118 - 0.0727\omega$, $c_3 = -1.037$, $c_4 = -0.138$, $\alpha = (-\omega)^S$, $s = (0.012 - 0.036\omega - 0.017\omega^{-1}) \left(1 - \Omega_m(a)\right) + (0.098 + 0.029\omega - 0.085\omega^{-1}) \ln \Omega_m(a)$: Ma et.al. [1999], SL et.al. [2010]

rms linear mass fluctuation : $\sigma_R^2(a) \equiv \left\langle \left| \frac{\delta M}{M(R,a)} \right|^2 \right\rangle = \frac{1}{2\pi^2} \int_0^\infty k^2 P(k,a) \left| W(kR) \right|^2 dk$

 $\omega = -1.1$ (brown), -1.0 (red), -0.8 (blue)

$$\sigma(M, z) \simeq (-\omega)^{0.72 + 0.36\omega} \left(3.90 - 0.215 \log \left[\frac{M}{h^{-1} M_{\odot}} \right] \right) \left(\frac{D_g(z)}{D_g(z_0)} \right)$$

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 – p. 11/18

linear perturbation of DE : $\delta\ddot{Q} + 3H\delta\dot{Q} + (k^2 + V_{,QQ})\delta Q = -\frac{1}{2}\dot{h}\dot{Q}_0$ linear power spectrum of δ_m : $P(k, a) = A_Q k^{n_S} T_Q^2(k) \left(\frac{D(a)}{D(a_0)}\right)^2$, where $A_Q = 2\pi^2 \delta_H^2 (c/H_0)^{n_S+3}$, $\delta_H = 2.05 \times 10^{-5} \alpha_0^{-1} (\Omega_m)^{c_1+c_2} \ln \Omega_m \exp[c_3(n_S-1)+c_4(n_S-1)^2]$ with $c_1 = -0.789 |\omega|^{0.0754-0.211 \ln |\omega|}$, $c_2 = -0.118 - 0.0727 \omega$, $c_3 = -1.037$, $c_4 = -0.138$, $\alpha = (-\omega)^s$, $s = (0.012 - 0.036\omega - 0.017\omega^{-1}) (1 - \Omega_m(a)) + (0.098 + 0.029\omega - 0.085\omega^{-1}) \ln \Omega_m(a)$: Ma et.al. [1999], SL et.al. [2010]

 $V(z) = \int_0^z 4\pi d_A^2(z') \left| \frac{cdt}{dz} \right| (z') dz'$

linear growth factor : D_g

comoving number density for different z = 0, 0.5, 1.0, 2.0 (from top to bottom) when $\omega = -1$ and $\delta_c = 1.58$ Data from R.G. Carlberg *et.al.* [1997] errors of n when $\delta_c = 1.69$ PS: $dn(M, z) = \sqrt{\frac{2}{\pi}} \frac{\rho_m^0}{M^2} \left| \frac{d \ln \sigma}{d \ln M} \right| \frac{\delta_c}{\sigma} \exp\left[-\frac{\delta_c^2}{2\sigma^2}\right] dM$ n(>M) from PS with $\delta_c = 1.58$ (blue) and ST with 1.69 (red) $f_{\rm ST}(\sigma) = A\sqrt{\frac{2b}{\pi}} \exp\left[-\frac{b\delta_c^2}{2\sigma^2}\right] \left[1 + \left(\frac{\sigma^2}{b\delta_c^2}\right)^p\right] \frac{\delta_c}{\sigma}$

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 – p. 11/18

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 11/18

- •
- •

Optimal Strategies

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 – p. 12/18

Parametrization of ω

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 13/18

Parametrization of ω

 $\sigma_{\omega} = \sum_{l=1}^{n} \left(\frac{\partial \omega}{\partial \omega_{l}}\right)^{2} C_{ll} + 2 \sum_{l=1}^{n} \sum_{m=l+1}^{n} \left(\frac{\partial \omega}{\partial \omega_{l}}\right) \left(\frac{\partial \omega}{\partial \omega_{m}}\right) C_{lm} = C_{aa} + C_{bb} f(z)^{2} + 2C_{ab} f(z)$

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 14/18

Parametrization of ω

f(z)	$\sum rac{\mathcal{O}_i - \mathcal{O}(z_i, ec{p})}{\sigma_i^2} rac{\partial^2 \mathcal{O}(z_i, ec{p})}{\partial \omega_a \partial \omega_b}$		$\sum rac{1}{\sigma_i^2} rac{\partial \mathcal{O}(z_i, ec{p})}{\partial \omega_a} rac{\partial \mathcal{O}(z_i, ec{p})}{\partial \omega_b}$		ω_a^*	ω_b^*	$\chi^2_{ m min}$	$\det(F)$	Ref		
	(a,a)	(a,b)	(b,b)	(a,a)	(a,b)	(b,b)					
z	0.19	-0.66	-1.04	92.51	52.19	31.29	-0.834	0.211	9.486	149.3	[?]
$\ln[1+z]$	-0.12	-0.46	-0.45	93.14	38.52	16.72	-0.875	0.388	9.446	65.07	[?]
$\frac{z}{1+z}$	-0.34	-0.33	-0.21	93.66	29.65	9.75	-0.916	0.638	9.412	31.19	[?, ?]
$\tanh[\ln[1+z]]$	-0.34	-0.41	-0.31	93.63	34.66	13.38	-0.906	0.520	9.413	46.35	

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 14/18

•

Pitfalls

a) The fiducial model is $\omega = -1.1 + 0.5 \frac{z}{1+z}$ (dashed) and the obtained values of ω_i s from PCA with *H* data (dotted), D_L data (dot-dashed), and $H + D_L$ data (solid). Error bars are obtained from the analysis of $H + D_L$ data.

b) The fiducial model is $\omega = -1.1 - 0.3 \frac{z}{1+z}$ (dashed) and the obtained values of ω_i s from PCA with H data (dotted), D_L data (dot-dashed), and $H + D_L$ data (solid)

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 – p. 15/18

- •
- •

Future works

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 - p. 16/18

Sunyaev-Zel[']dovich effect

NCTS HEP Journal Club : Theoretical strategies for constraining DE : sky Lee May 31, 2011 – p. 17/18

Who am I?

Who am I ?

- After too much adoption from other animals, she even can't catch a fly.
- How about in Cosmology
 ? (Growth factor, Nonlinear model, mass function, ···)

