Universal Extra-Dimension at LHC

Swarup Kumar Majee

National Taiwan University

S. K. Majee

Plan

- Hierarchy problem
- Extra-dimensions
 - Flat extra-dimension (ADD and UED model)
 - Warped extra-dimension (RS-model)
- Universal Extra Dimension (UED)
- The Scalar, Fermion, and Gauge particles in the UED model
- Evolution of Gauge Couplings
- Tree level and Radiative Corrected KK-Mass spectra
- Decay modes and Branching ratios of KK-particle
- Collider Signature of UED at LHC
- Conclusion

UED@LHC

 $\underset{Strong(\boldsymbol{g})}{\text{SM:}} \underbrace{SU(3)_C}_{Strong(\boldsymbol{g})} \times \underbrace{SU(2)_L \times U(1)_Y}_{E-W(W^{\pm}, \boldsymbol{Z} \text{ and } \boldsymbol{\gamma})}$

$$\underset{Strong(\boldsymbol{g})}{\text{SM:}} \underbrace{SU(3)_C}_{Strong(\boldsymbol{g})} \times \underbrace{SU(2)_L \times U(1)_Y}_{E-W(W^{\pm}, Z \text{ and } \gamma)}$$

Higgs:
$$\Phi \equiv (1, 2, 1) \Rightarrow \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

$$V = m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$
$$\lambda > 0$$

S. K. Majee

UED@LHC

S. K. Majee

Hierarchy problem

Due to femion loop

$$\Pi_{hh}^{f} = (-1) \int_{0}^{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} Tr\left\{ \left(\frac{-i\lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not{k}-m_{f}} \left(\frac{-i\lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not{p}-\not{k}-m_{f}} \right\}$$

$$= -\frac{\lambda_{f}^{2}}{8\pi^{2}} \Lambda^{2} + \dots$$

•
$$m_H^2 = m_{H_0}^2 + \delta m_H^2$$

• If $\simeq 10^{16}$ GeV, required fine-tuning to 1 part in 10^{26} .

Hierarchy problem and SUSY

Due to femion loop

$$\Pi_{hh}^{f} = (-1) \int_{0}^{\Lambda} \frac{d^{4}k}{(2\pi)^{4}} Tr\left\{ \left(\frac{-i\lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not{k}-m_{f}} \left(\frac{-i\lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not{p}-\not{k}-m_{f}} \right\}$$

$$= -\frac{\lambda_{f}^{2}}{8\pi^{2}} \Lambda^{2} + \dots$$

•
$$m_H^2 = m_{H_0}^2 + \delta m_H^2$$

• If $\simeq 10^{16}$ GeV, required fine-tuning to 1 part in 10^{26} .

• Due to scalar loop : $\delta m_H^2 = \frac{\lambda_S}{16\pi^2} \Lambda^2 - ...$ $\lambda_S = |\lambda_f|^2 \Rightarrow Supersymmetry$

UED@LHC

S. K. Majee

Extra Dimensions

Consider, a massless particle in 5D Cartesian co-ordinate system, and assume that the Lorentz invariance holds.

$$p^2 = 0 = g_{AB}p^A p^B = p_0^2 - \vec{p}^2 \pm p_5^2$$
, with $g_{AB} = diag(1, -1 - 1, \pm 1)$

So, $p_0^2 - \vec{p}^2 = p_\mu p^\mu = m^2 = \mp p_5^2 \implies$ time-like ED: $m^2 = -ve \rightarrow tachyon$

 \blacksquare We consider only one space-type extra dimension (y)

Extra Dimensions

Consider, a massless particle in 5D Cartesian co-ordinate system, and assume that the Lorentz invariance holds.

$$p^2 = 0 = g_{AB}p^A p^B = p_0^2 - \vec{p}^2 \pm p_5^2$$
, with $g_{AB} = diag(1, -1, -1, \pm 1)$

So, $p_0{}^2 - \vec{p}^2 = p_\mu p^\mu = m^2 = \mp p_5{}^2 \Longrightarrow$ time-like ED: $m^2 = -ve \to tachyon$

- Solution We consider only one space-type extra dimension (y)
- free particle moving along x-direction \implies non-compact $\psi = Ae^{ipx} + Be^{-ipx}$, momentum p is not quantized
- particle in a box \implies so V(x) = 0, 0 < x < L= infinite elsewhere \implies compact

quantized momenta
$$p = \frac{n\pi}{L}$$

ADD-model

- Consider a D-dimensional spacetime $D = 4 + \delta$
- Space is *factorised* into $R^4 \times M_{\delta}$, where M_{δ} is a δ -dimensional space with volume $V_{\delta} \sim R^{\delta}$.
- This implies the four-dimensional effective M_{Pl} is $M_{Pl}^2 = M_{Pl(4+\delta)}^{2+\delta} R^{\delta}$
- Assuming $M_{Pl(4+\delta)} \sim m_{EW}$, we get $M_{Pl}^2 = m_{EW}^{2+\delta} R^{\delta}$
- implies, $R \sim 10^{\frac{30}{\delta} 17} cm \times \left(\frac{1 \text{TeV}}{\text{m}_{EW}}\right)^{1 + \frac{2}{\delta}}$
- $\delta = 1 \rightarrow R = 10^{13} \text{cm}$ is excluded due to the deviation from Newtonian gravity. But, for $\delta = 2$ it is in the *mm* range.

(N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali)

UED@LHC

S. K. Majee

RS-model

(pic from José Santiago's talk)

$$m_{IR} = m_{UV} exp(-\pi kR)$$

for $kR \sim 12$, a mass $m_{UV} \sim \mathcal{O}(M_{Pl})$ on the UV-brane corresponds to a mass on the IR brane with a value $m_{IR} \sim \mathcal{O}(M_{EW})$. (Randall, Sundrum)

UED@LHC

S. K. Majee

UED at a glance

- In UED model each particle can access all dimensions.
 (Appelquist, Cheng, Deobrescu)
- We consider only one space-type extra dimension (y)So our co-ordinate system : $\{x(t, \vec{x}), y\}$
- Compactification : S^1/Z_2

 Z_2 symmetry : $y \equiv -y$ necessary to get the chiral fermions of the SM

- Translational symmetry breaks $\Rightarrow p_5$, hence KK number (n) is not conserved.
- $y \rightarrow y + \pi R$ symmetry preserve $\Rightarrow \mathsf{KK} \text{ parity} \equiv (-1)^n \text{ conserved.}$

UED at a glance

- \bullet n = 1 states must be produced in pairs
- Lightest n = 1 state is stable $\Rightarrow \mathsf{LKP}$
- All heavier n = 1 states finally decay to LKP and corresponding SM (n = 0) states
- Collider signals are soft SM particles plus large $\not E$
- Limit on the R^{-1}
 - 250 300 GeV from $g_{\mu} 2$, $B_0 \overline{B}_0$ mixing, $Z \rightarrow b\overline{b}$ (Agashe, Deshpande, Wu; Chakraverty, Huitu, Kundu; Buras, Spranger, Weiler; Oliver, Papavassiliou, Santamaria)
 - 300 GeV from oblique parameters (Gogoladze, Macesanu)
 - \checkmark 600 GeV from $b \rightarrow s \gamma$ at NLO (Haisch, Weiler)
 - LKP dark matter ⇒ Upper bound ~ 1 TeV from overclosure of the universe (Servant, Tait)

Scalar, Fermion, and Gauge boson

Scalar :

$$\phi(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \phi^{(0)}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} \phi^{(n)}(x) \cos \frac{ny}{R}$$

Scalar, Fermion, and Gauge boson

Scalar :

$$\phi(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \phi^{(0)}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} \phi^{(n)}(x) \cos \frac{ny}{R}.$$

Fermions :

$$\begin{aligned} \mathcal{Q}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[\left(\begin{matrix} u_{i} \\ d_{i} \end{matrix} \right)_{L}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{Q}_{iL}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{Q}_{iR}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg], \\ \mathcal{U}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[u_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{U}_{iR}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{U}_{iL}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg], \\ \mathcal{D}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[d_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{D}_{iR}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{D}_{iL}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg]. \end{aligned}$$

S. K. Majee

Scalar, Fermion, and Gauge boson

Scalar :

$$\phi(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} \phi^{(0)}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} \phi^{(n)}(x) \cos \frac{ny}{R}.$$

Fermions :

$$\begin{aligned} \mathcal{Q}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[\left(\begin{matrix} u_{i} \\ d_{i} \end{matrix} \right)_{L}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{Q}_{iL}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{Q}_{iR}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg], \\ \mathcal{U}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[u_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{U}_{iR}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{U}_{iL}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg], \\ \mathcal{D}_{i}(x,y) &= \frac{\sqrt{2}}{\sqrt{2\pi R}} \Bigg[d_{iR}(x) + \sqrt{2} \sum_{n=1}^{\infty} \Bigg[\mathcal{D}_{iR}^{(n)}(x) \cos \frac{ny}{R} + \mathcal{D}_{iL}^{(n)}(x) \sin \frac{ny}{R} \Bigg] \Bigg]. \end{aligned}$$

Gauge boson :

$$A_{\mu}(x,y) = \frac{\sqrt{2}}{\sqrt{2\pi R}} A_{\mu}^{(0)}(x) + \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} A_{\mu}^{(n)}(x) \cos \frac{ny}{R},$$

$$A_{5}(x,y) = \frac{2}{\sqrt{2\pi R}} \sum_{n=1}^{\infty} A_{5}^{(n)}(x) \sin \frac{ny}{R}.$$

- -

UED@LHC

S. K. Majee

Effects of KK-modes on RGE

RGE in SM :

$$16\pi^2 E \frac{dg_i}{dE} = b_i g^3 = \beta_{SM}(g) \quad \Rightarrow \quad \frac{d}{dlnE} \alpha_i^{-1}(E) = -\frac{b_i}{2\pi}$$

Solution :

$$\alpha_i^{-1}(E) = \alpha_i^{-1}(M_Z) - \frac{b_i}{2\pi} ln \frac{E}{M_Z} \text{ with }
\begin{pmatrix}
b_Y \\
b_{2L} \\
b_{3C}
\end{pmatrix} = \begin{pmatrix}
\frac{41}{10} \\
-\frac{19}{6} \\
-7
\end{pmatrix}$$

Effects of KK-modes on RGE

RGE in SM :

$$16\pi^2 E \frac{dg_i}{dE} = b_i g^3 = \beta_{SM}(g) \quad \Rightarrow \quad \frac{d}{dlnE} \alpha_i^{-1}(E) = -\frac{b_i}{2\pi}$$

Solution :

$$\alpha_i^{-1}(E) = \alpha_i^{-1}(M_Z) - \frac{b_i}{2\pi} ln \frac{E}{M_Z} \text{ with }
\begin{pmatrix}
b_Y \\
b_{2L} \\
b_{3C}
\end{pmatrix} = \begin{pmatrix}
\frac{41}{10} \\
-\frac{19}{6} \\
-7
\end{pmatrix}$$

In UED,

UED@LHC

DDG-Nucl.Phys.B537:47-108,1999

$$16\pi^2 E \frac{dg_i}{dE} = \beta_{SM}(g) + (S-1)\beta_{UED}(g)$$
 where, $S = ER$

 $\beta_{UED} = \tilde{b_i} g_i^3$ with

$$\begin{pmatrix} \tilde{b}_{Y} \\ \tilde{b}_{2L} \\ \tilde{b}_{3C} \end{pmatrix} = \begin{pmatrix} \frac{81}{10} \\ \frac{7}{6} \\ \frac{-5}{2} \end{pmatrix}.$$

NCTS-NTHU, 17-May-2011 – p.11

S. K. Majee

Gauge Couplings

UED@LHC

S. K. Majee

Gauge Couplings

(Bhattacharyya, Datta, Majee, Raychaudhuri)

UED@LHC

S. K. Majee

Radiatvie Corrections

Cheng, Matchev, Schmaltz

Radiative corrections

- Tree level n th mode KK-mass $m_n = \sqrt{m_0^2 + n^2/R^2}$
- Consider the kinetic term of a scalar field as $L_{\rm kin} = Z \partial_{\mu} \phi \partial^{\mu} \phi - Z_5 \partial_5 \phi \partial^5 \phi$,
 - Tree level KK masses originate from the kinetic term in the y-direction.
 - If there is Lorentz invariance, then $Z = Z_5$, there is no correction to those masses.
 - A direction is compactified \Rightarrow Lorentz invariance breaks down.
 - Then, $Z \neq Z_5$, leading to $\Delta m_n \propto (Z Z_5)$.

Radiative: Bulk Corrections

- These corrections are finite and nonzero only for bosons.
- These corrections, for a given field, are the same for any KK mode.
- For a KK boson mass $m_n(B)$, these corrections are given by

$$\delta m_n^2(B) = \kappa \frac{\zeta(3)}{16\pi^4} \left(\frac{1}{R}\right)^2$$

 $\kappa = -39g_1^2/2, -5g_2^2/2$ and $-3g_3^2/2$ for B^n, W^n and g^n , respectively.

Radiative: Orbifold Corrections

- \checkmark Orbifolding additionally breaks translational invariance in the y-direction.
- The corrections to the KK masses arising from interactions localized at the fixed points are logarithmically divergent.

$$\frac{\delta m_n(f)}{m_n(f)} \left(\frac{\delta m_n^2(B)}{m_n^2(B)}\right) = \left(a \, \frac{g_3^2}{16\pi^2} + b \, \frac{g_2^2}{16\pi^2} + c \, \frac{g_1^2}{16\pi^2}\right) \, \ln \frac{\Lambda^2}{\mu^2},$$

The mass squared matrix of the neutral KK gauge boson sector in the B_n , W_n^3 basis is given by

$$\begin{pmatrix} \frac{n^2}{R^2} + \hat{\delta}m_{B_n}^2 + \frac{1}{4}g_1^2v^2 & \frac{1}{4}g_1g_2v^2 \\ \frac{1}{4}g_1g_2v^2 & \frac{n^2}{R^2} + \hat{\delta}m_{W_n}^2 + \frac{1}{4}g_2^2v^2 \end{pmatrix}$$

For n = 1 and $R^{-1} = 500$ GeV, it turns out that $\sin^2 \theta_W^1 \sim 0.01$ ($<< \sin^2 \theta_W \simeq 0.23$), i.e., γ^1 and Z^1 are primarily B^1 and W_3^1 , respectively.

UED@LHC

S. K. Majee

Mass Spectra

Mass Spectra

S. K. Majee

Allowed transitions

UED@LHC

S. K. Majee

- γ_1 is the LKP. It is neutral and stable.
- KK W- and Z-bosons
 - Hadronic decays closed.
 - Can not decay to their corresponding SM-mode and LKP, as kinematically not allowed.
 - W_1^{\pm} and Z_1 decay democratically to all lepton flavors: $B(W_1^{\pm} \to \nu_1 L_0^{\pm}) = B(W_1^{\pm} \to L_1^{\pm} \nu_0) = \frac{1}{6}$ $B(Z_1 \to \nu_1 \bar{\nu}_0) = B(Z_1 \to L_1^{\pm} L_0^{\mp}) \simeq \frac{1}{6}$

for each generation.

 $Z_1 \rightarrow \ell_1^{\pm} \ell_0^{\mp}$ decays are suppressed by $\sin^2 \theta_1$.

- γ_1 is the LKP. It is neutral and stable.
- KK W- and Z-bosons
 - Hadronic decays closed.
 - Can not decay to their corresponding SM-mode and LKP, as kinematically not allowed.
 - W_1^{\pm} and Z_1 decay democratically to all lepton flavors: $B(W_1^{\pm} \rightarrow \nu_1 L_0^{\pm}) = B(W_1^{\pm} \rightarrow L_1^{\pm} \nu_0) = \frac{1}{6}$ $B(Z_1 \rightarrow \nu_1 \bar{\nu}_0) = B(Z_1 \rightarrow L_1^{\pm} L_0^{\mp}) \simeq \frac{1}{6}$

for each generation.

 $Z_1 \rightarrow \ell_1^{\pm} \ell_0^{\mp}$ decays are suppressed by $\sin^2 \theta_1$. KK leptons

The level 1 KK modes of the charged leptons and neutrinos directly decay to \(\gamma_1\) and corresponding zero mode states.

UED@LHC S. K. Majee

• The heaviest KK particle at the 1st KK-level g_1 . $B(g_1 \rightarrow Q_1 Q_0) \simeq B(g_1 \rightarrow q_1 q_0) \simeq 0.5$.

- The heaviest KK particle at the 1st KK-level g_1 . $B(g_1 \rightarrow Q_1 Q_0) \simeq B(g_1 \rightarrow q_1 q_0) \simeq 0.5$.
- KK quarks
 - SU(2)-singlet quarks (q_1) : $B(q_1 \rightarrow Z_1 q_0) \simeq \sin^2 \theta_1 \sim 10^{-2} - 10^{-3}$ $B(q_1 \rightarrow \gamma_1 q_0) \simeq \cos^2 \theta_1 \sim 1$
 - SU(2)-doublet quarks (Q_1) : $SU(2)_W$ -symmetry \Rightarrow $B(Q_1 \rightarrow W_1^{\pm}Q'_0) \simeq 2B(Q_1 \rightarrow Z_1Q_0)$ and furthermore for massless Q_0 we have $B(Q_1 \rightarrow W_1^{\pm}Q'_0) \sim 65\%$, $B(Q_1 \rightarrow Z_1Q_0) \sim 33\%$ and $B(Q_1 \rightarrow \gamma_1Q_0) \sim 2\%$.

Collider Signature

Bhattacharyya, Datta, Majee, Raychaudhuri

Production

$$\begin{split} |\mathcal{M}\{qg \to \overline{Q}V^1\}|^2 &= \\ \frac{\pi \alpha_s(\hat{s})(a_L^2 + a_R^2)}{6} \left[\frac{\{-2\hat{s}\hat{t} + 2\hat{s}m_{\overline{Q}}^2\}}{\hat{s}^2} + \frac{\{-2\hat{s}\hat{t} - 4\hat{t}m_{\overline{Q}}^2 + 2\hat{s}m_{\overline{Q}}^2 + 4m_{V^1}^2 m_{\overline{Q}}^2\}}{(\hat{t} - m_{\overline{Q}}^2)^2} \right. \\ \left. + \frac{2\{-2\hat{t}m_{\overline{Q}}^2 + 2(\hat{s} + \hat{t})m_{V^1}^2 + 2m_{V^1}^2 m_{\overline{Q}}^2 - 2m_{V^1}^4\}}{\hat{s}(\hat{t} - m_{\overline{Q}}^2)} \right] \end{split}$$

Excited quark $ ightarrow$	SU(2) Doublet(Q) ($a_R = 0$)	SU(2) Singlet (q) ($a_L = 0$)
Excited boson \downarrow	a_L	a_R
W^1	$\frac{g}{\sqrt{2}}$	0
Z^1	$\frac{g}{2\cos\theta_W^1} \left(T_3 - e_Q \sin^2 \theta_W^1 \right)$	$-rac{g}{2\cos heta_W^1}\left(e_q\sin^2 heta_W^1 ight)$
γ^1	$rac{e_Q}{\cos heta_W} \cos heta_W^1$	$rac{e_q}{\cos heta_W} \cos heta_W^1$

UED@LHC

S. K. Majee

Production Crosssection

UED@LHC

S. K. Majee

Basic cuts and n_l **crosssection**

basic cuts

- $p_T^{jet} > 20 \text{GeV}$
- $p_T^{lepton} > 5 \text{GeV}$
- $p_T^{miss} > 25 \text{GeV}$
- $M_{l_i l_j} > 5 GeV$
- $|\eta| < 2.5$ for all leptons and jet
- lepton isolation : $\Delta R > 0.7$, $(n_l \ge 2 \text{ cases})$

crosssection (fb)

Channel	0 <i>l</i>	1 <i>l</i>	2 <i>l</i>	3 <i>l</i>	41
Signal (500 GeV)	106.4	17.92	29.58	9.39	1.01
Signal (1 TeV)	2.02	0.35	0.606	0.210	0.025
Background	4.7×10^5	1.3 ×10 ⁶	8.6 ×10 ⁴	1183.21	0.13

UED@LHC

S. K. Majee

Two Leptons

- Signal
 - ${}^{ }$ $Q^1 W^1$ production followed by $Q^1
 ightarrow Q' W^1$
 - Q^1Z^1 production followed by $Q^1 \rightarrow QZ^1$ We separately consider 'like-flavor', i.e., e^+e^- or $\mu^+\mu^-$, as well as 'unlike-flavor', i.e., $\mu^+e^- + e^+\mu^-$, in our discussion.

Background

- dominanat: $t\bar{t}$ and $b\bar{b}$
- severely cut down: $p_T^{jet} > 20 \text{GeV}$
- \checkmark W pair production in association with a jet.
- **\square** Z pair (real or virtual)
- $\checkmark Z\gamma^*$

Additional Cuts:

- $p_T^{l_1} < 25 \text{ GeV},$
- **•** $p_T^{l_2}$ < 25 GeV, and
- $\ \, |M_{l_1l_2}-M_Z|> {\rm 10~GeV}$

Two Leptons

UED@LHC

S. K. Majee

Two Leptons

$\sqrt{s} \rightarrow$	1	I4 TeV	10 TeV	
Cut used ↓	Signal	Background	Signal	Background
Basic cuts	29.58 (43.10)	8.6×10 ⁴ (17×10 ⁴)	10.0 (14.6)	5 ×10 ⁴ (9.6×10 ⁴)
Lepton isolation	24.24 (35.24)	218.38 (429.64)	8.28 (12.06)	108.54 (212.78)
$p_T^{l_1} < 25 \text{ GeV}$	21.66 (30.88)	78.67 (154.90)	7.52 (10.74)	41.10 (80.70)
$p_T^{l_2} < 25 \text{ GeV}$	12.58 (18.00)	9.44 (18.40)	4.53 (6.52)	5.27 (10.22)
$ M_{l_1l_2} - M_Z > 10$	12.52 (17.88)	9.18 (17.98)	4.51 (6.48)	5.17 (10.08)

Cross section (in fb) at the LHC signal and background for the like-flavour(unlike-flavour)

dilepton plus missing p_T plus single jet for $R^{-1} = 500 \text{GeV}$.

UED@LHC

Three Leptons

- Signal
 - $Q^1 W^1$ production followed by $Q^1 \rightarrow Q^0 Z^1$
 - Q^1Z^1 production followed by $Q^1 \rightarrow Q'^0W^1$
- Background $t\bar{t}$ production, WZ or $W\gamma^*$ production in association with a jet.
- Additional Cuts
 - ho $p_T^{l_1}$ < 25 GeV,
 - ho $p_T^{l_2}$ < 25 GeV, and
 - $|M_{l_1 l_2} M_Z| > 10$ GeV.

Three Leptons

$\sqrt{s} \rightarrow$	14 TeV		10 TeV		
Cut used ↓	Signal	Background	Signal	Background	
Basic cuts	9.39	1183.21	3.21	555.85	
Lepton isolation	6.96	21.69	2.41	10.53	
$p_T^{l_2} < 25 \text{ GeV}$	5.63	4.09	2.01	1.75	
$p_T{}^{l_3} < 40 \text{ GeV}$	5.12	1.31	1.86	0.64	
$ M_{l_i l_j} - M_Z > 10 \text{ GeV}$	5.03	1.16	1.82	0.57	

Cross section (in *fb*) at the LHC of signal and background for the trilepton plus one jet and missing p_T channel for R^{-1} = 500 GeV.

Four Leptons

● Signal Q^1Z^1 production followed by $Q^1 \rightarrow Q^0Z^1$

$ M_{l_i l_j} - M_Z $	> 10	GeV for i ,	<i>j</i> = 1,2,3,4	, $i \neq j$.
------------------------	------	---------------	--------------------	----------------

$\sqrt{s} \rightarrow$	14 TeV		10 TeV	
Cut used ↓	Signal	Background	Signal	Background
Basic cuts	1.01	0.130	0.350	0.068
Lepton isolation	0.665	0.029	0.233	0.015
$ M_{l_i l_j} - M_Z > 10 \text{ GeV}$	0.573	0.004	0.206	0.002

Cross section (in *fb*) at the LHC of signal and background for the tetralepton plus one jet and missing p_T channel for R^{-1} = 500 GeV.

Luminosity plot for a 5σ signal

UED@LHC

S. K. Majee

Conclusions

- we have focussed on the production of the n = 1 excitation of a EW gauge boson along with an n = 1 excited quark.
- First, we imposed some basic cuts to suit LHC observability:
 - the leptons are required to satisfy $p_T > 5$ GeV,
 - the jet must have a p_T not less than 20 GeV,
 - Ithe missing transverse momentum must be more than 25 GeV.
 - $\Delta R > 0.7$
- Single jet $+ p_T' + two$ leptons: Signal: 12.52 fb, Background: 9.18 fb,
- Single jet $+ p_T' +$ three leptons: Signal: 5.00 fb, Background: 1.02 fb,
- Single jet $+ p_T' + four$ leptons: Signal: 0.573 fb, Background: 0.004 fb.
- The analysis performed here is based on a parton-level simulation and is of an exploratory nature.

UED@LHC

S. K. Majee