CP violating lepton asymmetry from semileptonic *B* decays in supersymmetric grand unified theories

Yukihiro Mimura 御村幸宏 (National Taiwan University 國立臺灣大學)

Based on

in Collaboration with B. Dutta and Y. Santoso
Phys. Rev. Lett. 97, 241802 (2006);
Phys. Lett. B677, 164 (2009);
Phys. Rev. D80, 095005 (2009); ibid. 82, 055017 (2010)
in Collaboration with B. Dutta, S. Khalil, and Q. Shafi
in prepearation

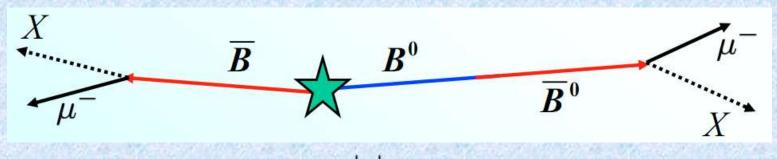
NCTS, Hsinchu (2011.4.12)

Menu

- 1. Introduction
- 2. CP asymmetry in semi-leptonic B decays
 Experimental result vs. SM prediction
 2. Now Division (ND) contributions
- 3. New Physics (NP) contributions
- 4. Origin of FCNCs in SUSY GUTs SU(5) with type I seesaw vs. SO(10) with type II seesaw 5. Constraints from $\tau \rightarrow \mu \gamma$ in SUSY GUTs

Deview

Dimuon charge asymmetry of semileptonic B decay [D0]



$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

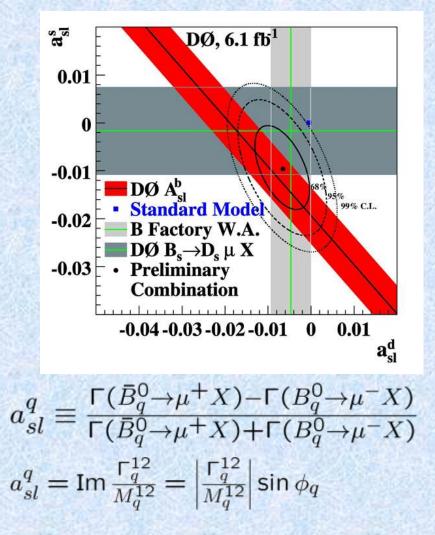
 $b \to \mu^- \bar{\nu} X$ $\bar{b} \to \mu^+ \nu X$

 $A_{sl}^{b} = -0.00957 \pm 0.00251(\text{stat}) \pm 0.00146(\text{syst})$

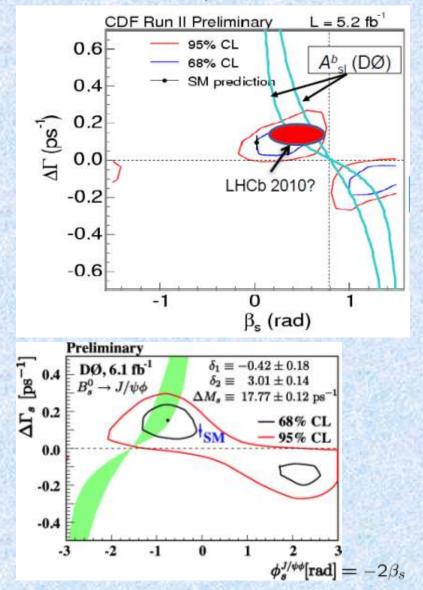
$$A^b_{sl}(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

3.2 sigma deviation from SM

Asymmetry from semi-leptonic decay

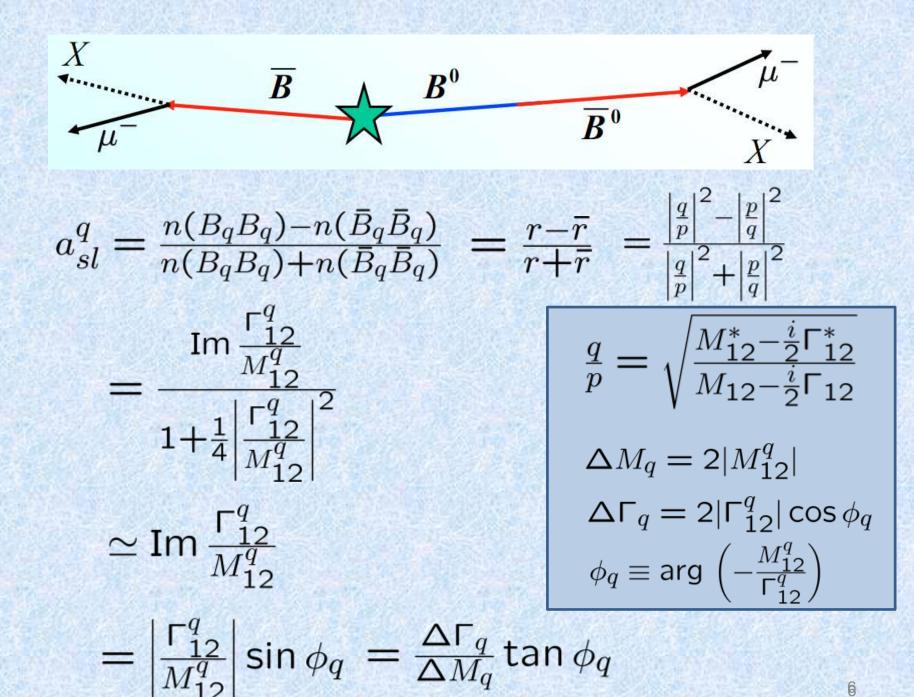


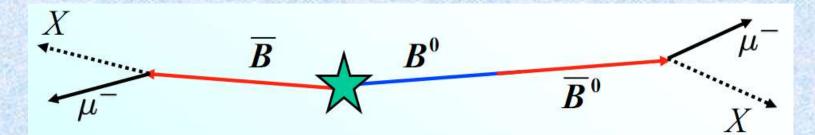
From $B_s \rightarrow J/\psi \phi$ decay



A hint of a large CP violating phase in Bs system!

 $B_q - \overline{B}_q$ oscillations (q = d, s) $i\frac{d}{dt} \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix} = \left(\begin{pmatrix} M_{11}^q & M_{12}^q \\ M_{21}^q & M_{22}^q \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11}^q & \Gamma_{12}^q \\ \Gamma_{21}^q & \Gamma_{22}^q \end{pmatrix} \right) \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix}$ $\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$ u,c,t b $r \equiv \frac{P(\bar{B} \rightarrow \bar{B})}{P(\bar{B} \rightarrow \bar{B})} = \left|\frac{q}{p}\right|^2 \frac{x^2 + y^2}{2 + x^2 - y^2}$ $\Delta M_q = 2|M_{12}^q|$ $\bar{r} \equiv \frac{P(B \to \bar{B})}{P(B \to B)} = \left|\frac{p}{q}\right|^2 \frac{x^2 + y^2}{2 + x^2 - y^2}$ $\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos \phi_q$ $x = \frac{\Delta M}{\Gamma}$ $y = \frac{\Delta \Gamma}{2\Gamma}$ $\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$

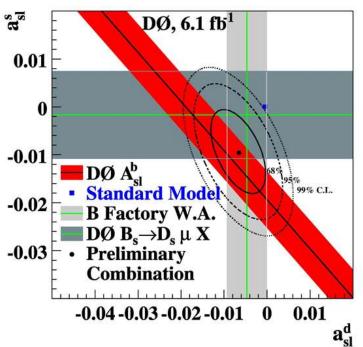


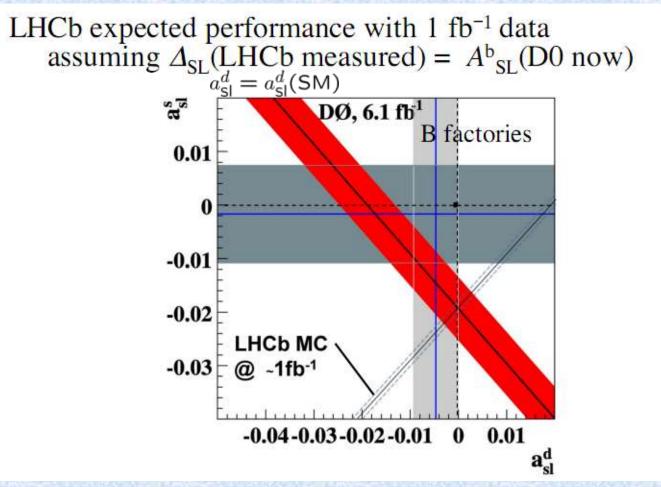


 $A_{sl}^{b} = \frac{n(B_{d}B_{d}) - n(\bar{B}_{d}\bar{B}_{d}) + n(B_{s}B_{s}) - n(\bar{B}_{s}\bar{B}_{s})}{n(B_{d}B_{d}) + n(\bar{B}_{d}\bar{B}_{d}) + n(B_{s}B_{s}) + n(\bar{B}_{s}\bar{B}_{s})}$ = (0.506 ± 0.043) a_{sl}^{d} + (0.494 ± 0.043) a_{sl}^{s} (Tevatron)

 $a_{sl}^d(SM) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$ $a_{sl}^s(SM) = (2.1 \pm 0.6) \times 10^{-5}$ (Lenz-Nierste)

$$A_{sl}^b(SM) = (-2.3_{-0.6}^{+0.5}) \times 10^{-4}$$





(picked up from T.Nakada's talk at CPV conf. at Tohoku U)

It will be tested very accurately at LHCb.

Why is SM prediction so small?

➡ Because of unitarity of CKM matrix.

Standard model prediction

$$M_{12}^q \propto \sum_{i,j=u,c,t} \lambda_i^q \lambda_j^q E(x_i, x_j) \xrightarrow{\qquad W \qquad (\phi_{\mathsf{WbG}}) \qquad (\phi_{\mathsf{WbG}$$

Standard model prediction

$$\Gamma_{12}^{q} \propto \sum_{i,j=u,c} \lambda_{i}^{q} \lambda_{j}^{q} \gamma_{ij}$$
(Leading order)

$$\Gamma_{12}^{q} \propto (V_{tb} V_{tq}^{*})^{2}$$

$$\lambda_{i}^{q} = V_{ib} V_{iq}^{*}$$

$$\lambda_{u}^{q} + \lambda_{c}^{q} + \lambda_{t}^{q} = 0$$

$$\Gamma_{12}^{q} \propto (\lambda_{u}^{q})^{2} + 2\lambda_{u}^{q} \lambda_{c}^{q} + (\lambda_{c}^{q})^{2} = (\lambda_{u}^{q} + \lambda_{c}^{q})^{2}$$
up to $O(m_{c}^{2}/m_{b}^{2})$

$$\gamma_{uu} \simeq 1$$
, $\gamma_{uc} \simeq 1 - rac{4m_c^2}{3m_b^2}$, and $\gamma_{cc} \simeq 1 - rac{8m_c^2}{3m_b^2}$

(1) Unitarity:
$$\lambda_u^q + \lambda_c^q + \lambda_t^q = 0$$

 $\longrightarrow \phi_q$: small
 ΔM
 $\Delta \Gamma$
 ΔR
 ΔR

$$\Delta M_q = 2|M_{12}^q|$$
$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$
$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$
$$a_{sl}^q = \left|\frac{\Gamma_{12}^q}{M_{12}^q}\right|\sin\phi_q$$

Smallness of the dimuon asymmetry is an important prediction in the standard model (with 3 generations).

Lenz-Nierste's calculations $[O(\alpha_s) \text{ and } O(\Lambda/m_b)]$

$$\frac{\Delta\Gamma_d}{\Delta M_d} = (52.6^{+11.5}_{-12.8}) \times 10^{-4}$$
$$\phi_d = -0.091^{+0.026}_{-0.038}$$

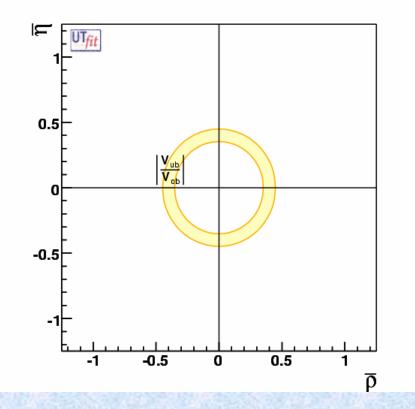
$$\Delta M_q = 2|M_{12}^q|$$
$$\Delta \Gamma_q = 2|\Gamma_{12}^q|\cos\phi_q$$
$$\phi_q \equiv \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$$
$$a_{sl}^q = \left|\frac{\Gamma_{12}^q}{M_{12}^q}\right|\sin\phi_q$$

 $\frac{\Delta\Gamma_s}{\Delta M_s} = (49.7 \pm 9.4) \times 10^{-4}$ $\phi_s = 0.0042 \pm 0.0014$ When new particles propagate in the loop, the phase can be generically large.

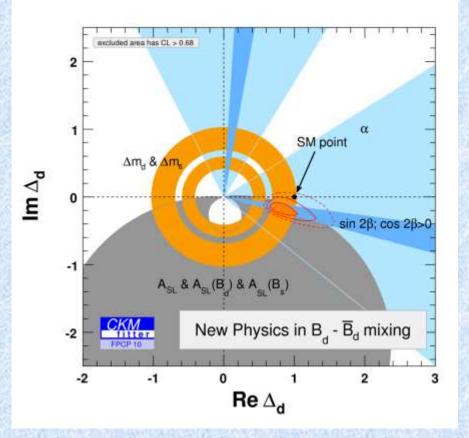
Important probe of new physics.

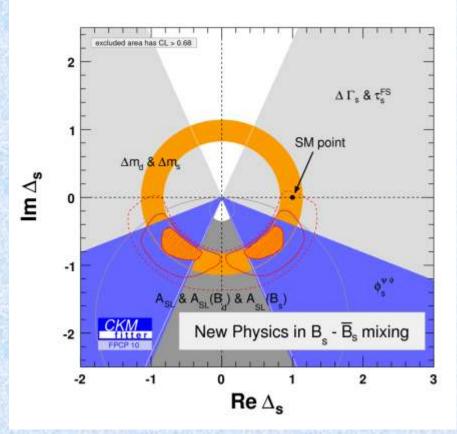
What kinds of new physics are possible?

Unitary triangle $(\lambda_u^d + \lambda_c^d + \lambda_t^d = 0)$ seems to be closed.



There may be no much room for new physics in B_d system.



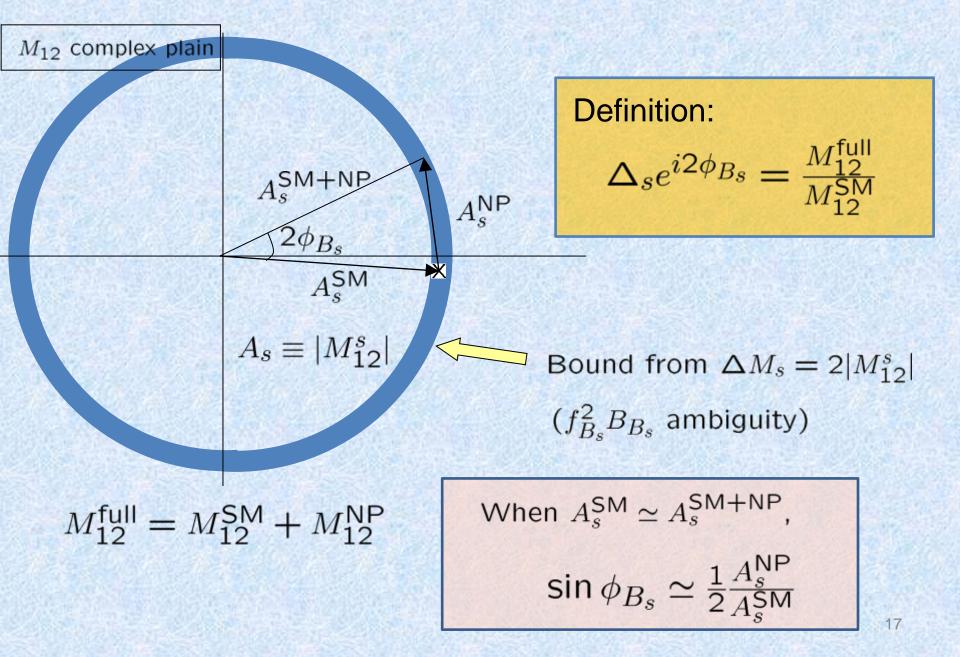


[sin 2β - V_{ub} descrepancy?]

Definition: $|\Delta_q|e^{i2\phi_{Bq}} = \frac{M_{12}^{q,\text{full}}}{M_{12}^{q,\text{SM}}}$

16

Bs system still has room for new physics due to phase freedom.



 $\Delta M_s^{\text{exp}} = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1}$ $\Delta M_s^{\text{SM}} = (19.30 \pm 6.74) \text{ ps}^{-1}$ Now improving! $\sim 15\%$ $\Delta_s = \frac{\Delta M_s^{\text{exp}}}{\Delta M_s^{\text{SM}}} = 0.92 \pm 0.32$ (mainly $f_{B_s}^2 B_{B_s}$ ambiguity)

When there is no NP in Bd system,

$$\Delta M_s^{\mathsf{SM}} = \frac{M_{B_s}}{M_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2 \underbrace{\frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{Bd}}}_{= (18.3 \pm 1.3) \text{ ps}^{-1}} \Delta M_d^{\mathsf{exp}}$$

$$\Delta_s = \frac{\Delta M_s^{\text{exp}}}{\Delta M_s^{\text{SM}}} = 0.95 \pm 0.095$$

18

Is the M_{12} phase modification sufficient to achieve the center value of D0 result?

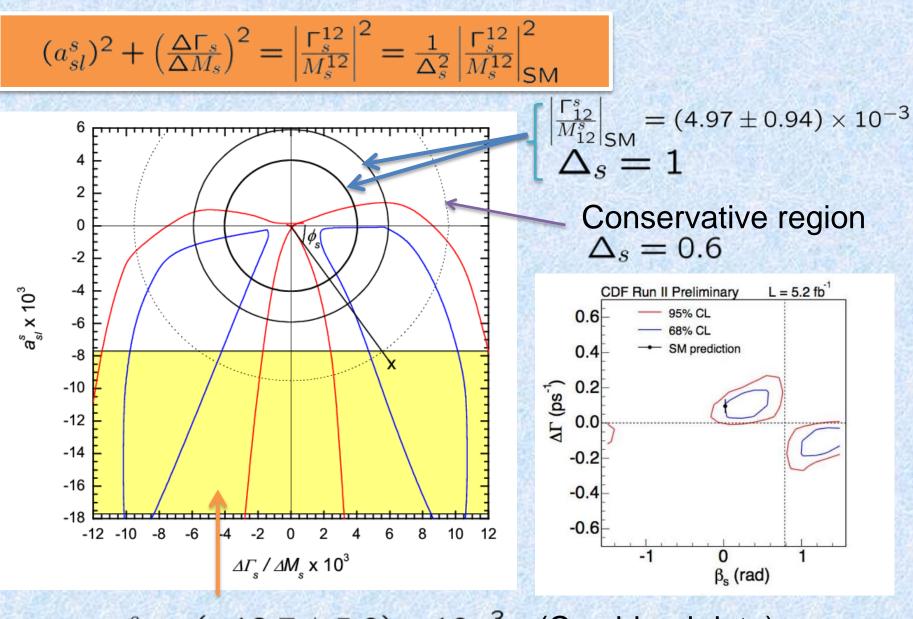
$$a_{sl}^s = \left| \frac{\Gamma_s^{12}}{M_s^{12}} \right| \sin \phi_s = \frac{\Delta \Gamma_s}{\Delta M_s} \tan \phi_s$$

No.

$$(a_{sl}^s)^2 + \left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^2 = \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|^2 = \frac{1}{\Delta_s^2} \left|\frac{\Gamma_s^{12}}{M_s^{12}}\right|_{\mathsf{SM}}^2$$

 $\left| \frac{\Gamma_{12}^s}{M_{12}^s} \right|_{\text{SM}} = (4.97 \pm 0.94) \times 10^{-3}$ (Lenz-Nierste)

 $\Gamma_{12} = \Gamma_{12}^{SM}$ is assumed.



 $a_{SI}^s = (-12.7 \pm 5.0) \times 10^{-3}$ (Combined data) assuming $a_{sl}^d = a_{sl}^d$ (SM)

20

$$M_{12}^s$$
 modification
by $\Delta b = 2$ interaction Loop processes
It is easy to modify its phase in many FCNC models.
CPV in $B_s \rightarrow J/\psi\phi$ decay is large.

 Γ_{12}^s modification

by $\Delta b = 1$ interaction

Necessary to achieve the center value of D0 result. But it is not so easy because of experimental constraints. Long distance QCD contribution?

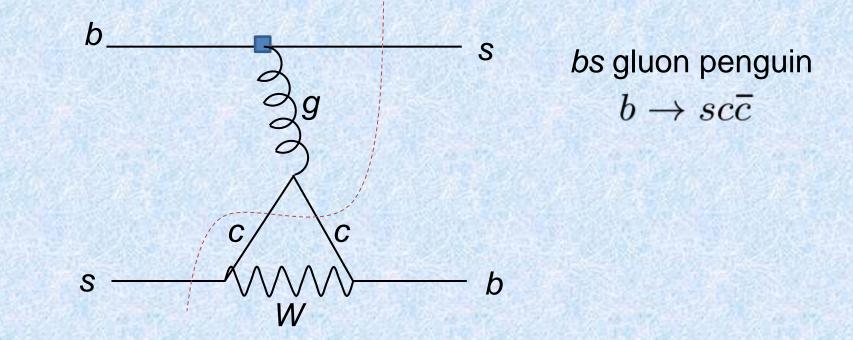
M_{12}^s modification

- SUSY
- 4th generation
- TeV scale vector-like family
- multiple Higgs
- horizontal gauge symmetry
- right-handed W
- extra U(1)
- axigluon
- warped model

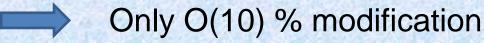
Γ_{12}^s modification

- *R*-parity violating SUSY
- leptoquark
- diquark
- multiple Higgs
- light bosons
- unparticle
- CPT violation

Modification of Γ_{12} in MSSM?



However, $b \to ss\bar{s}, b \to sd\bar{d}, b \to su\bar{u}$ are constrained from $B_d \to \phi K, \pi K$.



Allowed $\Delta b = 1$ operators (Bauer-Dunn) constraints $\cdot (\overline{b}\gamma_{\mu}s)(\overline{c}\gamma^{\mu}c)$ $\cdot B \to M_1 M_2, B \to \ell^+ \ell^ \cdot (\bar{b}\gamma_{\mu}s)(\bar{\tau}\gamma^{\mu}\tau)$ $\cdot b \rightarrow s\gamma$ $\cdot \ (\overline{b}\gamma_{\mu}d)(\overline{u}\gamma^{\mu}c)$ $(\overline{b}d)(\overline{u}c)$ Ex) au_R leptoquark LQ(Dighe-Kundu-Nandi) SR. au_{R}

In general, it is not easy due to the constraint of lifetime ratio. Fine-tune is needed. $\tau_{B_s}/\tau_{B_d}=0.99\pm0.03$ (arXiv: 1103.1864)

The scheme in PRD 82, 055017 (2010)

(Dutta-YM-Santoso)

- Dimuon asymmetry comes from the mixing amplitude M_{12}^s
- Modification from Γ_{12} (by Lenz-Nierste) is not considered. (giving up the center value of D0 result).
- We do not touch the modification of Bd mixing.
- We will investigate the constraints to have the large CP phase in SUSY GUT FCNC scenarios.

Basic Scenario of flavor violation in SUSY GUTs

Too much FCNCs in general SUSY breaking masses.

 $\square \rangle$

Flavor universality of SUSY breaking is assumed.

Even if so, FCNCs are induced by RGEs.

In MSSM, the quark FCNCs are small due to tiny CKM mixings.

If there is a heavy particle, the loop corrections can induce sizable FCNCs. (e.g. right-handed neutrino)

(Borzumati-Masiero)

Investigating accurate measurement of FCNCs in quarks and leptons is very important to find a footprint of the GUT models.

In GUT models,

 $\tau \rightarrow \mu \gamma$ and $B_s - \bar{B}_s$ mixing are related.

Experimental data for Lepton Flavor Violation (LFV)

$$Br(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$$
 (Babar & Belle)

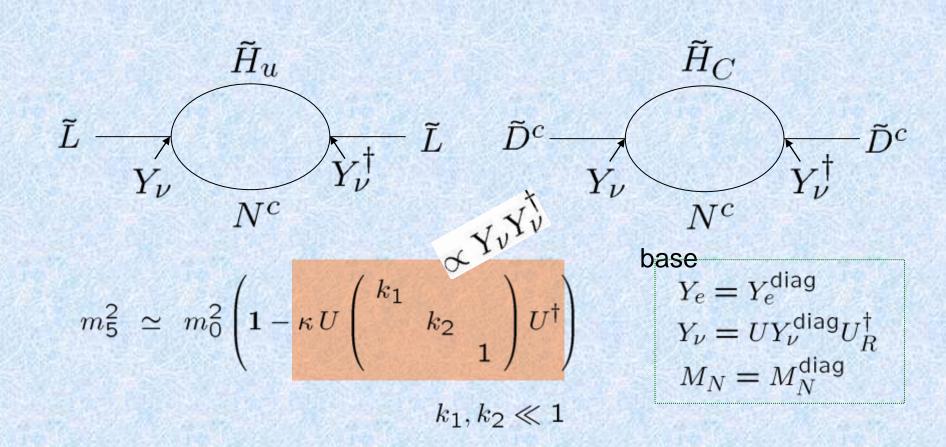
bounds the phase of B_s - \overline{B}_s mixing.

(YM-Dutta, Parry, Hisano-Shimizu, Park-Yamaguchi, Goto et.al. ...)

We will study the constraints to obtain the large CP phase and the correlation to the other observables (e.g. $B_s \rightarrow \mu\mu$) in SU(5) and SO(10) GUT models.

SU(5) GUT Down quarks (D^c) and lepton doublet (L) are unified in $\overline{5}$. Q, U^{c}, E^{c} : 10 Right-handed neutrino : N^c $W_Y = Y_u \, \mathbf{10} \cdot \mathbf{10} \, H_5 + Y_d \, \mathbf{10} \cdot \mathbf{5} \, H_5 + Y_\nu \, \mathbf{5} \, N^c \, H_5$ \tilde{H}_{u} \tilde{H}_C D^c N^{c} Both RH down-squarks and LH sleptons can have FCNC effects.

(Moroi, Akama-Kiyo-Komine-Moroi, Baek-Goto-Okada-Okumura, ...)



U: unitary mixing matrix $\kappa \simeq \frac{(Y_{\nu 33}^{\text{diag}})^2}{8\pi^2} \left(3 + \frac{A_0^2}{m_0^2}\right) \ln \frac{M_*}{M_{\text{GUT}}}$

If $U_R = 1$, U is the PMNS neutrino mixing matrix.

$$m_{\tilde{D}}^{2} \simeq m_{5}^{2} \simeq m_{0}^{2} \left(1 - \kappa U \begin{pmatrix} k_{1} \\ k_{2} \\ 1 \end{pmatrix} U^{\dagger} \right) \qquad \begin{array}{l} \kappa : \text{ coefficient} \\ U : \text{ unitary matrix} \\ (m_{5}^{2})_{23} = -\frac{1}{2}m_{0}^{2}\kappa \sin 2\theta_{23} e^{i\alpha} \\ & & & \\ & &$$

Cf. $(m_{5}^{2})_{13} = m_{0}^{2}\kappa(-\frac{1}{2}k_{2}\sin 2\theta_{12}\sin \theta_{23} + e^{i\delta}\sin \theta_{13}\cos \theta_{23})e^{i\beta}$ $(m_{5}^{2})_{12} = m_{0}^{2}\kappa(-\frac{1}{2}k_{2}\sin 2\theta_{12}\cos \theta_{23} - e^{i\delta}\sin \theta_{13}\sin \theta_{23})e^{i(\beta-\alpha)}$

SO(10) GUT All Q, U^c, D^c, L, E^c, N^c are unified in 16. $h \cdot 16 H_{10} + f \cdot 16 H_{126} + h' \cdot 16 H_{120}$

$$\begin{aligned} Y_u &= h + r_2 f + r_3 h' \\ Y_d &= r_1 (h + f + h') \\ Y_e &= r_1 (h - 3f + c_e h') \\ Y_\nu &= h - 3r_2 f + c_\nu h' \end{aligned} \qquad \begin{aligned} M_\nu^{\text{light}} &= M_L - Y_\nu M_R^{-1} Y_\nu^\mathsf{T} v_u^2 \\ \text{Type II} & \text{Type I} \\ M_L &= f_L \langle \Delta_L^0 \rangle \\ M_R &= f_R \langle \Delta_R^0 \rangle \\ \text{SU}(2)_L \text{ triplet} \end{aligned}$$

Naively, $U_{L,R} \sim 1$. $(Y_{\nu} = U_L Y_{\nu}^{\text{diag}} U_R^{\dagger})$

The right-handed neutrino loop effects are not very large.

However, $f \, 16 \cdot 16 \, H_{\overline{126}}$ coupling can have a source of large mixings. The coupling includes the Majorana couplings : $f_L L L \Delta_L + f_R L^c L^c \Delta_R$

The relative mixings between *h* and *f* couplings give the large neutrino mixings.

$$h = \begin{pmatrix} c \\ b \\ a \end{pmatrix} \begin{pmatrix} c & b & a \end{pmatrix}, \quad f = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \qquad \tan \theta_s = -\frac{c}{b} \\ \tan \theta_a = \frac{\sqrt{b^2 + c^2}}{a}$$

 $U_0 h U_0^t = \text{diag}(0, 0, h_3)$ (*h*: rank 1)

 $U_{0} = \begin{pmatrix} \cos \theta_{s} & \sin \theta_{s} & 0\\ -\cos \theta_{a} \sin \theta_{s} & \cos \theta_{a} \cos \theta_{s} & -\sin \theta_{a}\\ -\sin \theta_{a} \sin \theta_{s} & \sin \theta_{a} \cos \theta_{s} & \cos \theta_{a} \end{pmatrix}$

 $U_{\text{MNSP}} = \tilde{V}_e^* U_0 \qquad \tilde{V}_e^* \sim V_{\text{CKM}}$

Neglecting threshold effects:

$$m_{16}^2 \simeq m_{\tilde{Q}}^2 \simeq m_{\tilde{U}^c}^2 \simeq m_{\tilde{D}^c}^2 \simeq m_{\tilde{L}}^2 \simeq m_{\tilde{E}^c}^2 \simeq m_{\tilde{N}^c}^2$$
$$m_{16}^2 \simeq m_0^2 \left(\mathbf{1} - \kappa U \begin{pmatrix} k_1 \\ k_2 \\ 1 \end{pmatrix} U^{\dagger} \right)$$

Threshold parameter :
$$\kappa \simeq \frac{15}{4} \frac{(f_{33}^{\text{diag}})^2}{8\pi^2} \left(3 + \frac{A_0^2}{m_0^2}\right) \ln \frac{M_*}{M_{\text{GUT}}}$$

 $f = U f^{\text{diag}} U^{\text{T}}$

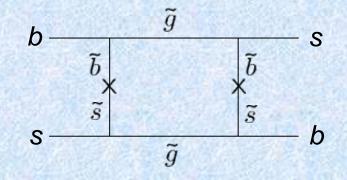
M_{*}: String/Planck scale

$$k_2 \simeq \frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}$$

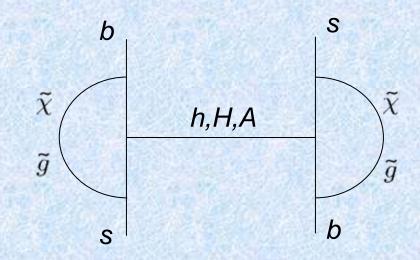
Both left- and right-squarks have sizable FCNC effects!

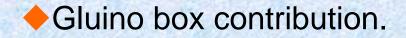
SUSY contributions in $B-\overline{B}$ mixings

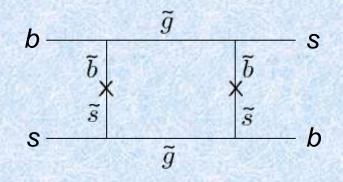
Gluino box contribution.



Double Higgs penguin contribution.







Mass insertion approximation:

$$\frac{M_{12}^{\text{SUSY}}}{M_{12}^{\text{SM}}} \simeq a[(\delta_{LL}^d)_{32}^2 + (\delta_{RR}^d)_{32}^2] - b(\delta_{LL}^d)_{32}(\delta_{RR}^d)_{32} + \cdots$$
$$a \sim O(1), \ b \sim O(100) \text{ for } m_{\text{SUSY}} \sim 1 \text{ TeV} \text{ (Ball-Khalil-Kou)}$$

$$\begin{split} \delta^d_{LL,RR} &= (M^2_{\tilde{d}})_{LL,RR}/\tilde{m}^2 \qquad \tilde{m} : \text{ average squark mass} \\ (\tilde{d}_L, \tilde{d}_R) \begin{pmatrix} (M^2_{\tilde{d}})_{LL} & (M^2_{\tilde{d}})_{LR} \\ (M^2_{\tilde{d}})_{RL} & (M^2_{\tilde{d}})_{RR} \end{pmatrix} \begin{pmatrix} \tilde{d}^{\dagger}_L \\ \tilde{d}^{\dagger}_R \end{pmatrix} \qquad \begin{pmatrix} (M^2_{\tilde{d}})_{LL} = m^2_{\tilde{Q}} + \cdots \\ (M^2_{\tilde{d}})_{RR} = (m^2_{\tilde{D}^c})^{\mathsf{T}} + \cdots \end{split}$$

Both left- and right-squarks have FCNC effects in SO(10).

V2II2-

$$\frac{M_{12}^{3034}}{M_{12}^{5M}} \simeq a[(\delta_{LL}^d)_{32}^2 + (\delta_{RR}^d)_{32}^2] - b(\delta_{LL}^d)_{32}(\delta_{RR}^d)_{32} + \cdots$$
$$a \sim O(1), \ b \sim O(100) \text{ for } m_{\text{SUSY}} \sim 1 \text{ TeV}$$

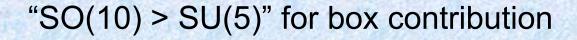
Flavor violating effects are larger in the box diagram in SO(10).

Cf. Only δ_{RR}^d is large in SU(5).

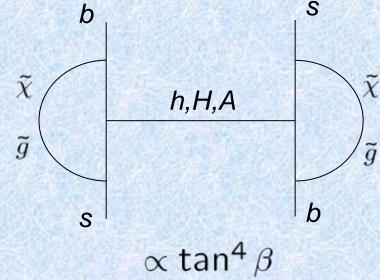
• SU(5) GUT with type I seesaw (FCNC source = Y_{ν}) Only δ^d_{RR} is large in SU(5).

• SO(10) GUT with type II seesaw (triplet term dominant) (FCNC source = 16 16 $\overline{126}$ coupling)

Both δ_{LL}^d and δ_{RR}^d is large in SO(10).



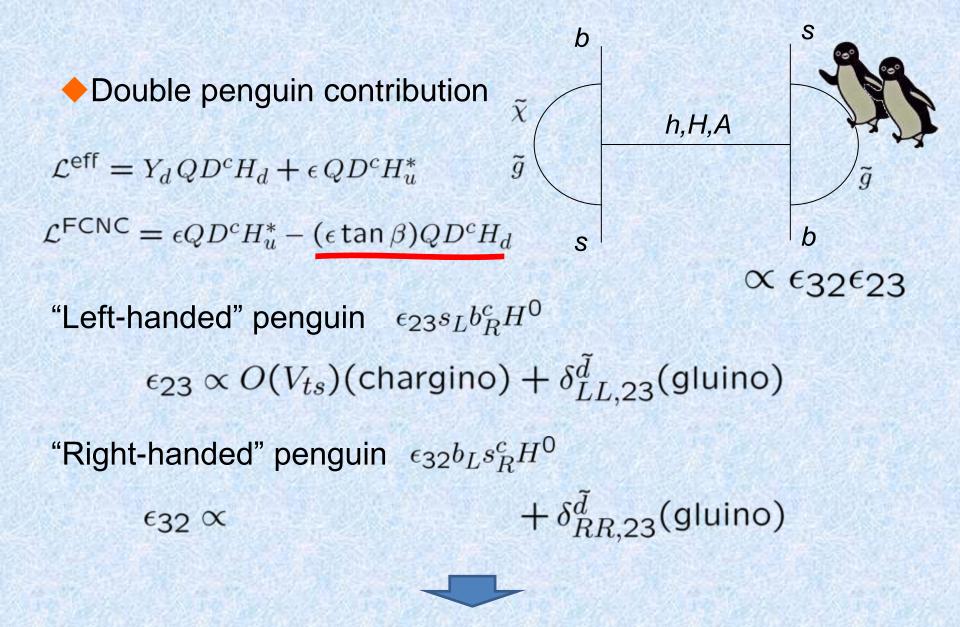
 Double penguin contribution. (Hamzaoui-Pospelov-Toharia, Buras et.al., Bobeth et.al.,...)



FCNC Higgs-Penguin operator comes from finite mass correction. $\mathcal{L}^{eff} = Y_d Q D^c H_d + \epsilon Q D^c H_u^*$ $\mathcal{L}^{FCNC} = \epsilon Q D^c H_u^* - (\epsilon \tan \beta) Q D^c H_d$

(in the basis where the eff. mass is diag.)

$$\begin{split} &(\delta_{LL})_{32}(\delta_{LL})_{32}\left(\frac{\sin^2(\alpha-\beta)}{m_H^2} + \frac{\cos^2(\alpha-\beta)}{m_h^2} - \frac{1}{m_A^2}\right) \to 0 \\ &(m_A > M_Z, \tan\beta \gg 1) \\ &(\delta_{LL})_{32}(\delta_{RR})_{32}\left(\frac{\sin^2(\alpha-\beta)}{m_H^2} + \frac{\cos^2(\alpha-\beta)}{m_h^2} + \frac{1}{m_A^2}\right) \end{split}$$

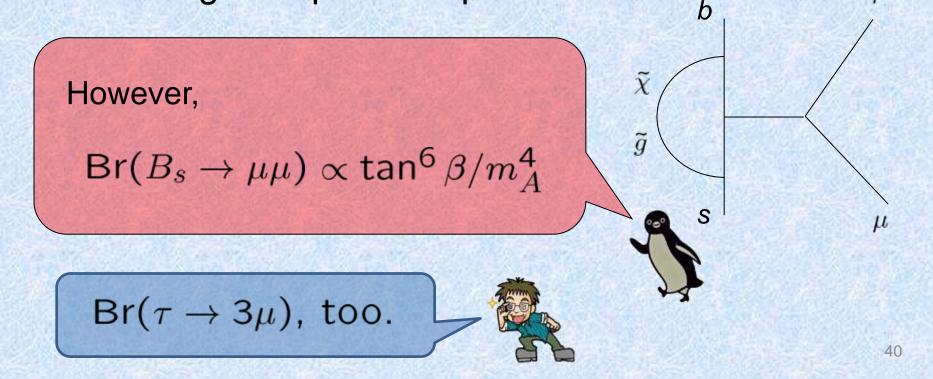


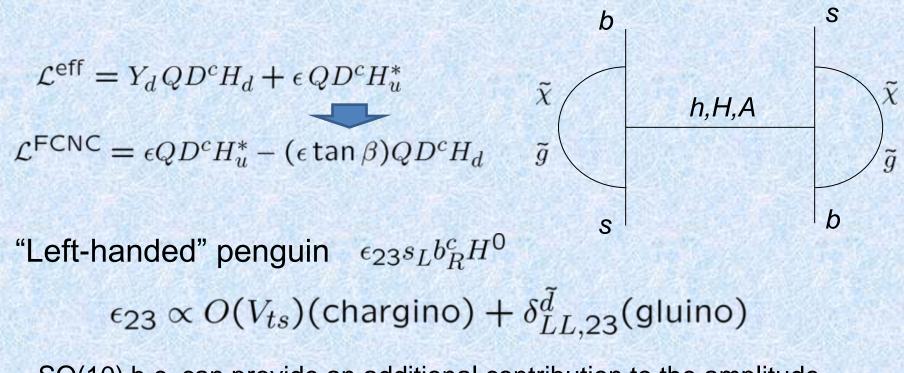
"SO(10) ~ SU(5)" for double penguin contribution

 ${\sf Br}(\tau \to \mu \gamma) \propto \tan^2 \beta$ $A_s^{\sf NP}$ (double penguin) $\propto \tan^4 \beta / m_A^2$

 μ

For large $\tan \beta$ and small m_A , the large CP phase is possible.





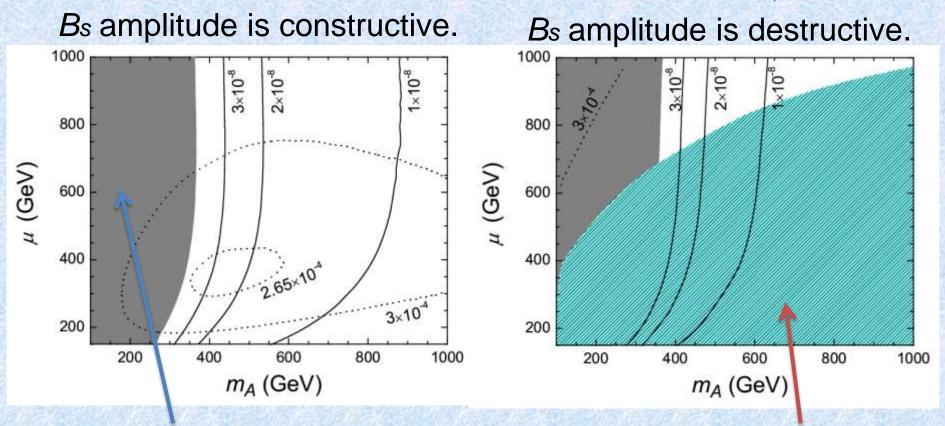
SO(10) b.c. can provide an additional contribution to the amplitude.

 $C_{7L}^{b \to s\gamma} \propto O(V_{ts})$ (chargino) – $\delta_{LL,23}^{\tilde{d}}$ (gluino)

When the B_s mixing amplitude is constructive, SUSY contribution of $b \rightarrow s\gamma$ is destructive. (Buras-Chankowski-Rosiek-Slawianowska)

41

$$A^{\rm NP}/A^{\rm SM} = 0.5$$



excluded by $B_s \rightarrow \mu \mu$

excluded by $b \to s \gamma$

Note:

The phases of $\delta_{LL,23}^{\tilde{d}}$ and $\delta_{RR,23}^{\tilde{d}}$ are independent due to a phase from the down-type quark Yukawa coupling. The phase of M_{12} (doublePenguin) is still free. 42

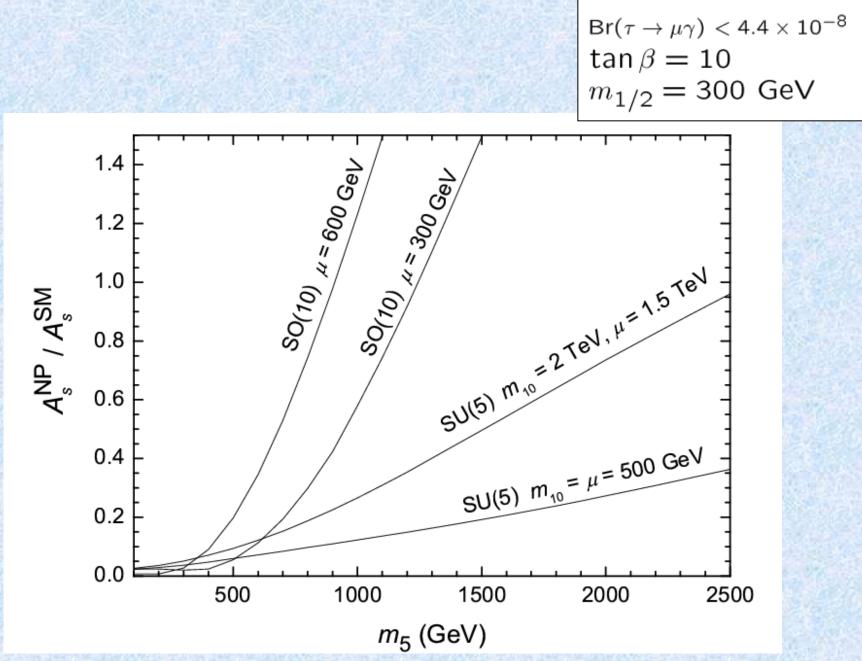
Suppression of $\tau \to \mu \gamma$

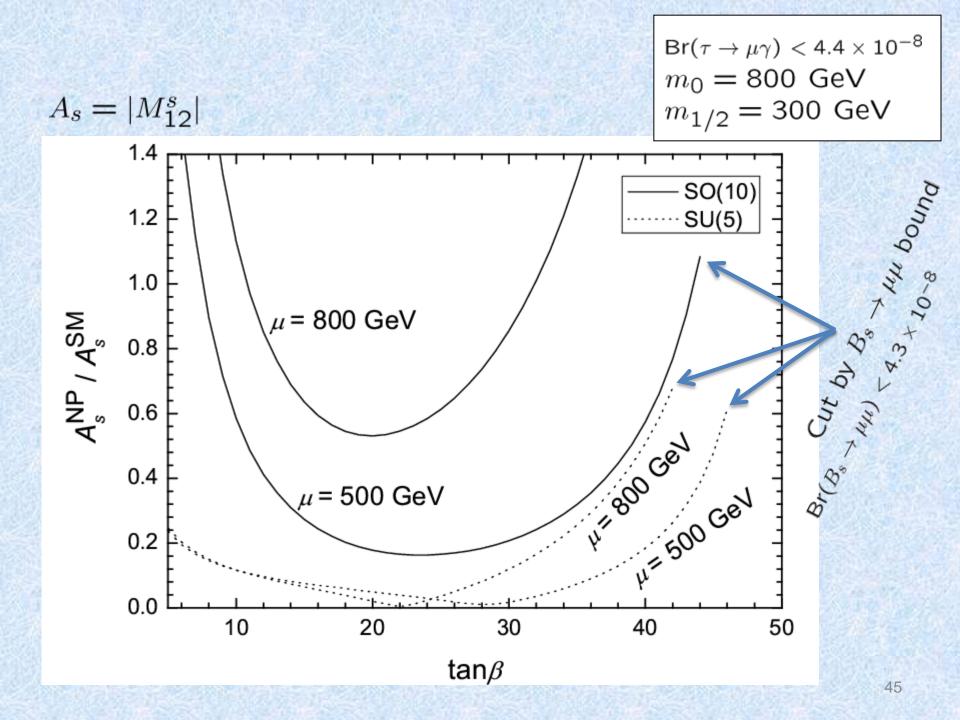
$$M_{\tilde{D}^c}^2 \sim \begin{pmatrix} (1\text{TeV})^2 + m_0^2 & \\ & (1\text{TeV})^2 + m_0^2 & \kappa m_0^2 \\ & \kappa m_0^2 & (1\text{TeV})^2 + m_0^2 \end{pmatrix}$$

$$M_{\tilde{L}}^{2} \sim \begin{pmatrix} (0.2 \text{TeV})^{2} + m_{0}^{2} \\ (0.2 \text{TeV})^{2} + m_{0}^{2} \\ \kappa m_{0}^{2} \end{pmatrix} \begin{pmatrix} (0.2 \text{TeV})^{2} + m_{0}^{2} \\ \kappa m_{0}^{2} \end{pmatrix} \begin{pmatrix} \kappa m_{0}^{2} \\ (0.2 \text{TeV})^{2} + m_{0}^{2} \end{pmatrix}$$

Diagonal elements are enlarged by gaugino loops.

Large m_0 affects to $\tau \rightarrow \mu \gamma$ suppression more effectively rather than A_s^{NP} suppression.





For a given large CP phase, Br($B_s \rightarrow \mu\mu$) needs to be large in SU(5).

Larger m_A for a given CP phase \longrightarrow Larger κ is needed. \longrightarrow Excluded by $\tau \rightarrow \mu \gamma$ (Br($B_s \rightarrow \mu \mu$) is smaller)

$m_0, m_{1/2}$	Minimal value of $Br(B_s \rightarrow \mu\mu)$
$m_0 = m_{1/2} = 500 \text{ GeV}$	$1.8 imes 10^{-8}$
$m_0 = m_{1/2} = 1 \text{ TeV}$	$1.3 imes 10^{-8}$
$m_0 = 500 \text{ GeV}, m_{1/2} = 1 \text{ TeV}$	$2.8 imes 10^{-8}$

In SU(5) GUT model where quark-lepton unif. is manifested, it is expected that $B_s \rightarrow \mu\mu$ is observed soon. an eta = 40 $\mu < 1$ TeV $2\phi_{B_s} \simeq 0.5$ (rad) $Br(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$ Possible violation of the quark-lepton unification

To relax the constraint, one needs $\kappa_{quark} > \kappa_{lepton}$.

In SU(5) model in which neutrino Dirac Yukawa coupling is the origin of the flavor violation,

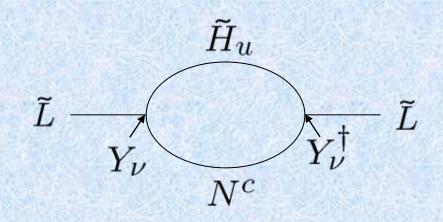
 \tilde{D}^{c}

$$\kappa_q \propto \ln \frac{M_*}{M_{H_C}}$$
, $\kappa_\ell \propto \ln \frac{M_*}{M_N}$,

and thus, $\kappa_q < \kappa_\ell$.

47

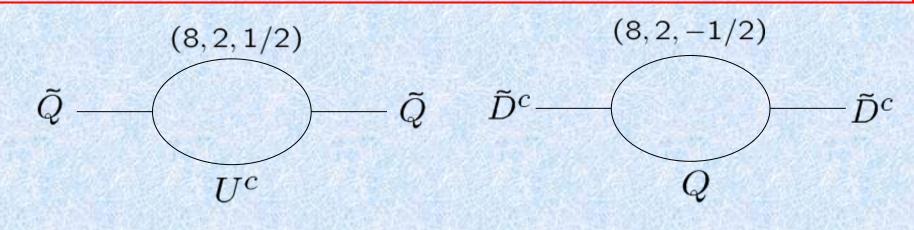
 \tilde{H}_C

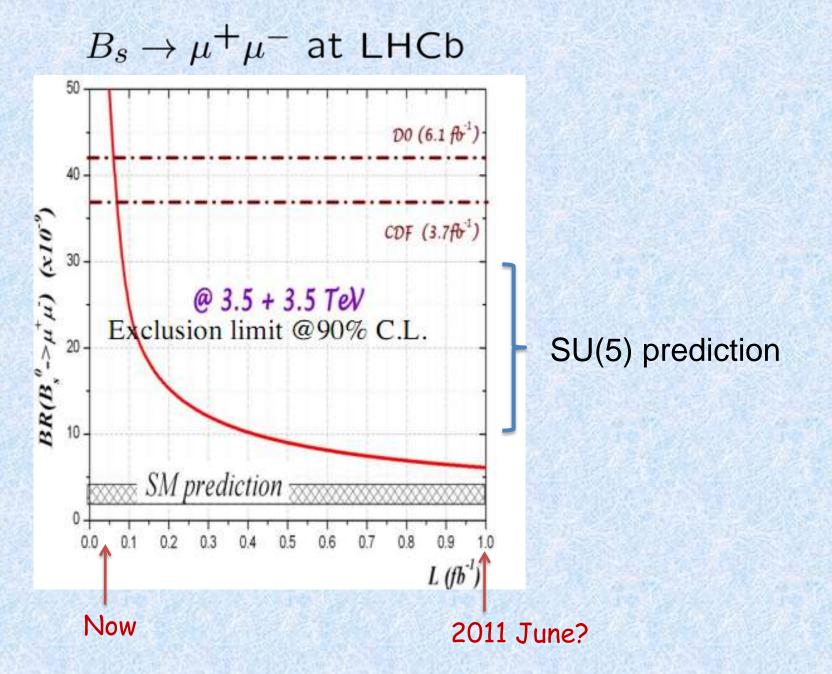


In SO(10) model, it depends on the SO(10) breaking vacua. If SU(2)_R remains below the SO(10) breaking scale, SU(2)_R Higgsino induces κ_{ℓ} rather than κ_{q} . Wrong direction!

If (8,2,1/2) (in 126 Higgs) is light, it generates only κ_q . Right direction!

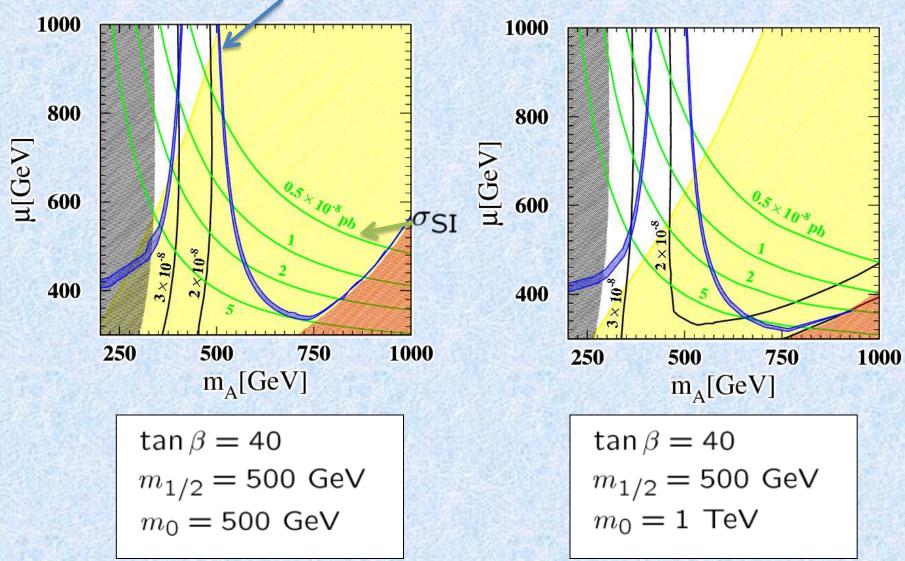
Light (8,2,1/2) is also proper direction to suppress proton decay. (Dutta-YM-Mohapatra)





WMAP

$2\phi_{B_s} \simeq 0.5 \text{ (rad)}$



A-funnel solution for neutralino dark matter relic density is preferred. $m_A\sim 2m_{\tilde{\chi}^0_1}$

Summary

The dimuon asymmetry is a good probe of NP.

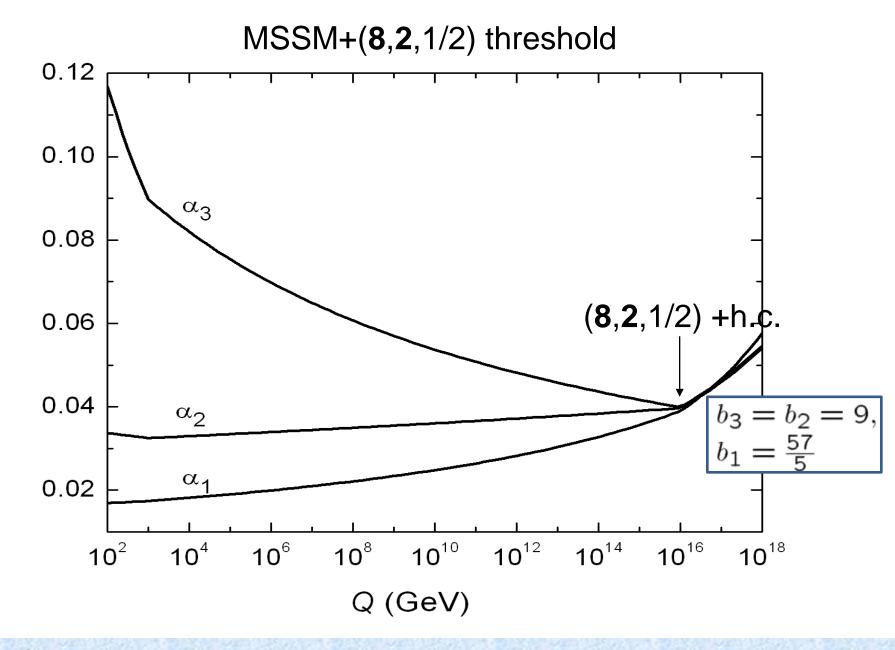
 Dispersive part of the mixing amplitude can be easily modified in NP, but absorptive part is not easy.

 We study the CP phase in the mixing amplitude in SUSY GUT models.

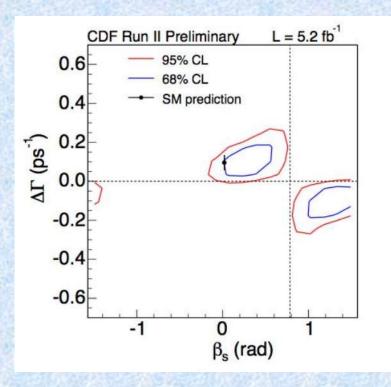
 The phase is more enhanced in SO(10) rather than in SU(5).

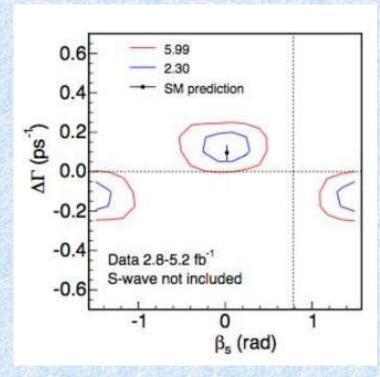
• Especially in SU(5), $Br(B_s \rightarrow \mu\mu)$ is expected to be large in order to allow a large phase.

Back up Slides



Gauge symmetry does not recover, but couplings run almost unitedly.





Large Phase of B_s - \overline{B}_s mixing

CP violation in $B_s \to J/\psi \phi$ decay $(b \to sc\bar{c})$. $S_{b\to sc\bar{c}} = \sin \phi_s$

SM prediction : $\phi_s = -2\beta_s \simeq -0.04$ (rad) small! $\beta_s \equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$

Measurements :

 $-\phi_s(\text{CDF}) = [0.32, 2.82] (68\% \text{ CL}) \quad (1.35 \text{ fb}^{-1})$ (arXiv: 0712.2397) $-\phi_s(\text{D0}) = 0.57^{+0.30}_{-0.24}(\text{stat})^{+0.02}_{-0.07}(\text{syst}) \quad (2.8 \text{ fb}^{-1})$ (arXiv: 0802.2255)

2.2 sigma deviation from SM

