# — Inflationary cosmology —

**References:** 

[1]Kazuharu Bamba and Sergei D. Odintsov, JCAP 04 (2008) 024, e-print arXiv:0801.0954 [astro-ph]
[2]Kazuharu Bamba, Shin'ichi Nojiri and Sergei D. Odintsov, e-print arXiv:0803.3384 [hep-th]

## Particle Seminar at NTHU on 15th May, 2008

Presenter : Kazuharu Bamba (National Tsing Hua University)

Collaborators : Shin'ichi Nojiri (Nagoya University)

Sergei D. Odintsov (ICREA and IEEC-CSIC)

# < Contents >

- Inflation and late-time cosmic acceleration in nonminimal Maxwell theory in general relativity and modified gravity
- Generation of large-scale magnetic fields
  - I. Introduction
  - **II. Inflation in general relativity**
  - III. Inflation and late-time cosmic acceleration in modified gravity
  - IV. Classically equivalent form of non-minimal Maxwell-F(R) gravity
  - V. Conclusion

## **I.** Introduction

• It is observationally confirmed not only that inflation occurred in the early universe, but that the current expansion of the universe is accelerating.

[Spergel et al., Astrophys. J. Suppl. <u>148</u>, 175 (2003)]

< Scenarios to explain the late-time cosmic acceleration >

(1) General relativistic approaches: Dark energy

(2) Modified gravity approaches: Dark gravity

Modifications to the Einstein-Hilbert action:
 Addition of an arbitrary function of the scalar curvature to it.



R : Ricci scalar F(R) : Arbitrary function of R

[Nojiri and Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)]

- Hu and Sawicki have proposed a very realistic modified gravitational theory that evade solar-system tests. [Hu and Sawicki, Phys. Rev. D <u>76</u>, 064004 (2007)]
- → Although this theory is successful in explaining the late-time acceleration of the universe, the possibility of the realization of inflation has not been discussed.

< **Proposals in which both inflation and the late-time acceleration** <u>can be realized ></u>

- (1) Modified gravities [Nojiri and Odintsov, Phys. Lett. B <u>657</u>, 238 (2007)]
- (2) Coupling between the scalar curvature and matter Lagrangian

[Nojiri and Odintsov, Phys. Lett. B 599, 137 (2004)]

No. 4

→ It is known that the coupling between the scalar curvature and the Lagrangian of the electromagnetic field arises in curved spacetime due to one-loop vacuum-polarization effects in Quantum Electrodynamics (QED).

[Drummond and Hathrell, Phys. Rev. D 22, 343 (1980)]

- Such a non-minimal gravitational coupling of the electromagnetic field breaks the conformal invariance of the electromagnetic field.
- Electromagnetic quantum fluctuations can be generated at the inflationary stage even in the Friedmann-Robertson-Walker (FRW) spacetime, which is conformally flat.

[Turner and Widrow, Phys. Rev. D <u>37</u>, 2743 (1988)]

- → They can appear as <u>large-scale magnetic fields</u> at the present time because their scale is made longer than Hubble horizon due to inflation.
  - < Cosmic magnetic fields >
  - (1) Galactic magnetic fields

$$B_{\rm gal} \sim \mu G$$

[Sofue et al., Annu. Rev. Astron. Astrophys. <u>24</u>, 459 (1986)] (2) Magnetic fields in clusters of galaxies

[Clarke et al., Astrophys. J. <u>547</u>, L111 (2001)]

 $B_{\rm ICM} : 0.1 - 10 \,\mu {\rm G}, \ L : 10 \,{\rm kpc} - 1 \,{\rm Mpc}$ 

## < Inflationary cosmology >

- In the early universe, the scale of the universe grew exponentially in time when the potential energy of a scalar field, called an "inflaton", dominated.
- → Inflation accounts for the observed degree of homogeneity, isotropy, and flatness of the present universe.
- → Inflation naturally produces effects on very large scales, larger than Hubble horizon, starting from microphysical processes operating on a causally connected volume.



The most natural origin of large-scale magnetic fields:

**Electromagnetic quantum fluctuations generated at the inflationary stage**  → We consider inflation and the late-time acceleration of the universe in non-minimal electromagnetism, in which the electromagnetic field couples to a function of the scalar curvature.



- (1) We show that power-law inflation can be realized due to the non-minimal gravitational coupling of the electromagnetic field.
- (2) We show that large-scale magnetic fields can be generated due to the breaking of the conformal invariance of the electromagnetic field through its non-minimal gravitational coupling.
- (3) We demonstrate that both inflation and the late-time acceleration of the universe can be realized in a modified Maxwell-*F*(*R*) gravity.
- (4) We also consider classically equivalent form of non-minimal Maxwell-*F*(*R*) gravity.

#### **II.** Inflation in general relativity **No. 8** $\leq$ II A. Model $\geq$ $\leq$ Action $\geq$ $g = det(g_{\mu\nu})$ $S_{\rm GR} = \int d^4x \sqrt{-g} \left[ \mathcal{L}_{\rm EH} + \mathcal{L}_{\rm EM} \right]$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ : Electromagnetic field-strength tensor $\mathcal{L}_{\rm EH} = \frac{1}{2\kappa^2} R$ $A_{\mu}: U(1)$ gauge field f(R): Arbitrary function of R $\mathcal{L}_{\rm EM} = -\frac{1}{4} I(R) F_{\mu\nu} F^{\mu\nu}$ **Breaking of the conformal invariance** $\kappa^2 \equiv 8\pi / M_{\rm Pl}^2$ , $M_{\rm Pl}$ : Planck mass I(R) = 1 + f(R) $\Box \equiv g^{\mu u} \nabla_{\mu} \nabla_{\nu}$ : Covariant d'Alembertian < Gravitational field equation > $\nabla_{\mu}$ : Covariant derivative operator $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \kappa^2 T^{(\rm EM)}_{\mu\nu}$ $R_{\mu\nu}$ : Ricci curvature tensor $T_{\mu\nu}^{(\text{EM})} = I(R) \left( g^{\alpha\beta} F_{\mu\beta} F_{\nu\alpha} - \frac{1}{4} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right) \qquad \begin{array}{c} \text{Energy-momentum} \\ T_{\mu\nu}^{(\text{EM})} : \text{tensor of the} \end{array}$ electromagnetic field $+\frac{1}{2}\left\{f'(R)F_{\alpha\beta}F^{\alpha\beta}R_{\mu\nu}+g_{\mu\nu}\Box\left[f'(R)F_{\alpha\beta}F^{\alpha\beta}\right]-\nabla_{\mu}\nabla_{\nu}\left[f'(R)F_{\alpha\beta}F^{\alpha\beta}\right]\right\}$

< Electromagnetic field equation >

$$-\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}I(R)F^{\mu\nu}\right) = 0$$

#### < Spatially flat FRW space-time >

 $ds^{2} = q_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + a^{2}(t)d\boldsymbol{x}^{2} = a^{2}(\eta)(-d\eta^{2} + d\boldsymbol{x}^{2})$ a(t): Scale factor,  $\eta$ : Conformal time  $\rightarrow g_{\mu\nu} = \text{diag}(-1, a^2(t), a^2(t), a^2(t))$  $R_{00} = -3\left(\dot{H} + H^2\right), \ R_{0i} = 0, \ R_{ij} = \left(\dot{H} + 3H^2\right)g_{ij}, \ R = 6\left(\dot{H} + 2H^2\right)$  $H = \dot{a}/a$  : Hubble parameter,  $\dot{a} = \partial/\partial t$ < Equations of motion of U(1) gauge field  $A_{\mu}(t, x) >$ Coulomb gauge:  $\partial^j A_i(t, \boldsymbol{x}) = 0$  and the case of  $A_0(t, \boldsymbol{x}) = 0$  $\longrightarrow \ddot{A}_i(t, \boldsymbol{x}) + \left(H + \frac{\dot{I}}{I}\right) \dot{A}_i(t, \boldsymbol{x}) - \frac{1}{a^2} \overset{(3)}{\Delta} A_i(t, \boldsymbol{x}) = 0$  $^{(3)}_{\Lambda} = \partial^i \partial_i$ : Flat three dimensional Laplacian

No. 9

# <<u>II B. Evolution of large-scale electric and magnetic</u> <u>No. 10</u> <u>fields ></u>

### < Quantization of $A_{\mu}(t, \boldsymbol{x}) >$

- -<u>Canonical momenta:</u>  $\pi_0 = 0$ ,  $\pi_i = Ia(t)\dot{A}_i(t, \boldsymbol{x})$
- Canonical commutation relation:

$$\left[A_{i}(t,\boldsymbol{x}),\pi_{j}(t,\boldsymbol{y})\right] = i \int \frac{d^{3}k}{\left(2\pi\right)^{3}} e^{i\boldsymbol{k}\cdot\left(\boldsymbol{x}-\boldsymbol{y}\right)} \left(\delta_{ij} - \frac{k_{i}k_{j}}{k^{2}}\right)$$

 $\frac{\langle \mathbf{Expression for } A_{i}(t, \boldsymbol{x}) \rangle}{A_{i}(t, \boldsymbol{x}) = \int \frac{d^{3}k}{(2\pi)^{3/2}} \sum_{\sigma=1,2} \left[ \hat{b}(\boldsymbol{k}, \sigma) \epsilon_{i}(\boldsymbol{k}, \sigma) A(t, \boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} + \hat{b}^{\dagger}(\boldsymbol{k}, \sigma) \epsilon_{i}^{*}(\boldsymbol{k}, \sigma) A^{*}(t, \boldsymbol{k}) e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \right]} \\ \left[ \hat{b}(\boldsymbol{k}, \sigma), \hat{b}^{\dagger}\left(\tilde{\boldsymbol{k}}, \tilde{\sigma}\right) \right] = \delta_{\sigma,\tilde{\sigma}} \delta^{3}\left(\boldsymbol{k} - \tilde{\boldsymbol{k}}\right), \left[ \hat{b}(\boldsymbol{k}, \sigma), \hat{b}\left(\tilde{\boldsymbol{k}}, \tilde{\sigma}\right) \right] = \left[ \hat{b}^{\dagger}(\boldsymbol{k}, \sigma), \hat{b}^{\dagger}\left(\tilde{\boldsymbol{k}}, \tilde{\sigma}\right) \right] = 0 \\ \epsilon_{i}(\boldsymbol{k}, \sigma) \ (\sigma = 1, 2) : \text{Polarization vector} \qquad \hat{b}(\boldsymbol{k}, \sigma) : \text{Annihilation operator} \\ \hat{b}^{\dagger}(\boldsymbol{k}, \sigma) : \text{Creation operator} \end{aligned}$ 

 $\leq$  Equation for the mode function  $A(k,t) \geq$ 

$$\ddot{A}(k,t) + \left(H + \frac{\dot{I}}{I}\right)\dot{A}(k,t) + \frac{k^2}{a^2}A(k,t) = 0$$

•**Normalization condition:**  $A(k,t)\dot{A}^*(k,t) - \dot{A}(k,t)A^*(k,t) = \frac{i}{Ia}$ 

$$\overrightarrow{t \to \eta} \quad \frac{\partial^2 A(k,\eta)}{\partial \eta^2} + \frac{1}{I(\eta)} \frac{dI(\eta)}{d\eta} \frac{\partial A(k,\eta)}{\partial \eta} + k^2 A(k,\eta) = 0$$

• Although it is impossible to obtain the exact solution of the above equation for the case when I is given by a general function of  $\eta$ , we can obtain an approximate solution with sufficient accuracy by using the WKB approximation on subhorizon scales (  $k|\eta| \gg 1$  ) and the long-wavelength approximation on superhorizon scales (  $k|\eta| \ll 1$  ), and matching these solutions at the horizon crossing  $(-k\eta = 1).$ 

[KB and Sasaki, JCAP 0702, 030 (2007)]

No. 11

< Solution for  $A(k, \eta)$  >

**<u>1. WKB subhorizon solution</u>** 

## (Subhorozon scale: $k|\eta| \gg 1$ )

- $A_{\rm in}(k,\eta) = \frac{1}{\sqrt{2k}} I^{-1/2} e^{-ik\eta} \leftarrow \text{We have assumed that the vacuum in the short-wavelength limit is the standard Minkowski vacuum.}$
- **<u>2. Solution on superhorizon scales</u>** (Superhorozon scale:  $k|\eta| \ll 1$ )
  - Long-wavelength expansion:  $A_{out} = A_0(\eta) + k^2 A_1(\eta) + O(k^4)$
- → By matching this solution with the WKB subhorizon solution at the horizon crossing, we find  $\eta_k$ : Conformal time at the horizon-crossing

## 

$$C(k) = \frac{1}{\sqrt{2k}} I^{-1/2}(\eta) \left[ 1 - \left( \frac{1}{2} \frac{dI(\eta)}{d\eta} + ikI(\eta) \right) \int_{\eta}^{\eta_{\rm f}} \frac{1}{I\left(\tilde{\eta}\right)} d\tilde{\eta} \right] e^{-ik\eta} \Big|_{\eta=\eta_k}$$
$$D(k) = \frac{1}{\sqrt{2k}} I^{-1/2}(\eta) \left( \frac{1}{2} \frac{dI(\eta)}{d\eta} + ikI(\eta) \right) e^{-ik\eta} \Big|_{\eta=\eta_k}$$

(We have neglected the decaying mode.) No. 13  $|A(k,\eta)|^{2} = |C(k)|^{2} = \frac{1}{2kI(\eta_{k})} \left| 1 - \left[ \frac{1}{2} \frac{1}{kI(\eta_{k})} \frac{dI(\eta_{k})}{d\eta} + i \right] e^{-ik\eta_{k}} k \int_{\eta_{k}}^{\eta_{t}} \frac{I(\eta_{k})}{I\left(\tilde{\eta}\right)} d\tilde{\eta} \right|^{2}$   $\leq$ Proper electric and magnetic fields >  $E_{i}^{\text{proper}}(t, \boldsymbol{x}) = a^{-1}E_{i}(t, \boldsymbol{x}) = -a^{-1}\dot{A}_{i}(t, \boldsymbol{x})$   $B_{i}^{\text{proper}}(t, \boldsymbol{x}) = a^{-1}B_{i}(t, \boldsymbol{x}) = a^{-2}\epsilon_{ijk}\partial_{j}A_{k}(t, \boldsymbol{x})$   $E_{i}(t, \boldsymbol{x}) : \text{Comoving electric field} \qquad \epsilon_{ijk} : \text{Totally antisymmetric tensor}$ 

 $B_i(t, \boldsymbol{x})$  : Comoving magnetic field

 $\Longrightarrow |E^{\text{proper}}(k,\eta)|^{2} = 2\frac{1}{a^{4}} \left| \frac{\partial A(k,\eta)}{\partial \eta} \right|^{2} = 2\frac{1}{a^{4}} \frac{|D(k)|^{2}}{|I(\eta)|^{2}}$  $\longrightarrow |E^{\text{proper}}(L,\eta)|^{2} = \frac{4\pi k^{3}}{(2\pi)^{3}} |E^{\text{proper}}(k,\eta)|^{2}$  $|B^{\text{proper}}(k,\eta)|^{2} = 2\frac{k^{2}}{a^{4}} |A(k,\eta)|^{2} = 2\frac{k^{2}}{a^{4}} |C(k)|^{2}$ 

$$\longrightarrow |B^{\text{proper}}(L,\eta)|^2 = \frac{4\pi k^3}{(2\pi)^3} |B^{\text{proper}}(k,\eta)|^2$$

< Energy density of the electric and magnetic fields >

$$\rho_E(L,\eta) = \frac{1}{2} |E^{\text{proper}}(L,\eta)|^2 I(\eta) = \frac{|D(k)|^2}{2\pi^2 k} \frac{k^4}{a^4} \frac{1}{I(\eta)} \propto 1/I(\eta)$$

$$\rho_B(L,\eta) = \frac{1}{2} |B^{\text{proper}}(L,\eta)|^2 I(\eta) = \frac{k|C(k)|^2}{2\pi^2} \frac{k^4}{a^4} I(\eta) \propto I(\eta)$$

$$L = 2\pi/k : \text{Comoving scale}$$

No. 14

→ If *I* increases in time, magnetic fields becomes dominant. [KB, JCAP <u>0710</u>, 015 (2007)]

#### < Example >

We consider the case of a specific form for the function I.  $I(\eta) = I_{\rm s} \left(\frac{\eta}{\eta_{\rm s}}\right)^{-\alpha} \qquad \eta_{\rm s}$ : Some fiducial time during inflation  $\alpha$ : Constant,  $I_{\rm s}$ : Value of I at  $\eta = \eta_{\rm s}$   $\rightarrow k |C(k)|^2 = C/[2I(\eta_k)] \qquad C$ : Constant of order unity  $\Longrightarrow \rho_B(L, \eta) = \frac{C}{(2\pi)^2} \left(\frac{k}{a}\right)^4 \frac{I(\eta)}{I(\eta_k)}$ 

#### < II C. Power-law inflation >

• $(\mu, \nu) = (0, 0)$  component of the gravitational field equation:

$$\begin{split} H^{2} &= \frac{\kappa^{2}}{3} \Biggl\{ I(R) \left( g^{\alpha\beta} F_{0\beta} F_{0\alpha} - \frac{1}{4} g_{00} F_{\alpha\beta} F^{\alpha\beta} \right) \\ &+ \frac{3}{2} \left[ -f'(R) \left( \dot{H} + H^{2} \right) + 6f''(R) H \left( \ddot{H} + 4H\dot{H} \right) \right] F_{\alpha\beta} F^{\alpha\beta} \\ &+ \frac{3}{2} f'(R) H \left( F_{\alpha\beta} F^{\alpha\beta} \right)^{\bullet} - \frac{1}{2} f'(R) \frac{1}{a^{2}} {}^{(3)}_{\Delta} \left( F_{\alpha\beta} F^{\alpha\beta} \right) \Biggr\} \\ \bullet \text{Trace part of } (\mu, \nu) &= (i, j) \text{ component: } \left( F_{\alpha\beta} F^{\alpha\beta} \right)^{\bullet} = \partial \left( F_{\alpha\beta} F^{\alpha\beta} \right) / \partial t \\ 2\dot{H} + 3H^{2} &= \frac{\kappa^{2}}{2} \Biggl\{ \frac{1}{6} I(R) F_{\alpha\beta} F^{\alpha\beta} + \left[ -f'(R) \left( \dot{H} + 3H^{2} \right) \right. \\ &+ 6f''(R) \left( \ddot{H} + 7H\ddot{H} + 4\dot{H}^{2} + 12H^{2}\dot{H} \right) + 36f'''(R) \left( \ddot{H} + 4H\dot{H} \right)^{2} \Biggr] F_{\alpha\beta} F^{\alpha\beta} \\ &+ 3 \left[ f'(R)H + 4f''(R) \left( \ddot{H} + 4H\dot{H} \right) \right] \left( F_{\alpha\beta} F^{\alpha\beta} \right)^{\bullet} + f'(R) \left( F_{\alpha\beta} F^{\alpha\beta} \right)^{\bullet \bullet} \\ &- \frac{2}{3} f'(R) \frac{1}{a^{2}} {}^{(3)}_{\Delta} \left( F_{\alpha\beta} F^{\alpha\beta} \right) \Biggr\} \end{split}$$

$$g^{\alpha\beta}F_{0\beta}F_{0\alpha} - \frac{1}{4}g_{00}F_{\alpha\beta}F^{\alpha\beta} = \frac{1}{2}\left(|E_i^{\text{proper}}(t,\boldsymbol{x})|^2 + |B_i^{\text{proper}}(t,\boldsymbol{x})|^2\right)$$

$$F_{\alpha\beta}F^{\alpha\beta} = 2\left(|B_i^{\text{proper}}(t,\boldsymbol{x})|^2 - |E_i^{\text{proper}}(t,\boldsymbol{x})|^2\right)$$

$$\longrightarrow \left(F_{\alpha\beta}F^{\alpha\beta}\right)^{\bullet} = 8\left\{-H|B^{\text{proper}}(L,\eta)|^2$$

$$+ \left[H + 3\frac{f'(R)}{1+f(R)}\left(\ddot{H} + 4H\dot{H}\right)\right]|E^{\text{proper}}(L,\eta)|^2\right\}$$

•We consider the case in which magnetic fields are mainly generated rather than electric fields because we are interested in the generation of large-scale magnetic fields.

This situation is realized if I increases rapidly in time during inflation.

- (→ We neglect terms in electric fields.) [KB, JCAP <u>0710</u>, 015 (2007)]
- •We consider the case in which  $\stackrel{(3)}{\Delta}(F_{\alpha\beta}F^{\alpha\beta})$  is very small because it corresponds to the second order spatial derivative of the quadratic quantity of electromagnetic quantum fluctuations, so that it can be neglected.

• $(\mu, \nu) = (0, 0)$  component of the gravitational field equation:

$$H^{2} = \kappa^{2} \left[ \frac{1}{6} I(R) - f'(R) \left( \dot{H} + 5H^{2} \right) + 6f''(R)H \left( \ddot{H} + 4H\dot{H} \right) \right] \frac{k|C(k)|^{2}}{\pi^{2}} \frac{k^{4}}{a^{4}}$$

•Trace part of  $(\mu, \nu) = (i, j)$  component:

$$2\dot{H} + 3H^{2} = \kappa^{2} \left[ \frac{1}{6} I(R) + f'(R) \left( -5\dot{H} + H^{2} \right) + 6f''(R) \left( \ddot{H} - H\ddot{H} + 4\dot{H}^{2} - 20H^{2}\dot{H} \right) \right]$$
$$+ 36f'''(R) \left( \ddot{H} + 4H\dot{H} \right)^{2} \left[ \frac{k|C(k)|^{2}}{\pi^{2}} \frac{k^{4}}{a^{4}} \right]$$

 $\rightarrow$  Eliminating I(R) from these equations, we obtain

$$\dot{H} + H^{2} = \kappa^{2} \left[ f'(R) \left( -2\dot{H} + 3H^{2} \right) + 3f''(R) \left( \ddot{H} - 2H\ddot{H} + 4\dot{H}^{2} - 24H^{2}\dot{H} \right) + 18f'''(R) \left( \ddot{H} + 4H\dot{H} \right)^{2} \right] \frac{k|C(k)|^{2}}{\pi^{2}} \frac{k^{4}}{a^{4}}$$

<u>No. 17</u>

•We consider the case in which f(R) is given by the following form:

$$f(R) = f_{\rm HS}(R) \equiv \frac{c_1 \left(R/m^2\right)^n}{c_2 \left(R/m^2\right)^n + 1} \qquad \begin{array}{c} c_1, c_2 : \text{Dimensionless} \\ \text{constants} \\ n : \text{Positive constant} \\ m : \text{Mass scale} \end{array}$$

$$(1)_{R \to \infty} f_{\rm HS}(R) = \frac{c_1}{c_2} = \text{const}, \quad (2) \lim_{R \to 0} f_{\rm HS}(R) = 0$$

[Hu and Sawicki, Phys. Rev. D <u>76</u>, 064004 (2007)]

→ At the inflationary stage, because  $R/m^2 \gg 1$ , we are able to use the following approximate relations:

$$f_{\rm HS}(R) \approx \frac{c_1}{c_2} \left[ 1 - \frac{1}{c_2} \left( \frac{R}{m^2} \right)^{-n} \right] , \ f'_{\rm HS}(R) \approx \frac{nc_1}{c_2^2} \frac{1}{m^2} \left( \frac{R}{m^2} \right)^{-(n+1)}$$

→ We consider the case in which the scale factor is given by  $a(t) = \bar{a} (t/\bar{t})^p \quad p:$  Constant,  $\bar{t}:$  Some fiducial time during inflation  $\bar{a}:$  Value of a(t) at  $t = \bar{t}$  → Substituting these equations into the gravitational field equation, we find

$$p = \frac{n+1}{2}$$
$$\frac{\bar{a}}{\bar{t}^p} = \left\{ \frac{1}{3^{n+1}\pi^2} \frac{1}{(n-1)\left[n(n+1)\right]^n} \frac{(-c_1)}{c_2^2} k |C(k)|^2 k^4 \kappa^2 m^{2n} \right\}^{1/4}$$

→ If  $n \gg 1$ , p becomes much larger than unity, so that power-law inflation can be realized.

The electromagnetic field with a non-minimal gravitational coupling can be a source of inflation.

## III. Inflation and late-time cosmic acceleration No. 20 in modified gravity

 $\mathcal{L}_{\rm EM} = -\frac{1}{4}I(R)F_{\mu\nu}F^{\mu\nu}$ 

< III A. Inflation > < Action >

< Gravitational field equation >

 $[1 + F'(R)] R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} [R + F(R)] + g_{\mu\nu} \Box F'(R) - \nabla_{\mu} \nabla_{\nu} F'(R) = \kappa^2 T_{\mu\nu}^{(\text{EM})}$ [Nojiri and Odintsov, Phys. Lett. B <u>657</u>, 238 (2007)] •  $(\mu, \nu) = (0, 0)$  component of the gravitational field equation:  $H^2 + \frac{1}{6} F(R) - F'(R) (\dot{H} + H^2) = \frac{\kappa^2}{3} \left\{ I(R) \left( g^{\alpha\beta} F_{0\beta} F_{0\alpha} - \frac{1}{4} g_{00} F_{\alpha\beta} F^{\alpha\beta} \right) + \frac{3}{2} \left[ -f'(R) (\dot{H} + H^2) + 6f''(R) H (\ddot{H} + 4H\dot{H}) \right] F_{\alpha\beta} F^{\alpha\beta}$ 

$$+\frac{3}{2}f'(R)H\left(F_{\alpha\beta}F^{\alpha\beta}\right)^{\bullet}-\frac{1}{2}f'(R)\frac{1}{a^{2}}\overset{(3)}{\Delta}\left(F_{\alpha\beta}F^{\alpha\beta}\right)\right\}$$

•Trace part of 
$$(\mu, \nu) = (i, j)$$
 component:  
 $2\dot{H} + 3H^2 + \frac{1}{2}F(R) - F'(R)(\dot{H} + 3H^2)$   
 $+ 6F''(R)[\ddot{H} + 4(\dot{H}^2 + H\ddot{H})] + 36F'''(R)(\ddot{H} + 4H\dot{H})^2$   
 $= \frac{\kappa^2}{2} \left\{ \frac{1}{6}I(R)F_{\alpha\beta}F^{\alpha\beta} + \left[ -f'(R)(\dot{H} + 3H^2) + 6f''(R)(\ddot{H} + 7H\ddot{H} + 4\dot{H}^2 + 12H^2\dot{H}) + 36f'''(R)(\ddot{H} + 4H\dot{H})^2 \right] F_{\alpha\beta}F^{\alpha\beta}$   
 $+ 3[f'(R)H + 4f''(R)(\ddot{H} + 4H\dot{H})](F_{\alpha\beta}F^{\alpha\beta})^{\bullet} + f'(R)(F_{\alpha\beta}F^{\alpha\beta})^{\bullet \bullet}$   
 $- \frac{2}{3}f'(R)\frac{1}{a^2}\Delta(F_{\alpha\beta}F^{\alpha\beta}) \right\}$ 

•We consider the case in which terms in electric fields and  $\stackrel{(3)}{\Delta}(F_{\alpha\beta}F^{\alpha\beta})$  are negligible.

$$\longrightarrow \text{Eliminating } I(R) \text{ from these equations, we find} \qquad \underline{\text{No. 22}} \\ \dot{H} + H^2 + \left\{ \frac{1}{6} F(R) - F'(R)H^2 + 3F''(R) \left[ \ddot{H} + 4 \left( \dot{H}^2 + H \ddot{H} \right) \right] + 18F'''(R) \left( \ddot{H} + 4H\dot{H} \right)^2 \right\} \\ = \kappa^2 \left[ f'(R) \left( -2\dot{H} + 3H^2 \right) + 3f''(R) \left( \ddot{H} - 2H\ddot{H} + 4\dot{H}^2 - 24H^2\dot{H} \right) \right. \\ \left. + 18f'''(R) \left( \ddot{H} + 4H\dot{H} \right)^2 \right] \frac{k|C(k)|^2}{\pi^2} \frac{k^4}{a^4}$$

•We consider the case in which F(R) is given by the following form:

$$F(R) = -M^{2} \frac{\left[ (R/M^{2}) - (R_{0}/M^{2}) \right]^{2l+1} + (R_{0}/M^{2})^{2l+1}}{c_{3} + c_{4} \left\{ \left[ (R/M^{2}) - (R_{0}/M^{2}) \right]^{2l+1} + (R_{0}/M^{2})^{2l+1} \right\}}$$
  
$$\lim_{R \to \infty} F(R) = -\frac{M^{2}}{c_{4}} = \text{const}$$
  
$$\lim_{R \to 0} F(R) = 0$$

 $c_3, c_4$ : Dimensionless constants, l: Positive constant, M: Mass scale

[Nojiri and Odintsov, Phys. Lett. B <u>657</u>, 238 (2007)]

•At the very early stage:  $\lim_{R \to \infty} F(R) = -M^2 \frac{1}{c_4} = -2\Lambda_i$  $\Lambda_{\rm i} (\gg H_0^2)$ : Effective cosmological constant in the very early universe  $H_0 = 100h \,\mathrm{km \, s^{-1} \, Mpc^{-1}} = 2.1h \times 10^{-42} \mathrm{GeV} \approx 1.5 \times 10^{-33} \mathrm{eV}$ : Current value of the h = 0.70Hubble constant

[Freedman et al., Astrophys. J. 553, 47 (2001)]

No. 23

•At the present time: 
$$F(R_0) = -M^2 \frac{(R_0/M^2)^{2l+1}}{c_3 + c_4 (R_0/M^2)^{2l+1}} = -2R_0$$

 $R_0 (\approx H_0^2)$ : Current curvature

$$\implies c_3 = \frac{1}{2} \left( \frac{R_0}{M^2} \right)^{2l} \left( 1 - \frac{R_0}{\Lambda_i} \right) \approx \frac{1}{2} \left( \frac{R_0}{M^2} \right)^{2l}, \quad c_4 = \frac{1}{2} \frac{M^2}{\Lambda_i}$$
(We have used
$$(R_0/\Lambda_i) \ll 1$$

•We consider the case in which f(R) is given by the following form:

$$f(R) = f_{\rm NO}(R) \equiv \frac{\left[ (R/M^2) - (R_0/M^2) \right]^{2q+1} + (R_0/M^2)^{2q+1}}{c_5 + c_6 \left\{ \left[ (R/M^2) - (R_0/M^2) \right]^{2q+1} + (R_0/M^2)^{2q+1} \right\}}$$
  
$$\lim_{R \to \infty} f_{\rm NO}(R) = \frac{1}{c_6} = \text{const}, \quad \lim_{R \to 0} f_{\rm NO}(R) = 0$$
  
$$c_5, c_6 : \text{Dimensionless constants}, \quad q : \text{Positive constant}$$

[Nojiri and Odintsov, Phys. Lett. B <u>657</u>, 238 (2007)]

[Nojiri, Odintsov and Tretyakov, arXiv:0710.5232 [hep-th]]

→ At the inflationary stage, because  $R/M^2 \gg 1$  and  $R/M^2 \gg R_0/M^2$ we are able to use the following approximate relations:

$$F(R) \approx -M^2 \frac{1}{c_4} \left[ 1 - \frac{c_3}{c_4} \left( \frac{R}{M^2} \right)^{-(2l+1)} \right]$$
$$f_{\rm NO}(R) \approx \frac{1}{c_6} \left[ 1 - \frac{c_5}{c_6} \left( \frac{R}{M^2} \right)^{-(2q+1)} \right]$$

-At the very early stage, because  $R o \infty$  , we obtain

$$\dot{H} + H^2 = \frac{\Lambda_{\rm i}}{3} \longrightarrow a(t) \propto \exp\left(\sqrt{\frac{\Lambda_{\rm i}}{3}}t\right)$$

### $\Longrightarrow$ Exponential inflation can be realized.

< Equation for the scale factor >

$$\dot{H} + H^{2} + \left\{ \frac{1}{6}F(R) - F'(R)H^{2} + 3F''(R) \left[ \ddot{H} + 4\left(\dot{H}^{2} + H\ddot{H}\right) \right] + 18F'''(R) \left(\ddot{H} + 4H\dot{H}\right)^{2} \right\}$$

$$= \kappa^{2} \left[ f'(R) \left( -2H + 3H^{2} \right) + 3f''(R) \left( H - 2HH + 4H^{2} - 24H^{2}H + 18f'''(R) \left( \ddot{H} + 4H\dot{H} \right)^{2} \right] \frac{k|C(k)|^{2}}{\pi^{2}} \frac{k^{4}}{a^{4}}$$

Terms in F(R) as well as the right-hand side can be a source of inflation.

If the contribution of terms in f(R) to inflation is dominant, power-law inflation can be realized.

$$a(t) \propto t^{\tilde{p}}$$
$$\longrightarrow \tilde{p} = q + 1$$
If  $q \gg 1$ ,  $\tilde{p} \gg 1$ 

### < III B. Late-time cosmic acceleration >

- At the early stage of the universe, at which the curvature is very large, inflation can be realized due to the terms in F(R) and/or those in f(R).
- As curvature becomes small, the contribution of these terms to inflation becomes small, and then inflation ends.
- After inflation, radiation becomes dominant, and subsequently matter becomes dominant.
- $\implies$  When the energy density of matter becomes small and the value of curvature becomes  $R_0$ , there appears the small effective cosmological constant at the present time.
  - $\rightarrow$  Hence, the current cosmic acceleration can be realized.

- In the limit  $R \to R_0$ , because  $R/M^2 - R_0/M^2 \ll 1$ , we are able to use the following approximate relations:

<u>No. 27</u>

$$\begin{split} F(R) &\approx -M^2 \frac{c_3}{\left[c_3 + c_4 \left(R_0/M^2\right)^{2l+1}\right]^2} \\ &\times \left\{ \left(\frac{R}{M^2} - \frac{R_0}{M^2}\right)^{2l+1} + \left[\frac{c_3 + c_4 \left(R_0/M^2\right)^{2l+1}}{c_3}\right] \left(\frac{R_0}{M^2}\right)^{2l+1} \right\} \begin{array}{l} \text{(If } q > l \ , f_{\rm NO}(R) \\ \text{becomes constant} \\ \text{more rapidly than} \\ F(R) &\text{in the limit} \\ R \to R_0 \ .) \\ &\times \left\{ \left(\frac{R}{M^2} - \frac{R_0}{M^2}\right)^{2q+1} + \left[\frac{c_5 + c_6 \left(R_0/M^2\right)^{2q+1}}{c_5}\right] \left(\frac{R_0}{M^2}\right)^{2q+1} \right\} \right\} \end{split}$$

•In the limit  $R \to R_0$ , we obtain

$$\dot{H} + H^2 = \frac{R_0}{3} \longrightarrow a(t) \propto \exp\left(\sqrt{\frac{R_0}{3}}t\right) \qquad \text{Late-time} \\ \Rightarrow \frac{\ddot{a}(t)}{a(t)} = \frac{R_0}{3} > 0 \qquad \qquad \text{be realized.}$$

#### < Important feature of the present model >

#### Equation for the scale factor



## IV. Classically equivalent form of non-minimal No. 29 Maxwell-*F(R)* gravity

-  $S_{\mathrm{MG}}$  can be rewritten by using auxiliary fields,  $\zeta$  and  $\xi$  , as follows:

$$S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} \left[ \zeta + F(\zeta) \right] + I(\zeta) \mathcal{L}_{\mathrm{M}} + \xi \left( R - \zeta \right) \right\}$$

 $\mathcal{L}_{\mathrm{M}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \qquad \text{(Using } \zeta = R \text{, which is derived by taking variation of } S \text{ with respect to } \xi \text{, this form is reduced to } S_{\mathrm{MG}} \text{.)}$ 

-Taking variation of  $S\,$  with respect to  $\,\zeta\,,$  we find

$$\xi = \frac{1}{2\kappa^2} \left[ 1 + F'(\zeta) \right] + I'(\zeta) \mathcal{L}_{\mathrm{M}}$$

 $\twoheadrightarrow$  Substituting this equation into S and eliminating  $\xi \;$  from S , we find

$$S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} \left[ 1 + \frac{F'(\zeta)}{2\kappa^2} \right] R + \left[ I(\zeta) + I'(\zeta) \left( R - \zeta \right) \right] \mathcal{L}_{\mathrm{M}} + \frac{1}{2\kappa^2} \left[ F(\zeta) - F'(\zeta) \zeta \right] \right\}$$

We make the following conformal transformation of the above form:  $\frac{N_0.30}{N_0.30}$ 

$$g_{\mu\nu} \to \hat{g}_{\mu\nu} = e^{\varphi} g_{\mu\nu} , \quad \underline{e^{\varphi} = 1 + F'(\zeta)} \quad \varphi : \text{Scalar field}$$

(The hat denotes quantities in a new conformal frame in which the term in the coupling between  $F'(\zeta)$  and R in the first term on the right-hand side of the above form of S disappears.)

→ This form is close to that of the electromagnetic field with the coupling to the dilaton, namely, the Lagrangian of non-minimal Maxwell-*F*(*R*) gravity is qualitatively similar to Lagrangian describing dilaton electromagnetism.

#### < Model of dilaton electromagnetism >

$$S = \int d^{4}x \sqrt{-g} [\mathcal{L}_{inflaton} + \mathcal{L}_{dilaton} + \mathcal{L}_{EM}]$$
(KB and Yokoyama, Phys. Rev. D 69, 043507 [2004])  

$$\mathcal{L}_{inflaton} = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - U[\phi] \qquad \phi : Inflaton field$$

$$\mathcal{L}_{dilaton} = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - V[\Phi] \qquad \Phi : Dilaton field$$

$$\mathcal{L}_{EM} = -\frac{1}{4} f(\Phi) F_{\mu\nu} F^{\mu\nu} \qquad \bar{V} : Constant$$

$$-f(\Phi) = e^{-\lambda\kappa\Phi} : Dilaton coupling$$

$$V[\Phi] = \overline{V} \exp(-\lambda\kappa\Phi) : Dilaton potential$$

$$+ f(\Phi) = f[\Phi(t)] = f[\Phi(a(t))] \equiv \overline{fa}^{\beta-1} \qquad \overline{f} : Constant$$

$$\beta : parameter$$

<u>No. 31</u>

< Current energy density of large-scale magnetic fields >

$$\rho_B(L,t_0) \propto H_{\inf}^4 \left(\frac{a_R}{a_0}\right)^4 \left(\frac{k}{a_R H_{\inf}}\right)^{-|\beta|+5}$$

 $H_{\mathrm{inf}}$  : Hubble constant at the inflationary stage

- $a_{
  m R}$  : Value of a(t) at the end of inflation
- $a_0$  : Value of a(t) at the present time

# eta pprox 5.0 : Scale-invariant spectrum

→ Magnetic fields on 1 Mpc with as large as  $10^{-10}$ G can be generated.

This strength is enough to account for the magnetic fields observed in galaxies and clusters of galaxies through only adiabatic compression without requiring any dynamo amplification.

# V. SUMMARY

We have considered inflation and the late-time acceleration in the expansion of the universe in non-minimal electromagnetism, in which the electromagnetic field couples to a function of the scalar curvature .

We have shown the following points:

- (1) Power-law inflation can be realized due to the non-minimal gravitational coupling of the electromagnetic field.
- (2) Large-scale magnetic fields can be generated due to the breaking of the conformal invariance of the electromagnetic field through its non-minimal gravitational coupling.
- (3) Both inflation and the late-time acceleration of the universe can be realized in a modified Maxwell-*F*(*R*) gravity.
- (4) The Lagrangian of non-minimal Maxwell-*F*(*R*) gravity is qualitatively similar to Lagrangian describing dilaton electromagnetism.

→ Results in non-minimal Maxwell-F(R) gravity can be generalized to a non-minimal YM-F(R) gravity and a non-minimal vector-F(R) gravity (Ref. [2]). No. 34

## < Observational deviation of a non-minimal electromagnetic theory from the ordinary Maxwell theory >

No. 35

- In the case of exponential inflation, the scalar curvature is proportional to the square of the Hubble parameter.
- It is known that the root-mean-square (rms) amplitude of curvature perturbations is also proportional to the square of the Hubble parameter.
- In a non-minimal electromagnetic theory, because magnetic fields couple to the scalar curvature, there can exist the cross correlations between magnetic fields and curvature perturbations through the Hubble parameter.

#### If

- the primordial large-scale magnetic fields are detected by future experiments such as PLANCK, SPIDERS (post-PLANCK) and Inflation Probe (CMBPol mission) in the Beyond Einstein program of NASA on the anisotropy of the cosmic microwave background (CMB) radiation,
- (2) there exist the cross correlations between the primordial large-scale magnetic fields and curvature perturbations,
  - → it is observationally suggested that at the inflationary stage there should exist a non-minimal gravitational coupling of the electromagnetic field.
#### (1) Non-minimal Yang-Mills-F(R) gravity

$$S_{\rm GR} = \int d^4x \sqrt{-g} \left[ \mathcal{L}_{\rm EH} + \mathcal{L}_{\rm YM} \right]$$

$$\mathcal{L}_{\rm YM} = -\frac{1}{4} I(R) F^a_{\mu\nu} F^{a\mu\nu} \left[ 1 + b \tilde{g}^2 \ln \left| \frac{-(1/2) F^a_{\mu\nu} F^{a\mu\nu}}{\mu^4} \right| \right]$$

$$I(R) = 1 + f(R)$$
,  $b = \frac{1}{4} \frac{1}{8\pi^2} \frac{11}{3} N$ : Asymptotic freedom constant

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^{abc} A^b_\mu A^c_\nu \quad \text{: Field strength tensor}$$

 $A^a_\mu : SU(N)$  field strength,  $f^{abc}$  : Structure constants

 $\mu\,$  : Mass scale of the renormalization point

$$\tilde{g}^{2}(X) = \frac{\tilde{g}^{2}}{1 + b\tilde{g}^{2}\ln|X/\mu^{4}|}, \ X \equiv -\frac{1}{2}F^{a}_{\mu\nu}F^{a\mu\nu}$$

 $\tilde{g}$  : Value of the running coupling constant when  $X=\mu^4$ 

#### (2) Non-minimal Vector-F(R) gravity

$$\bar{S}_{\rm MG} = \int d^4x \sqrt{-g} \left[ \mathcal{L}_{\rm MG} + \mathcal{L}_{\rm V} \right]$$
$$\mathcal{L}_{\rm V} = I(R) \left\{ -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - V[A^{a2}] \right\}$$
$$V[A^{a2}] = \bar{V} \left( \frac{A^{a2}}{\bar{m}^2} \right)^{\bar{n}}, \quad \bar{n}(>1) : \text{Positive integer} \qquad \overline{\bar{W}} : \text{Constant}$$
$$\bar{\bar{M}} : \text{Mass scale}$$



Results in non-minimal Maxwell-F(R) gravity can be generalized to a non-minimal YM-F(R) gravity and a non-minimal vector-F(R) gravity.

### < Asymptotic freedom versus non-minimal coupling > No. 39

- → We propose the origin of the non-minimal gravitational coupling function based on renormalization-group considerations.
  - The effective renormalization-group improved Lagrangian for the SU(2) gauge theory in matter sector has been found for a de Sitter background as follows:

 $\mathcal{L}_{SU(2)} = -\frac{1}{4} \frac{\tilde{g}^2}{\tilde{g}^2(\tilde{t})} G^a_{\mu\nu} G^{a\mu\nu}$  $\tilde{g}^2(\tilde{t}) = \frac{g^2}{1 + 11\tilde{g}^2\tilde{t}/(12\pi^2)}$  $\tilde{t} = \frac{1}{2} \ln \frac{R/4 + \tilde{g}H}{\mu^2}$  $G^a_{\mu\nu}G^{a\mu\nu}/2 = \tilde{H}^2$ 1 + f(R)

[Elizalde, Odintsov and Romeo, Phys. Rev. D <u>54</u>, 4152 (1996)]

- $G^a_{\mu
  u}$ : SU(2) field strength  $\tilde{g}(\tilde{t})$ : Running SU(2) gauge coupling constant
- $\tilde{g}$  : Value of  $\tilde{g}(\tilde{t})$  in the case  $\tilde{t} = 0$
- $\tilde{t}$  : Renormalization-group parameter
- $\mu\,$  : Mass parameter

 $\tilde{H}$ : Magnetic field in the SU(2) gauge theory

 The running gauge coupling constant typically shows asymptotically free behavior: it goes to zero at very high energy. → We try to relate the asymptotic freedom in a non-Abelian gauge theory with non-minimal Maxwell-modified gravity.

If 
$$f(R) = f_{\text{HS}}(R) \equiv \frac{c_1 \left( R/m^2 \right)^n}{c_2 \left( R/m^2 \right)^n + 1}$$
, we find

$$\frac{c_1 \left( R/m^2 \right)^n}{c_2 \left( R/m^2 \right)^n + 1} = \frac{11\tilde{g}^2}{12\pi^2} \tilde{t}$$

- $\longrightarrow (1) \text{ If } R/m^2 \gg 1, \quad \tilde{t} \approx [12\pi^2/(11\tilde{g}^2)](c_1/c_2) .$ (2) In the limit  $R \to 0, \quad \tilde{t} \to 0$ .
- Asymptotic freedom induces the appearance of the non-minimal gravitational gauge coupling in (non-) Abelian gauge theories at high energy.

# Appendix A

# <u>No. A-1</u> <u>No. A-1</u> <u>No. A-1</u>

### **<u>1. Astrophysical processes</u>**

- → A kind of Plasma instability
- (1) Biermann battery mechanism

(Biermann and Schlüter, Phys. Rev. <u>82</u>, 863 [1951])

- (2) Weibel instability (Weibel, Phys. Rev. Lett. <u>2</u>, 83 [1959])
- 2. Cosmological processes
- (1) First-order cosmological electroweak phase transition (EWPT) (Baym, Bödeker, and McLerran, Phys. Rev. D <u>53</u>, 662 [1996])
- (2) Quark-hadron phase transition (QCDPT) (Quashnock, Loeb, and Spergel, Astrophys. J. <u>344</u>, L49 [1989])
- (3) Generation of the magnetic fields from primordial density perturbations before the epoch of recombination (Matarrese *et al.*, Phys. Rev. D <u>71</u>, 043502 [2005]) (Ichiki *et al.*, Science 311, 827 [2006])

### < I E. Breaking mechanisms >

**1.** Coupling of a scalar field to electromagnetic fields

(Ratra, Astrophys. J. <u>391</u>, L1 [1992])  $\mathcal{L} = -\frac{1}{4} f(\Phi) F_{\mu\nu} F^{\mu\nu}$  (KB and Yokoyama, Phys. Rev. D <u>69</u>, 043507 [2004])  $f(\Phi) = e^{-\lambda\kappa\Phi}$   $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$  : Electromagnetic field-strength tensor  $A_{\mu}: U(1)$  gauge field  $\Phi$ : Dilaton field,  $\kappa = \sqrt{8\pi G}$ , G: Newton's constant

 $\lambda$ : Dimensionless constant

R: Ricci scalar

m: Mass scale

- 2. Non-minimal gravitational coupling to electromagnetic fields (Turner & Widrow, Phys. Rev. D <u>37</u>, 2743 [1988])
- $(R/m^2)F_{\mu\nu}F^{\mu\nu}$  Such a term is known to arise in curved spacetime due to one-loop vacuumpolarization effects.

**No. A-2** 

(Drummond & Hathrell, Phys. Rev. D 22, 343 [1980])

**3.** The conformal anomaly in the trace of the energymomentum tensor induced by quantum corrections to Maxwell electrodynamics (Dolgov, Phys. Rev. D <u>48</u>, 2499 [1993])

# Appendix B

< Equation for the mode function A(k,t) >

 $t \longrightarrow \eta$ 

$$\ddot{A}(k,t) + \left(H + \frac{\dot{I}}{I}\right)\dot{A}(k,t) + \frac{k^2}{a^2}A(k,t) = 0$$

• <u>The normalization condition</u>  $A(k,t)\dot{A}^{*}(k,t) - \dot{A}(k,t)A^{*}(k,t) = \frac{i}{Ia}$ 

$$\rightarrow A''(k,\eta) + \frac{I'}{I}A'(k,\eta) + k^2A(k,\eta) = 0$$

The prime denotes differentiation with respect to the conformal time  $\eta\,$  .

**No. B-1** 

• In the exact de Sitter background, we have  $a = 1/(-H\eta)$  where H is the de Sitter Hubble parameter.

→ The horizon-crossing, which is defined by H = k/a, is given by  $-k\eta = 1$ .

- Subhorozon scale:  $k|\eta| \gg 1$ 

• Superhorozon scale:  $k|\eta| \ll 1$ 

### < III B. Solution for $A(k, \eta)$ >

**<u>1. WKB subhorizon solution</u>** (Subhorozon scale:  $k|\eta| \gg 1$ )

$$A_{\rm in}(k,\eta) = \frac{1}{\sqrt{2k}} I^{-1/2} e^{-ik\eta}$$

- We have assumed that the vacuum in the short-wavelength limit is the standard Minkowski vacuum.
- **2. Solution on superhorizon scales** (Superhorozon scale:  $k|\eta| \ll 1$ )
  - Long-wavelength expansion:  $A_{out} = A_0(\eta) + k^2 A_1(\eta) + O(k^4)$
- $\rightarrow$  Let the two independent solutions for  $A_{out}$  be u and v.
  - <u>The boundary condition</u>:  $u \to 1$  and  $v \to 0$  as  $\eta \to \eta_R$

 $A_0'' + \frac{I'}{I} A_0' = 0 \longrightarrow u_0 = 1, \quad v_0 = \int_{\eta}^{\eta_{\rm R}} \frac{1}{I(\tilde{\eta})} d\tilde{\eta}$  $A_1'' + \frac{I'}{I} A_1' + A_0 = 0 \longrightarrow u = u_0 + k^2 u_0 \int_{\eta}^{\eta_{\rm R}} d\eta' I(\eta') \int_{\eta'}^{\eta} \frac{d\eta''}{I(\eta'')}$ 

 $\eta_{\rm R} : \text{Conformal time at the} \\ \text{time of reheating after} \quad v = v_0 + k^2 \int_{\eta}^{\eta_{\rm R}} d\eta' v_0(\eta') I(\eta') \int_{\eta'}^{\eta} \frac{d\eta''}{I(\eta'')}$ 

 $\square \land A_{\text{out}} = Cu + \underline{Dv} \qquad C, D : \text{Constants}$ (Decaying mode)

< Junction conditions for  $A_{in}$  and  $A_{out} >$ 

$$A_{\mathrm{in}}(\eta_k) = A_{\mathrm{out}}(\eta_k), \ A'_{\mathrm{in}}(\eta_k) = A'_{\mathrm{out}}(\eta_k)$$

$$\eta_k$$
 : Horizon crossing (  $~\eta_k pprox - 1/k$  )

#### < Lowest order solution for $A_{out} >$

$$A_{\text{out}} = C(k) + D(k) \int_{\eta}^{\eta_{\text{R}}} \frac{1}{I(\tilde{\eta})} d\tilde{\eta}$$

$$C(k) = \frac{1}{\sqrt{2k}} I^{-1/2} \left[ 1 - \left( \frac{1}{2} I' + ikI \right) \int_{\eta}^{\eta_{\mathrm{R}}} \frac{1}{I(\eta')} d\eta' \right] e^{-ik\eta} \Big|_{\eta = \eta_k}$$

$$D(k) = \left. \frac{1}{\sqrt{2k}} I^{-1/2} \left( \frac{1}{2} I' + ikI \right) e^{-ik\eta} \right|_{\eta = \eta_k}$$

#### < Evolution of electric and magnetic fields after inflation >

- The conductivity of the universe in the inflationary stage is negligibly small, because there are few charged particles at that time. Hence the electric fields can exist during inflation.
- → After reheating following inflation, however, a number of charged particles are produced, so that the conductivity of the universe immediately becomes much larger than the Hubble parameter at that time.
- → Hence the electric fields accelerate charged particles and finally dissipate, and only the magnetic fields can survive up to the present time.

# Appendix C

## < Determination of C and D accurate to $O(k^2) > \frac{No. C-1}{2}$

$$\begin{pmatrix} A_{\rm in} \\ A'_{\rm in} \end{pmatrix} \Big|_{\eta=\eta_k} = \mathcal{M} \begin{pmatrix} C \\ D \end{pmatrix}, \quad \mathcal{M} \equiv \begin{pmatrix} 1-k^2 I_1 & I_2 \left(1-k^2 I_1\right) \\ k^2 I_3/I & \left[-1+k^2 \left(I_1+I_2 I_3\right)\right]/I \end{pmatrix} \Big|_{\eta=\eta_k}$$

$$I_{1}(\eta) \equiv \int_{\eta}^{\eta_{\mathrm{R}}} \left[ \frac{\int_{\tilde{\eta}}^{\eta_{\mathrm{R}}} I\left(\tilde{\eta}\right) d\tilde{\eta}}{I\left(\tilde{\eta}\right)} \right] d\tilde{\eta}, \quad I_{2}(\eta) \equiv \int_{\eta}^{\eta_{\mathrm{R}}} \frac{1}{I\left(\tilde{\eta}\right)} d\tilde{\eta}$$
$$I_{3}(\eta) \equiv \int_{\eta}^{\eta_{\mathrm{R}}} I\left(\tilde{\eta}\right) d\tilde{\eta}$$

$$\implies \begin{pmatrix} C \\ D \end{pmatrix} = \mathcal{M}^{-1} \begin{pmatrix} A_{\mathrm{in}} \\ A'_{\mathrm{in}} \end{pmatrix} \Big|_{\eta = \eta_k}$$

$$\mathcal{M}^{-1} = \frac{1}{\left(1 - k^2 I_1\right)^2} \left( \begin{array}{cc} 1 - k^2 \left(I_1 + I_2 I_3\right) & II_2 \left(1 - k^2 I_1\right) \\ k^2 I_3 & -I \left(1 - k^2 I_1\right) \end{array} \right) \bigg|_{\eta = \eta_k}$$

### < Adiabatic compression >

•  $\sigma >> H \implies B \propto a^{-2}$  $\rho \propto a^{-3} \implies \boxed{B \propto \rho^{2/3}}$ 

• 
$$\frac{\rho_{\text{gal}}}{\overline{\rho}} \sim 10^5 - 10^6 \longrightarrow B_{\text{gal}} \approx 10^3 - 10^4 B_{\text{prim}}$$

• 
$$\frac{\rho_{\rm cg}}{\overline{\rho}} \sim 10^2 - 10^3 \longrightarrow B_{\rm cg} \approx 10^1 - 10^2 B_{\rm prim}$$
  
 $\overline{\rho}$ : Average cosmic energy density

$$B_{\rm gal} \approx 10^{-6} \, {\rm G}$$
$$B_{\rm cg} \approx 10^{-7} \, {\rm G}$$

$$\boldsymbol{B}_{\rm prim} \approx 10^{-10} - 10^{-9} \,\mathrm{G}$$