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Quark flavor mixing
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CKM mechanism in the Standard Model

Weak interactions change quark flavors

Flavor mixing

V is the CKM matrix. Unitarity implies 4 undetermined parameters

For other reasons (Higgs fine-tuning, gauge coupling-unification) we 
expect new physics at the TeV scale

Success of CKM model tightly constrains new models of EWSB
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New physics models & quark flavor

 Figure from G. Hiller, hep-ph/0207121

MSSM
 MFV

MSSM
 MFV

low tan large tan

supersoft
effective SUSY! !

new physics in B data

SUSY breaking
dirac gauginos

ED w. SM on

little Higgs w.

SM like B physics

generic Little Higgs 

generic ED w. SM in bulk 

SUSY GUTs 

brane 

MFV UV fix 

Discovery potential of flavor physics experiments or
Nondiscovery rules out/tightly constrains these models



Wherefore LQCD for Flavor Physics?

a. Want to study       
   weak decay
   of b to u

b. Confinement: 
Nature shows us 
the B meson, not 
just the b quark

c. Expt. sees 

LQCD brings us 
from meson level 
to quark levelIl
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Wolfenstein Parameterization

|Vus| = 0.22 ! 1

|Vcb| ≈ |Vus|
2

|Vub| ! |Vcb|

Expansion based on empirical observation





1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2
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 + O(λ4)

In practice, go to next order

η̄ = η
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λ2
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)

ρ̄ = ρ

(

1 −
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)



Wolfenstein Parameterization

A = 0.824 ± 0.075(9%)λ = 0.2205 ± 0.0018(0.8%)

ρ̄ = 0.196 ± 0.045(23%) η̄ = 0.347 ± 0.025(7%)

As of a few years ago...



Experimental Constraints

              from 

        from

           from

        and        from exclusive semileptonic decays

B → (J/ψ)Ksin 2β

εK K0
↔ K0

B0
↔ B0

Vub B → π"ν

B → D!ν

Vcb

∆M

 need LQCD input} }



Persistent Standard Model

independently of the presence of NP, using the UUT con-
struction, which is independent of NP contributions. In
particular, all the constraints from tree-level processes
and from the angle measurements are valid and the NP
contribution cancels out in the !md=!ms ratio; the only
NP dependent quantities are "K and (individually) !md
and !ms, because of the shifts !SK0 and !SB0 of the Inami-
Lim functions in K- "K and Bd;s- "Bd;s mixing processes. With
only one Higgs doublet or at small tan", these two con-
tributions are dominated by the Yukawa coupling of the top
quark and are forced to be equal. For large tan", the
additional contribution from the bottom Yukawa coupling
cannot be neglected and the two quantities are in general
different. In both cases, one can use the output of the UUT
given in Table I and in the left plot of Fig. 1 to obtain a
constraint on !SK;B

0 using "K and !md. We get !S0 !
!SK0 ! !SB0 ! "0:12# 0:32 for small tan", while for
large tan" we obtain !SB0 ! 0:26# 0:72 and !SK0 !
"0:18# 0:38. Using the procedure detailed in [5], these
bounds can be translated into lower bounds on the MFV
scale #:

 #> 5:9 TeV@95% probability for small tan";

#> 5:4 TeV@95% probability for large tan";
(1)

significantly stronger than our previous results #>
3:6 TeV and #> 3:2 TeV for small and large tan", re-
spectively [11].

We now turn to the UT analysis in the presence of
arbitrary NP. Following Ref. [11], we incorporate general
NP loop contributions in the fit in a model-independent
way, parametrizing the shift induced in the Bq- "Bq mixing
frequency (phase) with a parameter CBq

(#Bq
) having

expectation value of one (zero) in the SM [13]:

 CBq
e2i#Bq ! hBqjHfull

eff j "Bqi
hBqjHSM

eff j "Bqi
! 1$ ANP

q

ASM
q

e2i#
NP
q ; (2)

with q ! d; s, plus an additional parameter C"K !
ImhK0jHfull

eff j "K0i=ImhK0jHSM
eff j "K0i. As shown in

Refs. [11,14], the measurements of UT angles strongly
reduced the allowed parameter space in the Bd sector. On
the other hand, in previous analyses the Bs sector was
completely untested in the absence of stringent experimen-
tal constraints. Recent experimental developments allow
one to improve the bounds on NP in several ways. First, the
measurement of !ms [1] and !$s [15] provide the first
constraints on the #Bs

vs CBs
plane. Second, the improved

measurement of ASL in Bd decays [16] and the recently
measured CP asymmetry in dimuon events (ACH) [7] fur-
ther constrain the CBq

and #Bq
parameters. They also

strongly disfavor the solution with "$ and "% in the third
quadrant, which now has only 1.0% probability. Finally,
!$d [17] helps in reducing further the uncertainty in CBd

.
The use of ACH and !$q to bound CBq

and #Bq
deserve

some explanation, while for all the other constraints we
refer the reader to Ref. [11]. The dimuon charge asymme-
try ACH can be written as

 

%&" "&&%P1 " P3 $ 0:3P0
8&

'%P1 $ P3& $ %1" '&P2 $ 0:28P7 $ 0:5P0
8 $ 0:69P13

in the notation of Ref. [7], where the definition and the
measured values for the P parameters can be found. We
have & ! fd&d $ fs&s, "& ! fd "&d $ fs "&s, and ' ! &$
"&" 2& "&, where we have assumed equal semileptonic
widths for Bs and Bd mesons, fd ! 0:397# 0:010 and
fs ! 0:107# 0:011 are the production fractions of Bd
and Bs mesons, respectively [18], and &q and "&q are given
by the expression
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FIG. 1 (color online). Determination of "$ and "% from the
constraints on (, ", ), jVub=Vcbj, and !md=!ms (UUT fit,
left) and from the constraints on (, ", ), jVub=Vcbj, !md, !ms,
"K, ASL, ACH, and !$q=$q (generalized NP fit, right). In the
right plot, only tree-level constraints are shown.
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FIG. 2 (color online). From left to right, constraints on #Bd
vs CBd

, #Bs
vs CBs

, #NP
d vs ANP

d =ASM
d , and #NP

s vs ANP
s =ASM

s from the NP
generalized analysis.

PRL 97, 151803 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

151803-2

UTfit collaboration CKMfitter Group (J. Charles et al.)           
http://www.ckmfitter.in2p3.fr
version of Oct 2006

A couple discrepencies at 3σ: Hints or fluctuations?

http://www.ckmfitter.in2p3.fr
http://www.ckmfitter.in2p3.fr


New flavor physics4.3 Master Formula Beyond the SM

Formula (4.14) can be generalized to a master formula for weak decay amplitudes that goes beyond the

SM [59]. It reads

A(Decay) =
∑

i

Biη
i
QCDV i

CKM[F i
SM + F i

New] +
∑

k

BNew
k [ηk

QCD]NewV k
New[Gk

New] , (4.21)

where the first terms represent the SM contributions with F i
SM = F i(xt) given explicitly in (4.17)–(4.20).

New physics can contribute to our master formula in two ways. It can modify the importance

of a given operator, present already in the SM, through the new short distance functions F i
New that

depend on the new parameters in the extensions of the SM like the masses of charginos, squarks, charged

Higgs particles and tan β = v2/v1 in the MSSM. These new particles enter the new box and penguin

diagrams. In more complicated extensions of the SM new operators (Dirac structures) that are either

absent or very strongly suppressed in the SM, can become important. Their contributions are described

by the second sum in (4.21) with BNew
k , [ηk

QCD]New, V k
New, Gk

New being analogs of the corresponding

objects in the first sum of the master formula. The V k
New show explicitly that the second sum describes

generally new sources of flavour and CP violation beyond the CKMmatrix. This sum may, however, also

include contributions governed by the CKM matrix that are strongly suppressed in the SM but become

important in some extensions of the SM. In this case V k
New = V k

CKM. Clearly the new functions F i
New and

Gk
New as well as the factors V k

New may depend on new CP violating phases complicating considerably

phenomenological analyses.

4.4 Classification of New Physics

Classification of new physics (NP) contributions can be done in various ways. Having at hand the formula

(4.21) let us classify these contributions from the point of view of the operator structure of the effective

weak Hamiltonian, the complex phases present in the Wilson coefficients of the relevant operators and

the distinction whether the flavour changing transitions are governed by the CKM matrix or by new

sources of flavour violation [9, 60]. For the first four classes below we assume that there are only three

generations of quarks and leptons. The last class allows for more generations.

Class A

This is the simplest class to which also the SM belongs. In this class there are no new complex

phases and flavour changing transitions are governed by the CKM matrix. Moreover, the only relevant

operators are those that are relevant in the SM. Consequently NP enters only through the Wilson coeffi-

cients of the SM operators that can receive new contributions through diagrams involving new internal

particles.

The models with these properties will be called Minimal Flavour Violation (MFV) models, as

defined in [61]. Other definitions can be found in [62, 63]. In this case our master formula simplifies to

A(Decay) =
∑

i

Biη
i
QCDV i

CKMFi(v), Fi = F i
SM + F i

New (real), (4.22)

where Fi(v) are the master functions of MFV models [12]

S(v), X(v), Y (v), Z(v), E(v), D′(v), E′(v) (4.23)

with v denoting collectively the parameters of a given MFV model. A very detailed account of the MFV

can be found in [12]. In Section 9 some of its main features will be recalled. Examples of models in this

17

A. Buras’ master formula

Various classifications (5) of new physics models

MFV: only new Inami-Lin--like functions FNew 

Complementary for direct searches for new physics

Requires high precision experiment and theory

B factors are hadronic matrix elements, need LQCD



Big picture

We expect physics beyond the Standard Model, e.g. to explain the 
hierarchy problem, unify forces, give a good dark matter candidate.  

Directly create new particles at the LHC: measure masses

New particles couple to Standard Model particles

Discern new coupling constants from precise flavor experiments 
(BaBar, Belle, Tevatron, LHC, ...)

Most new models have new sources of flavor changing 
interactions, even having a flavor problem

Flavor physics is LHC-era physics

Lattice QCD connects meson measurements to quark couplings 
through systematically improvable first principles calculations



Outline

Importance of flavor physics and role of lattice QCD

Our strategy for achieving accurate results now

Recent results

B → π l ν

Neutral B mixing

New effort: radiative & semileptonic penguin decays (b → s)



Lattice QCD in a nutshell

Quarks on sites

Glue on links

QCD Lagrangian

Break-up spacetime into a grid

Maintains gauge invariance

Breaking of rotational/translational Lorentz 
invariance at short distances is controllable and 
removable

L = −
1

4
F a

µν
F a,µν −

∑

q
ψq

[

γµ(∂µ − igAa

µ
ta) + mq

]

ψq

= Lg − ψQψ



Lattice QCD in a nutshell

〈J(z′)J(z)〉 =

1

Z

∫
[dψ][dψ̄][dU ] J(z′)J(z) e−SE

〈J(z′)J(z)〉 =

1

Z
Tr

[

J(z′)J(z) e−βH
]

QFT : Euclidean space path integral

SFT : Sum over all microstates

Use same numerical methods!

Monte Carlo Simulation : Find and use field 
“configurations” which dominate the integral/sum



Lattice QCD in a nutshell

Partial quenching =
	 different mass for valence         than for seaQ−1

det Q

Probability weight

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

〈Θ〉 =

1

Z

∫
[dψ][dψ̄][dU ]Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

〈ψ̄Γψ〉 =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0

Determinant in probability weight difficult
1) Requires nonlocal updating;  2) Matrix becomes singular

Set

Quenched approximation

detQ = 1



Lattice volume must be big enough

Lattice spacing must be smaller than physically relevant length scales

Cost increases quickly as a decreases: 

Heavy quarks have small Compton wavelengths

Singular behavior at light quark masses requires extrapolations from 
feasible masses to physical masses

Need mild mass dependence or trustworthy theory (chiral PT)

Challenges (viz systematic errors)

a−4 × a−(∼2.5)



Summary of our strategy

The goal: to address all systematic errors simultaneously

(Improved) staggered fermion formulation in order to be in chiral 
regime

Nonrelativistic bottom quark to avoid extrapolations in mb --   
treats heavy quark effects through effective field theory

Discretization errors treated via Symanzik effective field theory

Perturbation theory -- automation

Some critics think they can do better in the future with other 
methods. GOOD! That is progress

This approach has been very successful in improving lattice results 
for phenomenology (compare: quenched, outside chiral regime)



Light quark effects are important

C. Davies, et al., PRL 92 (2004)



Other checks and predictions

       meson mass (Fermilab/HPQCD LQCD; CDF expt)

     &      meson decay constants (Fermilab/MILC LQCD; CLEO-c expt)

                      form factor (Fermilab/MILC LQCD; BES, FOCUS expt’s)

 QCD coupling and quark masses (HPQCD)

Bc

D → K!ν

D

6200

6300

6400

6500

6600

m
Bc

 (M
eV

/c
2 )

lattice QCD, Feb. 1999
lattice QCD, Nov. 2004
CDF, Dec. 2004
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experiment [FOCUS, hep-ex/0410037]
lattice QCD [Fermilab/MILC, hep-ph/0408306]
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2σ (statistical)

D → Klν

Fermilab/HPQCD Fermilab/MILC HPQCD

Ds



Logic of 4th root hypothesis

Hypothesize that 4th root procedure is QCD in continuum limit 

A testable hypothesis

Comparable to hypotheses of quark mass extrapolation from 
outside the chiral regime

Empirical tests

So far so good -- obviously better than quenched LQCD

Skeptics welcome

Also invited to look hard at non-lattice CKM uncertainties

Progress in understanding 4th root (Shamir, Bernard, Golterman)

All approaches should be pushed hard



Lattice NRQCD for heavy quark

Foldy-Wouthuysen-Tani (FWT) transformation

Take lattice action as given: can analyze just like continuum HQET

Requires                   , satisfied for b quark on present and near future 
unquenched lattices

The following phrase is often uttered: “The continuum limit cannot be 
taken.” 

In theory, there are no lattice artifacts on the renormalized trajectory

In practice, discretization errors are short distance effects, systematically 
removed using Symanzik’s EFT

Improvement & matching rely on perturbation theory

Nonperturbative methods preferable in principle, when practical & precise

S0 =
∫∫∫

d4x Ψ†

(
iDt +

| !D|2

2mQ

)
Ψ

amQ > 1



Overview of simulation parameters

MILC collaboration’s 2+1 flavor configurations (AsqTad staggered)

“coarse”                        and “fine”

Spatial volume 

Lightest up/down mass 

We compute at both unquenched and partially quenched masses

NRQCD action for bottom, correct through

a = 0.13 fm a = 0.09 fm

(2.5 fm)3

ms/8

O(Λ2
QCD/m2

Q)



Semileptonic B to pi decay

!
-1 -0.5 0 0.5 1

"

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cbV
ubV

B0
→ π−"+ν!

B0
→ D−!+ν!

!

ν

B π

b u

d

Vµ

Combine with



work done with

E. (Gulez) Dalgic (Simon Fraser)
A. Gray (EPCC)

J. Shigemitsu (Ohio State)
C. T. H. Davies (Glasgow)

G. P. Lepage (Cornell)

(part of the HPQCD Collaboration)



Semileptonic Decays

B0
→ π−"+ν!

〈π(p′)|V µ|B(p)〉 = f+(q2)(pµ + p′µ) + f−(q2)(pµ − p′µ)

1

|Vub|2
dΓ

dq2
=

G2
F

24π3
|"p′|3|f+(q2)|2



Currents in EFT

J
(0)
0 (x) = q̄(x) Γ0 Q(x),

J
(1)
0 (x) = −

1

2M0
q̄(x) Γ0 γ ·∇ Q(x),

J
(2)
0 (x) = −

1

2M0
q̄(x) γ ·

←−
∇ γ0 Γ0 Q(x).

J
(0)
k

(x) = q̄(x) Γk Q(x),

J
(1)
k

(x) = −
1

2M0
q̄(x) Γk γ ·∇ Q(x),

J
(2)
k

(x) = −
1

2M0
q̄(x) γ ·

←−
∇ γ0 Γk Q(x),

J
(3)
k

(x) = −
1

2M0
q̄(x)∇k Q(x)

J
(4)
k

(x) =
1

2M0
q̄(x)

←−
∇k Q(x),

Temporal components

Γµ ≡

{

γµ for Vµ

γµγ5 for Aµ

Spatial components



Perturbative matching

For example,

E. Gulez, J. Shigemitsu, M.W., PRD 69, 074501 (2004)

Perturbative coefficients computed in

〈A0〉QCD = (1 + αs ρ̃0) 〈J
(0)
0 〉 +

(1 + αs ρ1) 〈J
(1),sub
0 〉 + αs ρ2 〈J

(2),sub
0 〉

J (i),sub = J (i) − αs ζ10J
(0)

Turns out to be leading uncertainty



Fits, fits, fits, ...

〈π|V 0|B〉 =
√

2mB f‖

〈π|V k|B〉 =
√

2mB pk

π
f⊥

1) Fit 3-point correlators
2) Combine LO and NLO
3) Interpolate to fixed 
4) Extrapolate in quark mass

Eπ



1/mb corrections
where E! is the pion energy in the B rest frame. From these
formulas one sees that f! will be dominated by f?, i.e. by
the matrix element of Vk, and f0 by fk or the matrix
element of V0.

Our goal is to evaluate the hadronic matrix elements
h!jV0jBi and h!jVkjBi via lattice simulations. There are
several steps in the calculation. First, one must relate the
continuum electroweak currents, V0 and Vk, to lattice
operators written in terms of the heavy and light quark
fields in our lattice actions. In the second step the matrix
elements of these lattice current operators must be eval-
uated numerically and the relevant amplitude, i.e. the
matrix element between the ground state B meson and
the ground state pion with appropriate momenta, must be
extracted. This will give us, via Eqs. (7), the form factors
fk and f? as functions of the light quark mass and the pion
momentum. Finally, in step 3 these numerical results must
be extrapolated to the physical pion. In the next three
sections we describe each of these three steps in turn.

III. MATCHING OF HEAVY-LIGHT CURRENTS

Matching of heavy-light currents between continuum
QCD and a lattice effective theory with two-component
nonrelativistic heavy quark fields ! and four-component
light quarks q"x# is discussed in Ref. [41]. Since staggered
light quarks can be written in terms of four-component
‘‘naive’’ AsqTad quark fields the formalism developed
there carries over unchanged to the present calculation.
Introducing also a four-component notation for the heavy
field, Q"x# $ "!; 0#, one finds that through
O""s"QCD=M;"s="aM#;"sa"QCD# the following current
operators in the effective theory are required.

Temporal:

J"0#0 "x# % #q"x#$0Q"x#;

J"1#0 "x# % &1

2M0
#q"x#$0! ' rQ"x#;

J"2#0 "x# % &1

2M0
#q"x#! ' r

 
#0$0Q"x#:

(10)

Spatial:

J"0#k "x# % #q"x#$kQ"x#;

J"1#k "x# % &1

2M0
#q"x#$k! ' rQ"x#;

J"2#k "x# % &1

2M0
#q"x#! ' r

 
#0$kQ"x#;

J"3#k "x# % &1

2M0
#q"x#rkQ"x#;

J"4#k "x# % 1

2M0
#q"x#r

 
kQ"x#;

(11)

where $$ can be either #$ or #5#$, and M0 is the bare
heavy quark mass in the NRQCD action. One sees that

there are two dimension 4 current corrections to the tem-
poral components and four such corrections to the spatial
components. To the order that we are working, one has

hV0i % "1! "s~%
"0#
0 #hJ"0#0 i! "1! "s%

"1#
0 #hJ"1#;sub0 i

! "s%
"2#
0 hJ"2#0 i (12)

and

hVki % "1! "s~%
"0#
k #hJ"0#k i! "1! "s%

"1#
k #hJ"1#;subk i

! "s%
"2#
k hJ"2#k i! "s%

"3#
k hJ"3#k i! "s%

"4#
k hJ"4#k i: (13)

We introduce the combination J"1#;sub$ % J"1#$ & "s&10;$J
"0#
$ .

This subtracts out power law contributions to the matrix
elements of the higher dimension operator J"1#$ through
O""s="aM## [42]. J"1#$ enters the matching already at tree
level and after the subtraction one is left with the physical
O""QCD=M# contribution that is a relativistic correction to
the leading order term. Power law subtractions of the other
dimension 4 current corrections come in as O""2

s="aM##
effects and are only partially included here. The one-loop
coefficients %"j#

$ and &10;$ for $ % 0 are given in Ref. [39].

TABLE II. Matching coefficients for the spatial currents Vk.
Where errors are not indicated explicitly, they are of order one or
less in the last digit. aM0 is the bare heavy quark mass in lattice
units and n a parameter in the NRQCD action. The three selected
values for aM0 correspond to the b quark on the MILC extra-
coarse, coarse and fine lattices, respectively [28].

aM0 n ~%"0#
k %"1#

k %"2#
k %"3#

k %"4#
k &10;k

4.00 2 0.256 0.484(3) 0.340(6) 0.244(3) &0:137"3# 0.041
2.80 2 0.270 0.349(3) 0.169(6) 0.218(4) &0:029"4# 0.055
1.95 2 0.332 0.232(3) 0.121(8) 0.161(4) 0.063(3) 0.073

0 0.2 0.4 0.6 0.8 1
Eπ in GeV

-0.1

-0.08

-0.06

-0.04

-0.02

0

j(
1)

/j(
0)

FIG. 1 (color online). The ratio hJ"1#0 i=hJ"0#0 i for one ensemble
(u0amf % u0amq % 0:01) versus the pion energy E!. The lower
points are before power law subtraction and the upper points are
after power law subtraction (i.e. hJ"1#;sub0 i=hJ"0#0 i).
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where E! is the pion energy in the B rest frame. From these
formulas one sees that f! will be dominated by f?, i.e. by
the matrix element of Vk, and f0 by fk or the matrix
element of V0.

Our goal is to evaluate the hadronic matrix elements
h!jV0jBi and h!jVkjBi via lattice simulations. There are
several steps in the calculation. First, one must relate the
continuum electroweak currents, V0 and Vk, to lattice
operators written in terms of the heavy and light quark
fields in our lattice actions. In the second step the matrix
elements of these lattice current operators must be eval-
uated numerically and the relevant amplitude, i.e. the
matrix element between the ground state B meson and
the ground state pion with appropriate momenta, must be
extracted. This will give us, via Eqs. (7), the form factors
fk and f? as functions of the light quark mass and the pion
momentum. Finally, in step 3 these numerical results must
be extrapolated to the physical pion. In the next three
sections we describe each of these three steps in turn.

III. MATCHING OF HEAVY-LIGHT CURRENTS

Matching of heavy-light currents between continuum
QCD and a lattice effective theory with two-component
nonrelativistic heavy quark fields ! and four-component
light quarks q"x# is discussed in Ref. [41]. Since staggered
light quarks can be written in terms of four-component
‘‘naive’’ AsqTad quark fields the formalism developed
there carries over unchanged to the present calculation.
Introducing also a four-component notation for the heavy
field, Q"x# $ "!; 0#, one finds that through
O""s"QCD=M;"s="aM#;"sa"QCD# the following current
operators in the effective theory are required.

Temporal:

J"0#0 "x# % #q"x#$0Q"x#;

J"1#0 "x# % &1

2M0
#q"x#$0! ' rQ"x#;

J"2#0 "x# % &1

2M0
#q"x#! ' r

 
#0$0Q"x#:

(10)

Spatial:

J"0#k "x# % #q"x#$kQ"x#;

J"1#k "x# % &1

2M0
#q"x#$k! ' rQ"x#;

J"2#k "x# % &1

2M0
#q"x#! ' r

 
#0$kQ"x#;

J"3#k "x# % &1

2M0
#q"x#rkQ"x#;

J"4#k "x# % 1

2M0
#q"x#r

 
kQ"x#;

(11)

where $$ can be either #$ or #5#$, and M0 is the bare
heavy quark mass in the NRQCD action. One sees that

there are two dimension 4 current corrections to the tem-
poral components and four such corrections to the spatial
components. To the order that we are working, one has

hV0i % "1! "s~%
"0#
0 #hJ"0#0 i! "1! "s%

"1#
0 #hJ"1#;sub0 i

! "s%
"2#
0 hJ"2#0 i (12)

and

hVki % "1! "s~%
"0#
k #hJ"0#k i! "1! "s%

"1#
k #hJ"1#;subk i

! "s%
"2#
k hJ"2#k i! "s%

"3#
k hJ"3#k i! "s%

"4#
k hJ"4#k i: (13)

We introduce the combination J"1#;sub$ % J"1#$ & "s&10;$J
"0#
$ .

This subtracts out power law contributions to the matrix
elements of the higher dimension operator J"1#$ through
O""s="aM## [42]. J"1#$ enters the matching already at tree
level and after the subtraction one is left with the physical
O""QCD=M# contribution that is a relativistic correction to
the leading order term. Power law subtractions of the other
dimension 4 current corrections come in as O""2

s="aM##
effects and are only partially included here. The one-loop
coefficients %"j#

$ and &10;$ for $ % 0 are given in Ref. [39].

TABLE II. Matching coefficients for the spatial currents Vk.
Where errors are not indicated explicitly, they are of order one or
less in the last digit. aM0 is the bare heavy quark mass in lattice
units and n a parameter in the NRQCD action. The three selected
values for aM0 correspond to the b quark on the MILC extra-
coarse, coarse and fine lattices, respectively [28].

aM0 n ~%"0#
k %"1#

k %"2#
k %"3#

k %"4#
k &10;k

4.00 2 0.256 0.484(3) 0.340(6) 0.244(3) &0:137"3# 0.041
2.80 2 0.270 0.349(3) 0.169(6) 0.218(4) &0:029"4# 0.055
1.95 2 0.332 0.232(3) 0.121(8) 0.161(4) 0.063(3) 0.073
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FIG. 1 (color online). The ratio hJ"1#0 i=hJ"0#0 i for one ensemble
(u0amf % u0amq % 0:01) versus the pion energy E!. The lower
points are before power law subtraction and the upper points are
after power law subtraction (i.e. hJ"1#;sub0 i=hJ"0#0 i).
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The results for ! ! k have not been published before and
are summarized in Table II. In Ref. [17] only the contri-
butions from the first terms in Eqs. (12) and (13) were
taken into account, i.e. J"0#0 and J"0#k matched through
O""s#.

As mentioned in the Introduction, the effects of all the
dimension 4 current corrections turn out to be very small.
In Fig. 1 we show results for hJ"1#0 i=hJ"0#0 i for one of our
ensembles with and without the power law subtraction.
One sees that, although the unsubtracted hJ"1#0 i=hJ"0#0 i is at
the $6% level, the physical hJ"1#;sub0 i=hJ"0#0 i is % 1%. In
Figs. 2–4 we give further examples of hJ"j#k i=hJ"0#k i for j >
1. These get multiplied by factors of "#"j#

k "s# in Eq. (13).
Using "s & "V"2=a# ! 0:32 [43] and Table III, one finds
#"s factors between 0.01 and 0.11, which leads to contri-

butions from higher order currents that are at most 1%. For
instance, the largest current correction is J"4#k (Fig. 4), but
#"4#
k "s ! '0:029"s ! '0:0009, and the contribution

from this current is negligible. In comparing Figs. 1–4
one sees that the size of the matrix elements grows with
the pion energy E$ for J"2#k and J"4#k and seems much less
sensitive to E$ for the other two currents. This reflects the
fact that J"2#k and J"4#k have derivatives acting on the light
quark field that is part of the final state pion and therefore
knows about its momentum.

IV. SIMULATION RESULTS FOR FORM FACTORS
fk AND f?

The starting point for calculations of the hadronic matrix
elements h$jJ"j#! jBi is the 3-point correlator

C"3#" ~p$; ~pB; t; TB# !
X

~z

X

~y

h!$"0#J"j#! "~z; t#!y
B" ~y;'TB#i

( ei ~pB) ~yei" ~p$' ~pB#) ~z; (14)

where !B and !$ are interpolating operators for the B
meson and the pion, respectively. All results here have the
B meson three momentum, ~pB, set equal to zero. For
simplicity, the pion operator !$ was always placed at
the origin. The B meson was then created at time slice
'TB and the electroweak current, J"k#! , that converts the b
quark into a u quark was inserted at times 0 * t * 'TB.
We have also simulated the time-reversed process, which
then has the electroweak current inserted between +TB *
t * 0 and !B acting on time slice +TB. By looking at both
forward and time-reversed processes and verifying that
they lead to consistent results (within statistical errors),
we were able to increase statistics and at the same time
provide some check on our codes. For most of our simu-
lations we used TB=a ! 16 on the coarse MILC lattices
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FIG. 3 (color online). Same as Fig. 2 for hJ"3#k i=hJ"0#k i.
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FIG. 2 (color online). The ratio hJ"2#k i=hJ"0#k i for two ensembles
versus the pion energy E$. Squares are for u0amf ! 0:01 and
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Form factor shape
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|Vub| =

expt. LQCD

(4.46 ± 0.20 ± 0.20) × 10−3

|Vub| =

Inclusive B → Xu!ν

expt. th.

HFAG avg (DGE) summer 2006

using HFAG avg b.f. with q2 > 16 GeV2 
EPS 2005

(3.55 ± 0.25 ± 0.50) × 10−3
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Figure 1 Results obtained from the fit to experimental partial branching fraction data and theoretical form

factor calculations. The top left plot shows the two form factors with their error bands, the lattice and LCSR

input points (dots: green LCSR, red HPQCD, blue FNAL-MILC) and ‘experimental’ points (black triangles,

upward-pointing for tagged and downward pointing for untagged data) constructed by plotting at the centre

of each bin the constant form factor that would reproduce the partial branching fraction in that bin. The top

right plot shows the differential decay rate together with the experimental inputs. The bottom plots provide

more details of the inputs and fits by showing on the left log[(m2B∗ − q2) f+(q2)/m2B∗ ] as a function of q
2,

and on the right P! f+ as a function of −z. The dashed magenta curve in the bottom right plot is a cubic

polynomial fit in z to the Omnès curve.

correlations we have also performed fits with no correlations in the lattice inputs and assuming

correlated systematic errors linking f+ and f0. We find that the central fitted value for |Vub| shifts
by less than 0.03×10−3, which we will apply as a systematic error for our extracted value:

|Vub| = (3.47±0.29±0.03)×10−3. (6)

This value differs by more than one standard deviation from the |Vub| values extracted from inclu-
sive semileptonic B→ " decays and quoted in [10]. However, using the inclusive determinations

with the highest efficiency and best theoretical control leads to |Vub| = (4.10±0.30exp±0.29th)×
10−3 [22] which is consistent with the value found here.

The result is in very good agreement with values for |Vub| coming from CKM fits using inputs apart

from |Vub| itself. For example the angles-only fit in [23] leads to |Vub|=(3.67±0.24)×10−3, while
the UTfit collaboration’s result for |Vub| determined from all other inputs, including Winter 2007
updated information [24] is |Vub| = (3.44±0.16)×10−3.

The revised HPQCD results are in closer agreement with the FNAL-MILC results and lead to

3

Plot from J. M. Flynn and J. Nieves,  arXiv:0705.3553

Green: LCSR, Red: HPQCD, Blue: FNAL/MILC, Black: experiment*norm,
Curves & bands: fit to Omnès parametrisation (Flynn & Nieves)
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Curve & band: fit to Omnès parametrisation (Flynn & Nieves)
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2,

and on the right P! f+ as a function of −z. The dashed magenta curve in the bottom right plot is a cubic

polynomial fit in z to the Omnès curve.

correlations we have also performed fits with no correlations in the lattice inputs and assuming

correlated systematic errors linking f+ and f0. We find that the central fitted value for |Vub| shifts
by less than 0.03×10−3, which we will apply as a systematic error for our extracted value:

|Vub| = (3.47±0.29±0.03)×10−3. (6)

This value differs by more than one standard deviation from the |Vub| values extracted from inclu-
sive semileptonic B→ " decays and quoted in [10]. However, using the inclusive determinations

with the highest efficiency and best theoretical control leads to |Vub| = (4.10±0.30exp±0.29th)×
10−3 [22] which is consistent with the value found here.

The result is in very good agreement with values for |Vub| coming from CKM fits using inputs apart

from |Vub| itself. For example the angles-only fit in [23] leads to |Vub|=(3.67±0.24)×10−3, while
the UTfit collaboration’s result for |Vub| determined from all other inputs, including Winter 2007
updated information [24] is |Vub| = (3.44±0.16)×10−3.

The revised HPQCD results are in closer agreement with the FNAL-MILC results and lead to
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Error budgets

B and D meson semileptonic decays in three-flavor lattice QCD. P.B. Mackenzie

due to the BK parameterization. The BK-based fitting produces reduced statistical errors in the
high-momentum region, at the cost of introducing possible model dependence.

As a preliminary check for discretization errors, the form factors for decay into relatively
heavy u and d quarks have been compared on the asqtad coarse and fine (a = 0.086 fm) lattices.
Results agreed within statistical errors. Discretization uncertainties were estimated with HQET
power counting, and are our largest current uncertainty. Analyzing form factor data on a larger
range of lattice spacings is likely to give the greatest future improvement in our uncertainties.

3. Preliminary results

Preliminary estimates for the uncertainties in CKM matrix element determinations are shown
in Table 1. Comparing predictions with experiment, we obtain for the CKM matrix elements:

|Vub|×103 = 3.48(29)(38)(47), (3.1)

|Vcd | = 0.239(10)(24)(20), (3.2)

|Vcs| = 0.969(39)(94)(24), (3.3)

where the errors are statistical, systematic, and experimental.
If we instead use the accepted values of the CKM matrix elements as inputs, we obtain for the

D meson decay rates

Γ(D0 → π−l+ν) = (7.7±0.6±1.5±0.8)×10−3ps−1,

Γ(D0 → K−l+ν) = (9.2±0.7±1.8±0.2)×10−2ps−1,

Γ(D0 → π−l+ν)
Γ(D0 → K−l+ν)

= 0.084±0.007±0.017±0.009, (3.4)

where the errors are statistical, systematic, and from CKM matrix element.
After the publication of our results for the q2 dependence of the D→ Klν form factor, a high-

statistics measurement of the shape appeared from the FOCUS Collaboration [10]. As can be seen
in Fig. 7, the results agree well.

Table 1: Systematic errors for CKM matrix elements from the semileptonic decays. Errors for Vub decay
are obtained from the integration with q2

min = 16 GeV2.

decay D→ π(K)lν B→ πlν
CKM matrix element |Vcd(s)| |Vub|
discretization effect 9% 9%
fitting 3- and 2-point functions 3% 3%
chiral extrapolation 3%(2%) 4%
q2 dependence (BK parameterization) 2% 4%
current renormalization 0% 1%
a uncertainty 1% 1%
total systematic 10% 11%
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Erratum: B Meson Semileptonic Form Factors from Unquenched Lattice QCD
[Phys.Rev.D 73, 074502 (2006)]

Emel Gulez,1 Alan Gray,1 Matthew Wingate,2 Christine T. H. Davies,3 G. Peter Lepage,4 and Junko Shigemitsu1

(HPQCD Collaboration)
1Department of Physics, The Ohio State University, Columbus, OH 43210, USA

2Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA
3Department of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

4Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

PACS numbers: 12.38.Gc, 13.20.He

Due to a normalization error in one of our analysis codes many results for the form factor f⊥ were evaluated incorrectly.
In particular, Table IV should be replaced by,

f⊥ [Gev−1/2]
u0amf u0amq pπ = (001) (011) (111)

0.005 0.005 1.543(205) 0.994(62) 0.892(68)
0.007 0.007 1.082(31) 0.857(44) 0.750(83)
0.010 0.005 1.128(37) 0.936(51) 0.715(66)
0.010 0.010 1.235(90) 0.929(52) 0.778(74)
0.010 0.020 1.029(21) 0.864(27) 0.733(40)
0.020 0.020 1.097(140) 0.844(34) 0.688(35)

The corrected form factors f+(q2) and f0(q2) in the chiral limit become (previous Table V):

q2 [GeV2] f+(q2) f0(q2)

17.34 1.101(53) 0.561(26)
18.39 1.273(99) 0.600(21)
19.45 1.458(142) 0.639(23)
20.51 1.627(185) 0.676(41)
21.56 1.816(126) 0.714(56)

The new error budget is given by (previous Table VI):

source of error size of error (%)

statistics + chiral extrapolations 10
two-loop matching 9

discretization 3
relativistic 1

Total 14

and the partially integrated differential decay rates become (previous Table VII):

Fit f+(q2 = 0)
∫

dΓ
dq2 /|Vub|2 [ ps−1]

0 ≤ q2 ≤ q2
max 16GeV 2 ≤ q2 ≤ q2

max

BZ 0.31(5)(4) 9.10(1.82)(2.55) 2.07(41)(39)
BK 0.31(5)(4) 9.30(1.86)(2.60) 2.13(43)(40)
SE 0.30(5)(4) 9.35(1.87)(2.62) 2.02(40)(38)

Estimate of percentage errors in f+(q2) for q2 > 16 GeV2

Improvement seen 
with use of random wall 
sources: K. Wong et al, 

Lattice 2007

Improved action: M. 
Oktay and A. S. Kronfeld, 

2008



Updating the experimental br. frac.

HFAG update
B.F. (q2 > 16 GeV2)  

* 104 Vub * 103 (HPQCD)

EPS 2005 0.40(4)(4) 3.55(25)(50)

LP 2007 0.35(3)(3) 3.33(21)(+58-38)

Tension between inclusive and exclusive determinations is a continuing story, 
demonstrating the challenges of precision physics.

Vub(*103): FNAL 3.6(2)(+6-4), BZ 3.4(1)(+6-4) vs. Inclusive 4.5(2)(2)



Semileptonic decay vs. sin2β

From UTfit website, version of 28 September 2006
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Updating the experimental br. frac.

HFAG update
B.F. (q2 > 16 GeV2)  

* 104 Vub * 103 (HPQCD)

EPS 2005 0.40(4)(4) 3.55(25)(50)

LP 2007 0.35(3)(3) 3.33(21)(+58-38)

Tension between inclusive and exclusive determinations is a continuing story, 
demonstrating the challenges of precision physics.

Vub(*103): FNAL 3.6(2)(+6-4), BZ 3.4(1)(+6-4) vs. Inclusive 4.5(2)(2)



Total branching fraction
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The total branching fraction has not changed much, while the b.f. with 
q2 > 16 GeV2 has moved ~1 sigma.  This highlights the need for 
LQCD to extend its kinematic reach.
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 0.08± 0.07 ±1.46 

ν + l-π → 0 tag: B recoBELLE B
 0.06± 0.26 ±1.49 

ν + l-π → 0Average: B 
 0.06± 0.06 ±1.39 

HFAG
LP 2007

/dof = 3.23/ 9 (CL =  95 %)2χ



Lower q2 on the lattice

Low q2 implies large pion recoil

But pion momentum must be small compared to inverse lattice 
spacing in lattice rest frame

So far lattice and B frames roughly coincide in all calculations

Progress can be made by discretizing in a frame which is boosted 
relative to the B

Extending the range of q2 will remove model dependence of shape 
and reduce statistical uncertainties due to better overlap with 
experimental signal

Preliminary tests: S. Meinel, et al., PoS(Lattice 2007)377, arXiv:0710.3101

p = mbu + k
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Constraint complements

More likely New Physics 
contributions
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Decay constant results

fBs = 260 ± 7|stat ± 26match ± 8hq ± 5disc MeV

fB = 216 ± 9|stat ± 19match ± 6hq ± 4disc MeV

fBs

fB
= 1.20 ± 0.03 ± 0.01Most errors cancel in the ratio

M. W., et al (HPQCD) PRL 92 (2004); A. Gray, et al (HPQCD) PRL 95 (2005)

fB|Vub| = 0.77
(

+12
−10

)

stat

(
+7
−6

)

sys

MeVBelle, hep-ex/0604018

fB|Vub|
|Vub|HPQCD

= 193 ± 46 MeV
fB|Vub|
|Vub|DGS

= 175 ± 37 MeV

fB|Vub| = 0.70
(

+23
−36

)

stat

(
+4
−5

)

sys

MeVBaBar, hep-ex/0611019

B → τν



Full 4-quark matrix elements
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Mixing Parameters from Unquenched Lattice QCD

Emel Dalgic,1 Alan Gray,1 Elvira Gamiz,2 Christine T. H. Davies,2 G. Peter
Lepage,3 Junko Shigemitsu,1 Howard Trottier,4 and Matthew Wingate5

(HPQCD Collaboration)
1Department of Physics, The Ohio State University, Columbus, OH 43210, USA

2Department of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
3Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA
4Physics Department, Simon Fraser University, Vancouver, British Columbia, Canada

5Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA

We determine hadronic matrix elements relevant for the mass and width differences, ∆Ms & ∆Γs,
in the B0

s−B0
s meson system using fully unquenched lattice QCD. We employ the MILC collaboration

gauge configurations that include u, d and s sea quarks using the improved staggered quark (AsqTad)
action and a highly improved gluon action. We implement the valence s quark also with the AsqTad
action and use NonRelativistic QCD for the valence b quark. For the nonperturbative QCD input

into the Standard Model expression for ∆Ms we find fBs

√

B̂Bs = 0.281(21)GeV. Results for four-
fermion operator matrix elements entering Standard Model formulas for ∆Γs are also presented.

PACS numbers: 12.38.Gc, 13.20.Fc, 13.20.He

Recent developments at the Tevatron Run II have dra-
matically improved our knowledge of the mass difference
∆Ms between the “heavy” and “light” mass eigenstates
in the B0

s − B0
s system. The Spring of 2006 witnessed

first the two-sided bound on ∆Ms by the DØ collabo-
ration [1] followed quickly by a precise measurement of
this quantity by the CDF collaboration [2, 3]. Bs mix-
ing occurs in the Standard Model through box diagrams
with two W -boson exchanges. These diagrams can be re-
expressed in terms of an effective Hamiltonian involving
four-fermion operators. In order to compare the Tevatron
measurements with Standard Model predictions, matrix
elements of the four-fermion operators between the B0

s

and B0
s states must be computed. Only then can one

test for consistency between experiment and the Stan-
dard Model and, in the case that precise agreement fails
to be realized, hope to discover hints of new physics.
B0

s − B0
s mixing is a ∆B = 2 process and sensitive to

effects of physics beyond the Standard Model. Hence a
large effort is underway to nail down the Standard Model
predictions as accurately as possible. In the current arti-
cle we present a fully unquenched lattice QCD determi-
nation of the hadronic matrix elements of several crucial
four-fermion operators.

Our simulations use the MILC collaboration Nf = 2+1
unquenched gauge configurations [4]. To date we have
completed calculations on two of the MILC coarse en-
sembles with the light sea quark mass mf satisfying
mf/ms = 0.25 and mf/ms = 0.5 respectively and with
ms being the physical strange quark mass. For the
strange valence quark we use the improved staggered
(AsqTad) [5] quark action. The b-quark is simulated
using the same improved nonrelativistic (NRQCD) ac-
tion employed in recent studies of the Υ system [6] and
for calculations of the B and Bs meson decay constants

[7, 8] and the B → π, lν semileptonic form factors [9].
As in our previous work using the MILC configurations
we use the Υ 2S-1S splitting to fix the lattice spacing,
which in the present case gives a−1 = 1.596(30)GeV
and a−1 = 1.605(29)GeV [6] for the mf/ms = 0.25 and
mf/ms = 0.5 ensembles respectively. The bare b and s
quark masses have likewise been fixed already in pre-
vious simulations of the Υ [6] and kaon [10] systems.
Some theoretical issues remain having to do with the
need to take a fourth root of the AsqTad action deter-
minant while creating the MILC unquenched configura-
tions. This procedure is the focus of intense scrutiny by
the lattice community and there has been considerable
progress in our understanding of the issues involved dur-
ing the past year[11]. To date no obstacles have been
found to invalidate obtaining true QCD in the contin-
uum limit. The MILC configurations and the light and
heavy quark actions employed in this article have also
been tested by comparing the results of accurate calcu-
lations for a large range of hadronic quantities to experi-
mental results [12, 13, 14, 15, 16]. The outcome of these
tests have been very encouraging. Here we apply the
same successful lattice approach to B0

s − B0
s mixing.

We have studied the following four-fermion operators
that enter into calculations of ∆Ms and ∆Γs in the Stan-
dard Model (“i” and “j” are color indices)

OL ≡ [bi si]V −A[bj sj ]V −A, (1)

OS ≡ [bi si]S−P [bj sj]S−P , (2)

O3 ≡ [bi sj ]S−P [bj si]S−P . (3)

In continuum QCD in the MS scheme matrix elements of
these operators are parametrized in terms of the Bs me-
son decay constant fBs and so-called “bag” parameters

2

B(µ) at some scale µ,

〈OL〉MS
(µ) ≡ 〈Bs|OL|Bs〉

MS
(µ) ≡

8

3
f2

Bs
BBs(µ)M2

Bs
. (4)

The factor 8
3 is inserted so that BBs = 1 corresponds

to the “vacuum saturation” approximation. The four-
fermion operators OS and O3 have similarly each their
own bag parameter

〈OS〉MS
(µ) ≡ −

5

3
f2

Bs

BS(µ)

R2
M2

Bs
, (5)

〈O3〉MS
(µ) ≡

1

3
f2

Bs

B̃S(µ)

R2
M2

Bs
, (6)

with

1

R2
≡

M2
Bs

(mb + ms)2
. (7)

The Standard Model expression for the mass difference
∆Ms is given by [17],

∆Ms =
G2

F M2
W

6π2
|V ∗

tsVtb|
2ηB

2 S0(xt)MBsf
2
Bs

B̂Bs , (8)

where xt = m2
t /M

2
W , ηB

2 is a perturbative QCD cor-
rection factor, S0(xt) the Inami-Lim function and Vts

and Vtb the appropriate Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The nonperturbative QCD in-
put into this formula is the combination f2

Bs
B̂Bs with

B̂Bs the renormalization group invariant bag parameter.

At two-loops and using nf = 5 and α
(nf =5)

MS
(µ = mb =

4.8GeV) = 0.212 [16] one finds B̂Bs/BBs = 1.534.
In order to evaluate hadronic matrix elements of the

four-fermion operators via lattice QCD methods, one
must first relate the operators in continuum QCD to op-
erators written in terms of lattice heavy and light quark
fields. We carry out this matching between continuum
QCD and the lattice theory through O(αs), O(ΛQCD

M
)

and O( αs

aM
). Our lattice theory works with NRQCD b-

quarks. At lowest order in 1/M the b fields in (1) - (3)
must be replaced by NRQCD heavy quark or heavy anti-
quark fields. The tree-level relation between NRQCD
and full QCD fields is given by the Foldy-Wouthuysen-
Tani transformation. At O(ΛQCD

M
) this brings in di-

mension seven corrections to the four-fermion operators,
which are of the form,

OLj1 ≡
1

2M

{

[$∇bi · $γ si]V −A[bj sj ]V −A

+ [bi si]V −A[$∇bj · $γ sj ]V −A

}

. (9)

Similar 1/M corrections OSj1 and O3j1 can be intro-
duced for the four-fermion operators OS and O3. To

the order stated above, matching between 〈OX〉MS (X

= L,S or 3) and matrix elements in the lattice theory is
then given by (we suppress the µ dependence),

a3

2MBs

〈OX〉MS =

[1 + αs · ρXX ]〈OX〉 + αs · ρXY 〈OY 〉 +
[

〈OXj1〉 − αs(ζ
XX
10 〈OX〉 + ζXY

10 〈OY 〉)
]

. (10)

〈OX〉 without the superscript MS stands for the matrix
element in the lattice theory. Even at lowest order in
1/M there is mixing between the four-fermion operators.
At O(αs) the mixing occurs between X, Y = L and S for
〈OL〉 and 〈OS〉 and between X, Y = 3 and L for 〈O3〉.
This mixing takes place already in continuum QCD when
one carries out an expansion in 1/M [18, 19]. Due to the
good chiral properties of AsqTad light quarks, which we
use for the valence s quark in our simulations, no addi-
tional operator mixing arises upon going from the contin-

uum to the lattice theory. We have multiplied 〈OX〉MS

in (10) by a factor of a3

2MBs
in order to take into ac-

count the different normalization of states in QCD and
the lattice theory and also to render the lattice matrix
elements 〈OX〉 dimensionless. Details of calculations of
the one-loop coefficients ρXY and ζXY

10 will be presented
in a separate paper. The methodology is similar to that
of [20, 21]. As in those matching calculations for heavy-
light currents, the αs · ζXX

10 and αs · ζXY
10 terms in (10)

are necessary to subtract O( αs

aM
) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
numerical simulations,

C(4f)(t1, t2) =
∑

"x1,"x2

〈0|ΦBs
($x1, t1) [Ô](0) Φ†

Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
lattice. We fit C(4f) together with the Bs meson two-
point correlator, CB(t), to the following forms

C(4f)(t1, t2) =
Nexp−1

∑

j,k=0

Ajk (−1)j·t1 (−1)k·t2 e−E
(j)
B

(t1−1) e−E
(k)
B

(t2−1),

(12)

CB(t) =
∑

"x

〈0|ΦBs($x, t) Φ†
Bs

(0)|0〉

=

Nexp−1
∑

j=0

ξj (−1)j·t e−E
(j)
B

(t−1). (13)

The dimensionless matrix elements entering the RHS of
(10) are then given by,

〈Ô〉 =
A00

ξ0
. (14)
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The dimensionless matrix elements entering the RHS of
(10) are then given by,

〈Ô〉 =
A00

ξ0
. (14)

2

B(µ) at some scale µ,

〈OL〉MS
(µ) ≡ 〈Bs|OL|Bs〉

MS
(µ) ≡

8

3
f2

Bs
BBs(µ)M2

Bs
. (4)

The factor 8
3 is inserted so that BBs = 1 corresponds

to the “vacuum saturation” approximation. The four-
fermion operators OS and O3 have similarly each their
own bag parameter
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, (5)
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Bs
, (6)

with

1

R2
≡

M2
Bs

(mb + ms)2
. (7)

The Standard Model expression for the mass difference
∆Ms is given by [17],

∆Ms =
G2

F M2
W

6π2
|V ∗

tsVtb|
2ηB

2 S0(xt)MBsf
2
Bs

B̂Bs , (8)

where xt = m2
t /M

2
W , ηB

2 is a perturbative QCD cor-
rection factor, S0(xt) the Inami-Lim function and Vts

and Vtb the appropriate Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The nonperturbative QCD in-
put into this formula is the combination f2

Bs
B̂Bs with

B̂Bs the renormalization group invariant bag parameter.

At two-loops and using nf = 5 and α
(nf =5)

MS
(µ = mb =

4.8GeV) = 0.212 [16] one finds B̂Bs/BBs = 1.534.
In order to evaluate hadronic matrix elements of the

four-fermion operators via lattice QCD methods, one
must first relate the operators in continuum QCD to op-
erators written in terms of lattice heavy and light quark
fields. We carry out this matching between continuum
QCD and the lattice theory through O(αs), O(ΛQCD

M
)

and O( αs

aM
). Our lattice theory works with NRQCD b-

quarks. At lowest order in 1/M the b fields in (1) - (3)
must be replaced by NRQCD heavy quark or heavy anti-
quark fields. The tree-level relation between NRQCD
and full QCD fields is given by the Foldy-Wouthuysen-
Tani transformation. At O(ΛQCD

M
) this brings in di-

mension seven corrections to the four-fermion operators,
which are of the form,

OLj1 ≡
1

2M

{

[$∇bi · $γ si]V −A[bj sj ]V −A

+ [bi si]V −A[$∇bj · $γ sj ]V −A

}

. (9)

Similar 1/M corrections OSj1 and O3j1 can be intro-
duced for the four-fermion operators OS and O3. To

the order stated above, matching between 〈OX〉MS (X

= L,S or 3) and matrix elements in the lattice theory is
then given by (we suppress the µ dependence),

a3

2MBs

〈OX〉MS =

[1 + αs · ρXX ]〈OX〉 + αs · ρXY 〈OY 〉 +
[

〈OXj1〉 − αs(ζ
XX
10 〈OX〉 + ζXY

10 〈OY 〉)
]

. (10)

〈OX〉 without the superscript MS stands for the matrix
element in the lattice theory. Even at lowest order in
1/M there is mixing between the four-fermion operators.
At O(αs) the mixing occurs between X, Y = L and S for
〈OL〉 and 〈OS〉 and between X, Y = 3 and L for 〈O3〉.
This mixing takes place already in continuum QCD when
one carries out an expansion in 1/M [18, 19]. Due to the
good chiral properties of AsqTad light quarks, which we
use for the valence s quark in our simulations, no addi-
tional operator mixing arises upon going from the contin-

uum to the lattice theory. We have multiplied 〈OX〉MS

in (10) by a factor of a3

2MBs
in order to take into ac-

count the different normalization of states in QCD and
the lattice theory and also to render the lattice matrix
elements 〈OX〉 dimensionless. Details of calculations of
the one-loop coefficients ρXY and ζXY

10 will be presented
in a separate paper. The methodology is similar to that
of [20, 21]. As in those matching calculations for heavy-
light currents, the αs · ζXX

10 and αs · ζXY
10 terms in (10)

are necessary to subtract O( αs
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) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
numerical simulations,

C(4f)(t1, t2) =
∑

"x1,"x2

〈0|ΦBs
($x1, t1) [Ô](0) Φ†

Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
lattice. We fit C(4f) together with the Bs meson two-
point correlator, CB(t), to the following forms

C(4f)(t1, t2) =
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∑
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Ajk (−1)j·t1 (−1)k·t2 e−E
(j)
B

(t1−1) e−E
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∑
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=
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tional operator mixing arises upon going from the contin-

uum to the lattice theory. We have multiplied 〈OX〉MS

in (10) by a factor of a3

2MBs
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count the different normalization of states in QCD and
the lattice theory and also to render the lattice matrix
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the one-loop coefficients ρXY and ζXY
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of [20, 21]. As in those matching calculations for heavy-
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10 and αs · ζXY
10 terms in (10)

are necessary to subtract O( αs
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) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
numerical simulations,

C(4f)(t1, t2) =
∑

"x1,"x2

〈0|ΦBs
($x1, t1) [Ô](0) Φ†

Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
lattice. We fit C(4f) together with the Bs meson two-
point correlator, CB(t), to the following forms

C(4f)(t1, t2) =
Nexp−1

∑

j,k=0

Ajk (−1)j·t1 (−1)k·t2 e−E
(j)
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(t1−1) e−E
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=
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∑
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(j)
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The dimensionless matrix elements entering the RHS of
(10) are then given by,

〈Ô〉 =
A00

ξ0
. (14)

2

B(µ) at some scale µ,

〈OL〉MS
(µ) ≡ 〈Bs|OL|Bs〉

MS
(µ) ≡
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The factor 8
3 is inserted so that BBs = 1 corresponds

to the “vacuum saturation” approximation. The four-
fermion operators OS and O3 have similarly each their
own bag parameter
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, (6)

with
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. (7)

The Standard Model expression for the mass difference
∆Ms is given by [17],
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F M2
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|V ∗

tsVtb|
2ηB

2 S0(xt)MBsf
2
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B̂Bs , (8)

where xt = m2
t /M

2
W , ηB

2 is a perturbative QCD cor-
rection factor, S0(xt) the Inami-Lim function and Vts

and Vtb the appropriate Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The nonperturbative QCD in-
put into this formula is the combination f2

Bs
B̂Bs with

B̂Bs the renormalization group invariant bag parameter.

At two-loops and using nf = 5 and α
(nf =5)

MS
(µ = mb =

4.8GeV) = 0.212 [16] one finds B̂Bs/BBs = 1.534.
In order to evaluate hadronic matrix elements of the

four-fermion operators via lattice QCD methods, one
must first relate the operators in continuum QCD to op-
erators written in terms of lattice heavy and light quark
fields. We carry out this matching between continuum
QCD and the lattice theory through O(αs), O(ΛQCD

M
)

and O( αs

aM
). Our lattice theory works with NRQCD b-

quarks. At lowest order in 1/M the b fields in (1) - (3)
must be replaced by NRQCD heavy quark or heavy anti-
quark fields. The tree-level relation between NRQCD
and full QCD fields is given by the Foldy-Wouthuysen-
Tani transformation. At O(ΛQCD

M
) this brings in di-

mension seven corrections to the four-fermion operators,
which are of the form,

OLj1 ≡
1

2M

{

[$∇bi · $γ si]V −A[bj sj ]V −A

+ [bi si]V −A[$∇bj · $γ sj ]V −A

}

. (9)

Similar 1/M corrections OSj1 and O3j1 can be intro-
duced for the four-fermion operators OS and O3. To

the order stated above, matching between 〈OX〉MS (X

= L,S or 3) and matrix elements in the lattice theory is
then given by (we suppress the µ dependence),

a3

2MBs

〈OX〉MS =

[1 + αs · ρXX ]〈OX〉 + αs · ρXY 〈OY 〉 +
[

〈OXj1〉 − αs(ζ
XX
10 〈OX〉 + ζXY

10 〈OY 〉)
]

. (10)

〈OX〉 without the superscript MS stands for the matrix
element in the lattice theory. Even at lowest order in
1/M there is mixing between the four-fermion operators.
At O(αs) the mixing occurs between X, Y = L and S for
〈OL〉 and 〈OS〉 and between X, Y = 3 and L for 〈O3〉.
This mixing takes place already in continuum QCD when
one carries out an expansion in 1/M [18, 19]. Due to the
good chiral properties of AsqTad light quarks, which we
use for the valence s quark in our simulations, no addi-
tional operator mixing arises upon going from the contin-

uum to the lattice theory. We have multiplied 〈OX〉MS

in (10) by a factor of a3

2MBs
in order to take into ac-

count the different normalization of states in QCD and
the lattice theory and also to render the lattice matrix
elements 〈OX〉 dimensionless. Details of calculations of
the one-loop coefficients ρXY and ζXY

10 will be presented
in a separate paper. The methodology is similar to that
of [20, 21]. As in those matching calculations for heavy-
light currents, the αs · ζXX

10 and αs · ζXY
10 terms in (10)

are necessary to subtract O( αs

aM
) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
numerical simulations,

C(4f)(t1, t2) =
∑

"x1,"x2

〈0|ΦBs
($x1, t1) [Ô](0) Φ†

Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
lattice. We fit C(4f) together with the Bs meson two-
point correlator, CB(t), to the following forms

C(4f)(t1, t2) =
Nexp−1

∑

j,k=0

Ajk (−1)j·t1 (−1)k·t2 e−E
(j)
B

(t1−1) e−E
(k)
B

(t2−1),

(12)

CB(t) =
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〈0|ΦBs($x, t) Φ†
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(0)|0〉

=

Nexp−1
∑
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ξj (−1)j·t e−E
(j)
B

(t−1). (13)

The dimensionless matrix elements entering the RHS of
(10) are then given by,

〈Ô〉 =
A00

ξ0
. (14)
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B(µ) at some scale µ,
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(µ) ≡ 〈Bs|OL|Bs〉
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(µ) ≡
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The factor 8
3 is inserted so that BBs = 1 corresponds

to the “vacuum saturation” approximation. The four-
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with
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. (7)

The Standard Model expression for the mass difference
∆Ms is given by [17],
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where xt = m2
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2 is a perturbative QCD cor-
rection factor, S0(xt) the Inami-Lim function and Vts

and Vtb the appropriate Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The nonperturbative QCD in-
put into this formula is the combination f2
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B̂Bs with

B̂Bs the renormalization group invariant bag parameter.

At two-loops and using nf = 5 and α
(nf =5)

MS
(µ = mb =

4.8GeV) = 0.212 [16] one finds B̂Bs/BBs = 1.534.
In order to evaluate hadronic matrix elements of the

four-fermion operators via lattice QCD methods, one
must first relate the operators in continuum QCD to op-
erators written in terms of lattice heavy and light quark
fields. We carry out this matching between continuum
QCD and the lattice theory through O(αs), O(ΛQCD
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)

and O( αs
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). Our lattice theory works with NRQCD b-

quarks. At lowest order in 1/M the b fields in (1) - (3)
must be replaced by NRQCD heavy quark or heavy anti-
quark fields. The tree-level relation between NRQCD
and full QCD fields is given by the Foldy-Wouthuysen-
Tani transformation. At O(ΛQCD
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) this brings in di-

mension seven corrections to the four-fermion operators,
which are of the form,

OLj1 ≡
1
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{
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+ [bi si]V −A[$∇bj · $γ sj ]V −A
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. (9)

Similar 1/M corrections OSj1 and O3j1 can be intro-
duced for the four-fermion operators OS and O3. To

the order stated above, matching between 〈OX〉MS (X

= L,S or 3) and matrix elements in the lattice theory is
then given by (we suppress the µ dependence),
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[

〈OXj1〉 − αs(ζ
XX
10 〈OX〉 + ζXY

10 〈OY 〉)
]
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〈OX〉 without the superscript MS stands for the matrix
element in the lattice theory. Even at lowest order in
1/M there is mixing between the four-fermion operators.
At O(αs) the mixing occurs between X, Y = L and S for
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one carries out an expansion in 1/M [18, 19]. Due to the
good chiral properties of AsqTad light quarks, which we
use for the valence s quark in our simulations, no addi-
tional operator mixing arises upon going from the contin-
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in (10) by a factor of a3
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of [20, 21]. As in those matching calculations for heavy-
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10 terms in (10)

are necessary to subtract O( αs

aM
) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
numerical simulations,

C(4f)(t1, t2) =
∑

"x1,"x2

〈0|ΦBs
($x1, t1) [Ô](0) Φ†

Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
lattice. We fit C(4f) together with the Bs meson two-
point correlator, CB(t), to the following forms
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=
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(10) are then given by,
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The factor 8
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and Vtb the appropriate Cabibbo-Kobayashi-Maskawa
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put into this formula is the combination f2
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B̂Bs with

B̂Bs the renormalization group invariant bag parameter.

At two-loops and using nf = 5 and α
(nf =5)
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(µ = mb =

4.8GeV) = 0.212 [16] one finds B̂Bs/BBs = 1.534.
In order to evaluate hadronic matrix elements of the

four-fermion operators via lattice QCD methods, one
must first relate the operators in continuum QCD to op-
erators written in terms of lattice heavy and light quark
fields. We carry out this matching between continuum
QCD and the lattice theory through O(αs), O(ΛQCD
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)

and O( αs
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). Our lattice theory works with NRQCD b-

quarks. At lowest order in 1/M the b fields in (1) - (3)
must be replaced by NRQCD heavy quark or heavy anti-
quark fields. The tree-level relation between NRQCD
and full QCD fields is given by the Foldy-Wouthuysen-
Tani transformation. At O(ΛQCD
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) this brings in di-

mension seven corrections to the four-fermion operators,
which are of the form,

OLj1 ≡
1
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{

[$∇bi · $γ si]V −A[bj sj ]V −A

+ [bi si]V −A[$∇bj · $γ sj ]V −A

}

. (9)

Similar 1/M corrections OSj1 and O3j1 can be intro-
duced for the four-fermion operators OS and O3. To

the order stated above, matching between 〈OX〉MS (X

= L,S or 3) and matrix elements in the lattice theory is
then given by (we suppress the µ dependence),
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〈OX〉 without the superscript MS stands for the matrix
element in the lattice theory. Even at lowest order in
1/M there is mixing between the four-fermion operators.
At O(αs) the mixing occurs between X, Y = L and S for
〈OL〉 and 〈OS〉 and between X, Y = 3 and L for 〈O3〉.
This mixing takes place already in continuum QCD when
one carries out an expansion in 1/M [18, 19]. Due to the
good chiral properties of AsqTad light quarks, which we
use for the valence s quark in our simulations, no addi-
tional operator mixing arises upon going from the contin-

uum to the lattice theory. We have multiplied 〈OX〉MS

in (10) by a factor of a3

2MBs
in order to take into ac-

count the different normalization of states in QCD and
the lattice theory and also to render the lattice matrix
elements 〈OX〉 dimensionless. Details of calculations of
the one-loop coefficients ρXY and ζXY

10 will be presented
in a separate paper. The methodology is similar to that
of [20, 21]. As in those matching calculations for heavy-
light currents, the αs · ζXX

10 and αs · ζXY
10 terms in (10)

are necessary to subtract O( αs

aM
) power law contributions

from the matrix elements 〈OXj1〉.
The hadronic matrix elements 〈Ô〉, Ô=OX and OXj1,

are determined by evaluating three-point correlators via
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∑
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($x2,−t2)|0〉.
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ΦBs is an interpolating operator for the Bs meson and
the four-fermion operator Ô is fixed at the origin of the
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The dimensionless matrix elements entering the RHS of
(10) are then given by,
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Bs
($x2,−t2)|0〉.

(11)
ΦBs is an interpolating operator for the Bs meson and
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TABLE I: Matrix elements in the lattice theory for fixed b and
s valence masses and two values of the light u, d sea quark
mass. Errors are statistical plus fitting errors.

mf/ms = 0.25 mf/ms = 0.50

〈OL〉 0.1036(83) 0.1069(92)

〈OS〉 -0.0680(54) -0.0687(61)

〈O3〉 0.0143(12) 0.0142(13)

〈OLj1〉 -0.0227(18) -0.0229(18)

〈OSj1〉 -0.0130(10) -0.0139(11)

〈O3j1〉 0.0021(3) 0.0026(3)

〈OLj1〉(sub) -0.0138(20) -0.0140(20)

〈OSj1〉(sub) -0.0072(11) -0.0081(12)

〈O3j1〉(sub) 0.0008(3) 0.0012(4)

Results for 〈Ô〉 are summarized in Table I for our two
dynamical ensembles. The errors are combined statistical
and fitting uncertainty errors. More details on our fits
are given in [22]. In Table I we also show results for
〈OXj1〉(sub), the true relativistic corrections (after power
law subtractions) from the dimension seven operators.
By considering 〈OXj1〉(sub)/〈OX〉, one finds the physical
O(ΛQCD/M) contribution to be -13% for 〈OL〉, 11% for
〈OS〉 and 6∼8% for 〈O3〉.

Having determined the matrix elements in the lattice
theory we can plug the numbers into the RHS of (10).

For this matching we use αs = α
(nf =3)
V (2/a) = 0.32 [16].

We set the scale for αs to q∗ = 2/a, which is close to
q∗’s evaluated for heavy-light currents using other heavy
and light quark actions. The matching coefficients ρXY

are generally functions of the MS scale µ through the
combination log( µ

mb
). We present results for µ = mb.

We evaluate the RHS of (10) for 〈OL〉MS, 〈OS〉MS and

〈O3〉MS and combine with the definitions in (4) - (6) to
obtain the main results of this article, namely,

f2
Bs

BBs , f2
Bs

BS

R2
, f2

Bs

B̃S

R2
. (15)

The main errors in these quantities are listed in Table
II. One sees that the two dominant errors are due to
statistics + fitting and higher order matching uncertain-
ties. We have also included a nonnegligible error coming
from the uncertainty in the scale (lattice spacing) for
the MILC ensembles used. At the final stage of extract-
ing results for (15), one has to convert a3f2

Bs
MBs into

physical units. An uncertainty of ∼ 1.8% in the lattice
spacing turns at this point into a ∼ 5% uncertainty for
a−3. In Table II we take the operator matching error to
be 1 × α2

s since matching is done directly for the combi-
nation f2

Bs
BBs (and for the other quantities in (15)). A

naive attempt to deal separately with f2
Bs

and BBs in the
formula for ∆Ms could increase the error estimate since
the perturbative error for just fBs alone (unsquared) is

TABLE II: Error budget for quantities listed in (15).

Statistical + Fitting 9 %

Higher Order Matching 9 %

Discretization 4 %

Relativistic 3 %

Scale (a−3) 5 %

Total 15 %

TABLE III: Results for the square root of quantities listed in
(15). The unhatted bag parameters are given at scale µ = mb.
Errors quoted are combined statistical and systematic errors.
Note that percentage errors here are smaller than those given
in Table II by a factor of two due to the square root.

mf/ms = 0.25 mf/ms = 0.50

fBs

√

B̂Bs [GeV] 0.281(21) 0.289(22)

fBs

√

BBs (mb) [GeV] 0.227(17) 0.233(17)

fBs

√
BS(mb)

R
[GeV] 0.295(22) 0.301(23)

fBs

√
B̃S(mb)

R
[GeV] 0.305(23) 0.310(23)

usually also taken as 1 × α2
s coming from higher order

matching of the heavy-light current. We avoid unneces-
sarily separating out the bag parameters and possibly in-
troducing ambiguities in error estimates by always work-
ing with the relevant combination f2

Bs
BBs . Several years

ago reference [23] also emphasized the virtues of working
with physical combinations and never splitting off the
bag parameters.

Table III gives our final values for the square root of the
quantities listed in (15) together with the scale invariant

combination fBs

√

B̂Bs . One sees that the light sea quark
mass dependence is smaller than the other errors and
any reasonable estimate of chiral extrapolation (in msea)
uncertainties will not affect the total error in Table II. We
do not attempt any chiral extrapolation in the light sea
quark mass and take the mf/ms = 0.25 numbers as our
best determinations of the hadronic matrix elements. In

particular, this gives for the combination fBs

√

B̂Bs , the
crucial nonperturbative ingredient for ∆Ms, the value
quoted in the abstract:

fBs

√

B̂Bs = 0.281(21)GeV. (16)

Using (16) one can now attempt a theory prediction
for ∆Ms based on the Standard Model. We plug in
standard values for the other ingredients in (8) taken

∆ms = 20.3 ± 3.0 ± 0.8 ps−1

∆ms = 17.77 ± 0.10 ± 0.07 ps−1

Theory

Experiment

(LQCD)(Vts)

(stat)(syst)
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O(ΛQCD/M) contribution to be -13% for 〈OL〉, 11% for
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V (2/a) = 0.32 [16].

We set the scale for αs to q∗ = 2/a, which is close to
q∗’s evaluated for heavy-light currents using other heavy
and light quark actions. The matching coefficients ρXY
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mb
). We present results for µ = mb.

We evaluate the RHS of (10) for 〈OL〉MS, 〈OS〉MS and

〈O3〉MS and combine with the definitions in (4) - (6) to
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The main errors in these quantities are listed in Table
II. One sees that the two dominant errors are due to
statistics + fitting and higher order matching uncertain-
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from the uncertainty in the scale (lattice spacing) for
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and !s/!q =
fBs

√
MBs

fBq
√
MBq

as a function of the light valence quark mass in the

denominator. Errors are only statistical in all the quantities plotted.

The statistical errors are not the only ones to be reduced by taking the ratio. Discretization,

relativistic and higher order operator matching will affect fBs
√

BBs and fBd
√

BBd in the same way

and largely will cancel in the ratio. One expects their effects to come in at the level of the cor-

responding error in fBq
√

BBq times a(ms−md) or (ms−md)/"QCD. The results for fBs/ fBd are

nearly unchanged when adding one-loop and 1/M corrections [9] and we expect something similar

here. We have already checked that the difference between tree level and one-loop results is less

than 1%. The scale a−3 uncertainties, that lead to a 5% error in f 2
Bq
BBq , do not affect the ratio # .

The next step in our calculation will be to carry out a chiral extrapolation of these results to the

physical point including the effect of taste-changing errors, to account for the remaining systematic

in the calculation and remove the dominant light discretization errors.

4. Summary and future work

We have calculated the mixing parameters in the B0
s and B0

d systems for two different lattice

spacings and five different light quark masses. The statistical errors have been reduced from our

previous work by a factor of 2-3, so statistics is no longer a dominant source of uncertainty in

the calculation of f 2
Bq
BBq . The largest error is now the uncertainty associated with the perturbative

matching, that is also reduced from 9% to 6.5% by simulating on finer lattices. Further reduction

of this source of error, as well as discretization errors, would also be possible by the use of MILC

superfine lattices.
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Xq ≡ fBq

√
BBqMBq

Φq ≡ fBq

√
MBq
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correlators we are using here but with HISQ [7] (Highly Improved Staggered Quarks) light valence

quarks, with and without random wall sources -see [8] for more details about using random wall

sources in heavy(NRQCD)-light(HISQ) correlators. Further study is needed to find how the use of

this kind of source affect the three-point function parameters relevant for B0 mixing.

3.2 Calculation of the ratio !

Some of the errors affecting the calculation of fBq
√

BBq will cancel almost completely and

others partially in the ratio ! =
fBs
√
BBs

fBd

√
BBd

. In Figure 2 we show values for this ratio multiplied by

the square root of the masses of the Bs0 and Bd0 mesons,

Xs

Xq
=

fBs
√

BBsMBs

fBq
√

BBqMBq

, (3.1)

together with the ratio "s/"q =
fBs
√
MBs

fBq
√
MBq

, without the bag parameters from [9]. The results are

plotted as a function of mq/m
phys.
s , where mq = mvalence

d = msea
d .

The errors for Xs/Xq in Figure (2), which are only statistical, are larger than those for "s/"q

because we have not yet taken into account the correlations between the data in the numerator and

denominator in this ratio. We expect to reduce this error to less than 2% when these correlations are

included (the current plotted values have 2.5% errors). Another error that should be significantly

reduced is that for the fine lattice point since we have not yet included all of our data.

5

Sea quark/discretization effect for Bs

E. Gámiz, et al., PoS(Lattice 2007)349, arXiv:0710.0646

Improved precision
due to smearing

10% scaling violation



Tightening Vtd constraint
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mNRQCD & Form Factors
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Motivation

Increase precision in form factors by extending q2 range

Increase list of observables (lesson from inclusive/exclusive Vub)

More direct focus on standard vs. nonstandard FCNC

Complement future progress on LHC measurements of, e.g.

B → K∗γ B → K∗µ+µ−



Rare B decays

b t s

W

γ

B K∗u,d

Physical point q2 = 0

Progress w/ mNRQCD?

Independent way to get Vts

Also Vtd, but worry about 
weak annihilation contrib.



Full set of form factors

f+, f0

fT

V

A0, A1, A2

B → π"ν
B → K!+!−

B → K∗!+!−
B → K∗γ

〈P |q̄γµb|B〉

〈V |q̄γµb|B〉

〈V |q̄γµγ5b|B〉

〈V |q̄σµνqνb|B〉
〈V |q̄σµνγ5qνb|B〉

〈P |q̄σµνqνb|B〉

Matrix element

B → K!+!−

T1

Form factor Relevant decay(s)

B → K∗!+!−
B → (ρ/ω)#ν

{

{

T2, T3

Change spectator mass:

Bs → φ



Summary

LQCD calculations of B decay/mixing matrix elements contribute 
to the study of physics beyond the Standard Model

Taken approaches which allow us to address all systematic errors 
simultaneously (within 4th root hypothesis)

List of postdictions and predictions having positive impact in flavor 
physics community

Vub from B→π semileptonic decay consistently lower and in better 
agreement with CKM fits (sin 2β) than inclusive B semileptonic decays

Chiral extrapolation of 4-quark operators underway

Further improvement of actions, mNRQCD, automated lattice 
perturbation theory

Many alternatives which will check and probably do better in the 
future.  Need balance between perfection and timeliness.




