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The Feynman path integral

and String Theory have one thing in common:

They are both theories of 
NOTHING!!

Z[J ] =
1

N

∫
Dφ e

i(SE [φ]+
∫

Jφ)



  

• The Feynman path integral in Minkowski 
space is not a well defined mathematical 
expression.

• The integral is not absolutely convergent.
• Consider the two dimensional example:∫

dxdyei(x2+y2)

Changing variables to polar coordinates 
we have

2π

∫

∞

0

drreir
2

= (π/i)eir
2∣

∣

∞

0
= ∞



  

• The actual definition of the path integral is 
via the Euclidean path integral, with 
imaginary time.           

∂tφ∂tφ → −∂τφ∂τφ

iSMink. → −SE

t → −iτ

∂t → i∂τ



  

• Then the Euclidean functional integral 
defined by:

ZE [J ] =
1

N

∫
Dφ e

−SE [φ]+
∫

Jφ

iSMink. = i

∫
dtddx(1/2)∂µφ∂µφ − V (φ)

= i

∫
dtddx(1/2)∂tφ∂tφ − (1/2)∂iφ∂iφ − V (φ)

→ i(−i)

∫
dτddx − (1/2)∂τφ∂τφ − (1/2)∂iφ∂iφ − V (φ)

≡ −SE



  

Complex Actions
• The Euclidean space action is sometimes 

not real.
• It can have parts which are imaginary.
• If the Minkowski action has a term which is 

t-odd, its analytic continuation to Euclidean 
space generally yields an imaginary term

• Fermions contribute to the path integral 
with a factor that is real, but can be 
negative.  This corresponds to an action 
which has and imaginary part iπ



  

• Complex actions come in many forms, but 
they usually contain topological terms.

• Chern-Simons terms
• Wess-Zumino terms
•  epsilon tensor related expressions, for 

example the theta term in four dimensions:

∼ εµνλρF
µν

F
λρ

WZ =
N

24π2

∫

1

2
S5+S4

d
5
xε

µνλστ
tr

[

U
†
∂µUU

†
∂νU · · ·U

†
∂τU

]

CS = λ

∫

R3+∞

d
3
xε

µνλ
tr

[

Aµ∂νAλ +
2

3
AµAνAλ

]



  

• such terms are linear in the time derivative
• hence the i in front of the Minkowski space 

action is not cancelled, indeed:∫
dt∂t →

∫
dτ∂τ

thus the Euclidean action is in general complex 
and the functional integral is of the form:

ZE =
1

N

∫
Dφ e−SE [φ]+iStop.[φ]



  

• This is not an insurmountable problem to 
the proper mathematical definition of the 
functional integral.

• However, the usual perturbative paradigm 
of quantum mechanics, to find the classical 
critical points of the action and quantize the 
small oscillations, fails.

• Imagine that we have written the action 
strictly in terms of real fields, which is 
always possible.

• There are, in general, no solutions to the 
equations of motion.



  

• Classical solutions are the critical points of 
the action.

• The corresponding equations of motion 
have no solution for real fields in general

• Solutions may exist, but they are off the real 
axis in complexified field space.

δSE

δφ
+ i

δStop.

δφ
= 0



  

• a trivial example is given by a simple 
integral

Z(a, b) =

∫
∞

−∞

dx e−(ax
2+ibx) a > 0

δ

δx
(ax

2 + ibx) = 0 ⇒ 2ax + ib = 0

xcrit. =
−ib

2a



  



  

• We consider two models:
• Georgi-Glashow model with Chern-Simons 

term in 2+1 dimensions.
• Abelian-Higgs model with Chern-Simons 

term in 0+1 dimensions



  

Georgi-Glashow Model with 
Chern-Simons term

Aµ = (i/2)Aa

µτa
h = (i/2)haτa

Dµh = ∂µh + [Aµ, h]

with the definitions

SE =

∫

R3+∞

−1

2g2
tr(FµνFµν) +

1

2
DµhaDµha +

λ

4
(haha

− v2)2

+
−iκ

g2
εµνλtr

[

Aµ∂νAλ +
2

3
AµAνAλ

]



  

• In the Higgs phase (no CS), the symmetry is 
spontaneously broken to U(1)

• the usual Higgs mechanism gives mass to 
the                .  The                     remains 
massless.

• the vacuum solution is: 
• the quantized perturbative oscillations about 

this critical point gives rise to a U(1) gauge 
theory with two charged massive vector 
bosons and one neutral scalar.

W
±
µ Z

0

µ → Aµ

ha = v(0, 0, 1) Aa

µ = 0

This description is completely mistaken!



  

• Contributions from the quantum fluctuations 
about non-trivial critical points completely 
reorganizes the theory, the U(1) is confined.

• Non-trivial critical points of the Euclidean 
action, instantons, are actually ‘tHooft-
Polyakov monopoles.

ha = x̂ah(r)

Aa

µ =
1

r
εaµν x̂ν(1 − φ(r)) + · · ·



  

• For the monopole:

F
a
µν

∣

∣

r→∞
→

1

r2
εµνbx̂

a
x̂

b

h
a
→ vx̂

a

Fµν =
ha

v
F

a
µν

∣

∣

∣

∣

r→∞

→

1

r2
εµνbx̂

b

Bµ = 1/2εµνσFνσ →

x̂µ

r2



  



  

• Taking into account the “Coulomb” 
interaction between the monopoles, 
Polyakov showed that the electric field is 
linearly confined.

• The photon becomes massive, there are no 
massless excitations left in the theory.

• What happens with the addition of the 
Chern-Simons term to the action?

•  The biggest change is that all vector gauge 
bosons become massive.

• Moreover the magnetic monopole solution 
no longer exists.



  

• The U(1) gauge field being massive does 
not allow for a long range magnetic field.  

• It is not obvious what happens to the critical 
points of the Euclidean action.  

• The Chern-Simons term is complex, hence 
the solutions become complex monopoles, 
defined off the real axis of field 
configurations.  

• Hosotani, Saririan and Tekin found such 
complex monopoles: hep-th/9808045



  

• Affleck, Harvey, Palla and Semenoff first 
considered the problem of what happens to 
Polyakov’s result when a Chern-Simons 
term is added.

• They did not look for complex critical 
points, their analysis was:

defines a perfectly good measure on the 
space of (real) field configurations, then

1

N

∫

D(φ, A)
(

e−SE [φ] + gauge fixing
)

e
iSCS is a bounded function that can simply

be integrated against the measure.



  

• Their point was that the CS term is not 
invariant under certain gauge-like 
transformations, and integrating over these 
transformations gives rise to destructive 
interference in the presence of a monopole, 
annulling its contribution.  For a gauge 
transformation:

δSCS =
iκ

g2

∫

d3xεµνλtr

[

−1

3
(∂µU)U†(∂νU)U†(∂λU)U†

]

+
iκ

g2

∫

r→∞

dσµεµνλtr
[

Aν(∂λU)U†
]



  

• The first term is the standard variation of the CS term, 
which is a topological invariant, and invariance of the 
exponential of the action imposes the quantization of the 
coefficient of the CS term:

• The second term is a boundary term, which is usually zero, 
hence negligible.

• In the presence of a monopole, however, this term is not 
zero.  

• The gauge group corresponds to transformations that are 
identity at infinity, and these are fixed by the gauge fixing 
condition.  Thus those that do not satisfy this are field 
configurations should be integrated over.  Without the CS 
term, the action is just invariant under these 
transformations, and they correspond to zero modes of the 
monopole configuration.  

• In the presence of a monopole integration over this degree 
of freedom simply makes the contribution vanish.

κ

g2
=

n

4π



  

• For a transformation that is in the unbroken 
U(1) direction
U = e

iΛ(r)r̂·!σ/2 Λ(0) = 0 Λ(∞) = Λ

δSCS = i
κ

g2
4πΛ = inΛ

δSCS = i2πnΛ = 2π

e
iSCS Λ != 2π

the total change in the CS term is: 

for

and                 is invariant.  But if

the transformation is a zero mode of the 
monopole and not a gauge transformation.  
Consequently it must be integrated over.



  

• Gauge fixing constrains the form of            .
• The normal part of the Euclidean action is 

simply invariant.
• Integrating over the asymptotic value         

yields 
• Thus the CS term projects the integration to 

the zero monopole sector.
• The result seems to be correct, and 

consistent with other work which indicates 
that the monopoles are bound in pairs with 
anti-monopoles, with linear confinement.

Λ(r)

Λ

2πδn,o



  

• This implies that a dilute gas of monopoles and anti-
monopoles is not possible.

• The mechanism of confinement of Polyakov is lost.
• The classical behaviour of charged particles should be 

recovered.
• The CS term gives the photon a mass, the Coulomb 

interaction is short ranged and even the classical 
logarithmic confinement is lost.

• The deconfined charged particles obtain flux and 
fractional statistics, becoming anyons.

• Thus the effect of a complex term in the action can 
radically affect the spectrum of the theory.  



  

• However using critical points of only a part of the 
action is not satisfactory, it is possible that the 
results are deceiving.

• The CS term is not gauge invariant, the critical 
points of the action are affected by gauge fixing 
and do not transform into each other under change 
of gauge.  

• Hosotani, Saririan and Tekin looked at this in some 
detail.  In the Lorentz gauge the transformation 

U = e
iΛ(r)r̂·!σ/2

requires the profile function satisfies the Gribov equation:

Λ′′(r) + (2/r)Λ′(r) − (2/r2)φ sin(Λ) = 0



  

• The configuration transformed with                                                                                     
is an exact Gribov copy.   Intermediate transformations are 
not local gauge transformations.

• Hosotani et al find that solutions with arbitrary                
are not allowed.

• The range of allowed                   is numerically found to be 
between -3.98 to +3.98.  (For a BPS monopole.)

Λ(0) = 0 Λ(∞) = 2π

Λ(∞)

Λ(∞)

Λ′′(r) + (2/r)Λ′(r) − (2/r2)φ sin(Λ) = 0



  



  

• This would imply the Affleck et al argument is not correct.
• We have reproduced the numerical work of Hosotani et al, 

the system is equivalent to a simple damped pendulum.

t = ln rΛ̈(t) + Λ̇(t) − φ sin(Λ(t)) = 0



  



  

• Hosotani et al also find solutions, that is, the 
critical points of the full action.  These are 
complex monopole solutions.

• Only numerical solutions can be found.
• There is no Gribov ambiguity.  The gauge is fixed 

and then solutions are found in complex field 
space.  It is unclear how the notion of the gauge 
invariance should be continued analytically.

• Now the functional integration contour needs to be 
deformed to pass through the complex critical 
points, to see if it reproduces the Affleck et al 
result.

• It is unclear how this should be done, so we look 
at a simpler model.



  

Abelian Higgs model with Chern-
Simons term in 0+1 dimensions

• The Lagrangian of this model ( N scalars):

τ : 0 → β

We take compact Euclidean time

which is the same as finite temperature.
We take the gauge choice:

∂τA = 0 ⇒ A = const.

L =
N

∑

i=1

(

|(∂τ + iA)φi|
2 + m2 |φi|

2
)

+ iλA



  

• With the topologically non-trivial gauge 
transformation

U = ei2πnτ/β
⇒ A → A − 2πnτ/β

this implies that we can restrict 
The CS term is not invariant:

A : 0 → 2π/β

iλ

∫ β

0

dτA → iλ

∫ β

0

dτ(A − ∂τΛ)

= iλ(βA − 2nπ)

hence we must have λ2nπ = 2Mπ ∀ n

⇒ λ ∈ Z



  

• The equations of motion are:

≈

iγ + α

δ

−D2

τφi + m2φi = 0
∫ β

0

dτ
(

i((∂τ
#φ)∗ · #φ −

#φ∗
· ∂τ

#φ) + 2A#φ∗
·
#φ
)

− iNβ = 0

⇒ A =
iNβ −

∫ β

0
dτ i((∂τ

$φ)∗ · $φ − $φ∗
· ∂τ

$φ)

2
∫ β

0
dτ $φ∗ · $φ



  

• The scalar field equation has no solution in 
the space of periodic field configurations for 
non-trivial holonomy:

• However the functional integral can be 
exactly evaluated.  Each scalar field gives 

A != 2nπ/β

φ(τ) =
∞∑

n=−∞

φnei2πnτ/β

∫ β

0

|Dτφ|2 = β
∞∑

n=−∞

φ∗

nφn((2πn/β) + A)2

Z(β, m, A) =

(

∫ ∞

−∞

∏

n

d{φ∗
nφn}e

−β
∑

n
|φn|2(( 2πn

β
)+A)2+m2)+iβA

)N



  

The infinite product can be exactly done, 
adapting methods of Jackiw and Dunne, Lee 
and Lu. We find:

Z(β, m, A)

Z(β, m, 0)
=

(

∞
∏

n=−∞

( 2πn
β

)2 + m2

( 2πn
β

+ A)2 + m2

)N

eiNβA

Z(β, m, A) =
∞
∏

n=−∞

(

1

β(( 2πn
β

+ A)2 + m2)

)N

eiNβA

Z(β, m, A)

Z(β, m, 0)
=

(

cosh βm − 1

cosh βm − cos βA

)N

eiNβA



  

• The “functional” integral that we are left 
with is:

There is a slight analogy with the integration 
over               in Affleck et al:Λ(∞)

∫ 2π

0
dΛ(∞)e−SE+iSCS e

inΛ(∞)
→ δn,0

I(N, β, m) =

∫ 2π/β

0

dA

(

cosh βm − 1

cosh βm − cos βA

)N

eiNβA



  

• Our integral can actually be done exactly.
• Also we can use the saddle point 

approximation through the complex critical 
point and compare with the approximation 
of just using the critical point of the real 
part of the Euclidean action.

• To perform the integral exactly we use the 
complex variable

z = e
iβA



  

cos βA = (eiβA + e−iβA)/2 = (z + 1/z)/2

dA = dz/iβz

and the integration contour is the unit circle 
in the complex z plane.

the poles are at 

z± = cosh βm ±
√

(cosh βm)2 − 1 = e±βm

and Cauchy’s theorem gives the result

I(N, β, m) =

∮

dz

iβ

(

2(cosh βm − 1)

2z cosh βm − z2 − 1

)N

z2N−1



  

The exact result is:

However, looking at it as a path integral 
over the gauge field:

I(N, β, m) =

∫ 2π/β

0
dA e−f(A)eiNβA

with

I(N, β, m) =
2π(cosh βm − 1)N2N

β(−1)N (N − 1)!

N−1
∑

k=0

(

N − 1

k

) (

dkz2N−1

dzk

) (

dN−1−k

dzN−1−k

1

(z − eβm)N

)
∣

∣

∣

∣

e−βm

.

βm → ∞

I(N, β, m) ≈
e−Nβm22N

β

√

π

N
.

In the limit                we obtain:

f(A) − iNβA = −N

(

ln
cosh βm − 1

cosh βm − cos βA
+ iβA

)



  

• The critical points are given by

with solutions

d

dA
(f(A) − iNβA) = 0 ⇒

β sinβA

cosh βm − cos βA
− iβ = 0

ie.
cos βA − i sinβA = cosh βm

βA∗ = i ln(coshβm) + 2πk



  



  

• Integrating along the blue contour, the two 
vertical sections exactly cancel.

• The integral (in saddle point approximation) 
from one side of the first critical point plus 
the contribution from the other side of the 
next periodic critical point just corresponds 
to integrating through just one critical point.  

• The result is of the form:

I(N, β, m) = e−f(A∗)+iNβA∗

√

2π

f ′′(A∗)



  

• with

f ′′(A∗) = 2Nβ2 cosh2 βm/ sinh2 βm

e−(fA∗)−iβNA∗) =
2N (cosh βm − 1)N

sinh2N βm

which gives in the limit 

e
−(fA∗)−iβNA∗)

≈ 2
2N

e
−Nβm

f ′′(A∗) ≈ 2Nβ2

yielding exactly as before

I(N, β, m) ≈
e−Nβm22N

β

√

π

N
.

βm → ∞



  

• On the other hand the critical points of the 
real part of the action is just 

A
∗

= 2πk

e
−f(A∗)

= 1

f ′′(A∗) = β2/(cosh βm − 1)

which gives

I(N, β, m) =

∫ 2π/β

0
dAe−(N/2)(β2/(cosh βm−1))A2

eiNβA



  

the Gaussian integral gives the measure against 
which the oscillatory phase is integrated:

α = β2/(cosh βm − 1)

I(N, β, m) ≈

∫
∞

−∞

dxe−(Nα/2)(x2+2iβx/α−β2/α2)e−Nβ2/2α

I(N, β, m) =

√

2π

Nα
e−Nβ2/2α

I(N, β, m) =

√

2π(cosh βm − 1)

Nβ2
e−N(cosh βm−1)/2



  

Conclusions and problems
• It seems that the saddle point approximation with 

just the real part of the action does not give the 
right answer.

• Deforming the contour through the critical points 
of the full action and the corresponding saddle 
point approximation is the right procedure.

• The question of what is the appropriate gauge 
invariance for complexified field configurations 
needs to be thought out.

• Applications to theories with fermions and CP 
violations in 4 dimensions needs to be worked out.


