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The Josephson Effect

Two samples of a superconductor are brought into close together 
with a thin layer of insulator between them.

This allows for an overlap of the wave functions of the Cooper pairs 
in each sample, and they are able to interact with one another.

This interaction allows for tunneling between the the 
superconductors, across the junction. 

superconductor superconductorinsulator

current



Feynman description of the 
Josephson effect

The conducting electron fluid is in one macroscopic quantum state for 
each superconductor.

Only one complex number, it’s phase and amplitude effectively and 
adequately describes the behavior of each superconductor

The problem reduces to the interaction of these effective degrees of 
freedom.

The Hamiltonian is given by:

With the corresponding Schrödinger equation:

ih̄∂tψ(t) = ELψ(t) + Kχ(t)

ih̄∂tχ(t) = ERχ(t) + Kψ(t)

H =

(

EL K

K ER

)



For the DC Josephson effect,                           and the system has the 
solution:      

The conserved charge is given by:

However the charge on the left and right are given by

EL = ER ≡ E

(

ψ(t)
χ(t)

)

= e−iEt/h̄

(

cos(−Kt/h̄) + i sin(−Kt/h̄)

(

0 1
1 0

)) (

ψ0

χ0

)

Q = ψ∗(t)ψ(t) + χ∗(t)χ(t) Q̇ = 0

Qψ = ψ∗(t)ψ(t) Qχ = χ∗(t)χ(t)

Q̇ψ = −Q̇χ



Thus the charge would slosh back and forth between the two sides.  
Replacing 

ψ0 =

√

ρeiθψ χ0 =

√

ρe
iθχ

Qψ = ρ (1 − sin((2K/h̄)t) sin(θψ − θχ))

Q̇ψ = ρ (2K/h̄ sin(θχ − θψ))

gives

The result is usually quoted only for the initial current

which is the familiar result for the Josephson current.

For the AC Josephson effect, we replace 

EL → E + V ER → E − V

and for                            one easily findsK << V

Q̇ψ = ρ
2K

h̄
sin(2V t/h̄ + (θχ − θψ))

Qψ = ρ

(

1 −

K

V
cos(2V t/h̄ + (θχ − θψ))

)

The Josephson acceleration equation follows straightforwardly from 
the equations of motion for the time dependent phases:

ψ(t) =
√

ρψ(t)eiθψ(t) χ =
√

ρχ(t)eiθχ(t)

θ̇χ(t) − θ̇ψ(t) = 2V/h̄



How can we obtain this from an effective Lagrangian point of view?

L = ψ†ih̄ψ̇+χ†ih̄χ̇−(ψ†χ†)

(

E + V 0
0 E − V

) (

ψ
χ

)

−(ψ†χ†)

(

0 K
K 0

) (

ψ
χ

)

Each field is not a wave function, but a quantum field.  In the absence of the 
coupling term,            , the symmetry of this model corresponds to independent 
phase transformations of the two fields                    and                     .  

K = 0

ψ → eiζψ

The fact that physically the amplitudes, on either side, of the effective fields are 
non-zero and vary very little, means that the         symmetry is spontaneously 
broken.  The photon, which we have not included in our analysis, will then absorb 
the attendant Goldstone boson and become massive giving the Meissner effect. 

χ → e
iη

χ

U(1)

This does not happen independently on either side of the junction.  There really are 
not two independent photons. The true symmetry of the theory is not                      
but the diagonal subgroup            , thus only one photon arises and one Goldstone 
boson.   

U(1) × U(1)

UD(1)

However the coupling explicitly breaks the symmetry from                     to              .  U(1) × U(1) UD(1)

Explicit but soft breaking of otherwise spontaneously broken symmetries give rise to  
light almost massless particles, called pseudo-Goldstone bosons.  The coupling 
constant        is the soft breaking parameter.  A phase transformation that is equal 
but opposite on either side of the junction corresponds to excitations of the pseudo-
Goldstone bosons.  The frequency associated with these oscillations is 
correspondingly small                . 

K

ω =
K

h̄



Can be formulated as a junction of two effective 
systems with a weak interaction between them.

Each system should have the same symmetry group.

The symmetry should be spontaneously broken on 
each side.  This would give a doubling of Goldstone 
modes, which is an artifact of the description.

The coupling of the systems together should preserve 
only the diagonal symmetry, hence giving rise to 
pseudo-Goldstone modes for the explicitly broken 
symmetries.

Excitations of these modes will correspond to the 
(non-abelian) generalization of the Josephson effect.

The non-abelian Josephson effect



              model
We consider a model with a doublet on one 
side and a triplet on the other.

SO(3)

L = Lψ + L"φ + LI

Lψ = ψ̇†ψ̇ − λ(ψ†ψ − a2)2

L"φ =
1

2
#̇φ · #̇φ − γ(#φ · #φ − v2)2

LI = −Kψ†#σψ · #φ



The symmetry for the uncoupled systems is:

This spontaneously breaks to:

The coupling explicitly breaks the symmetry 
to:

Thus one expects only three Goldstone boson 
which are eaten and two pseudo-Goldstone 
mode giving a Josephson effect

U(2) × SO(3)

U(1) × SO(2)

U(1) × SOD(3)



We must find the spectrum of small 
oscillations around the minimum of the 
potential.

We take                    which implies 

This yields the equations:

2λ(ψ†ψ − a2)ψ + K#σψ ·
#φ = 0

4γ(#φ ·
#φ − v2)#φ + Kψ†#σψ = 0

ψ = ψR

(

0

1

)

φ = φ3(0, 0, 1)

2λ(ψ2

R − a2)ψR − KψRφ3 = 0

4γ(φ2

3 − v2)φ3 − Kψ2

R = 0.



The solution is possible in terms of a cubic 
equation, however a perturbative solution 
suffices, to first order in the coupling:

This minimum is inserted into the matrix of 
second derivatives giving a             :

ψR = a +
a2

8γv2
K

φ3 = v +
v

4λa
K.

∂2V

∂fi∂fj

=





















4Kv 0 0 0 2Ka 0 0

0 4Kv 0 0 0 −2Ka 0

0 0 8λa2 + 4vK 0 0 0 −2Ka
0 0 0 0 0 0 0

2Ka 0 0 0 Ka2/v 0 0

0 −2Ka 0 0 0 Ka2/v 0

0 0 −2Ka 0 0 0 8γv2 + 3Ka2/v





















7 × 7



Diagonalizing gives the spectrum of frequencies 
and the corresponding eigenvectors:

ω = 0;ψ2I ∼ v1

ω = 0; (ψ1R, φ1) = (a,−2v) ∼ v2

ω = (4v + a2/v)K; (ψ1R, φ1) = (2v, a) ∼ v3

ω = 0; (ψ1I , φ2) = (a, 2v) ∼ v4

ω = (4v + a2/v)K; (ψ1I , φ2) = (−2v, a) ∼ v5

ω = 8λa2; (ψ2R, φ3) = (1, 0) ∼ v6

ω = 8γv2; (ψ2R, φ3) = (0, 1) ∼ v7



The last two modes decouple in the limit that

The uncoupled system is expected to have       
Goldstone bosons.

The coupling explicitly breaks two of the 
symmetries, hence we expect three Goldstone 
bosons and two pseudo-Goldstone bosons, 
exactly as we have found.

 The two symmetries that leave the minimum 
invariant are not spontaneously  broken and do 
not give rise to light or massless excitations.

λ, γ → ∞

5



The complex of high        superconductivity 
and anti-ferromagnetism in doped CuO 
systems has been conjectured to be described 
by an          invariant effective theory.

We study the question of non-abelian 
Josephson junctions in these materials.

             modelSO(5)

superconductor superconductoranti-ferromagnet

current

SO(5)

Tc



The effective Lagrangian is given by in terms of a five 
component scalar field          where the first two 
components correspond to the superconducting order 
parameter                            while the latter three 
correspond to the anti-ferromagnetic order parameter 
                              . The effective Lagrangian for the             
invariant critical theory is given by:

The symmetry is explicitly broken by the doping 
which pushes the minimum to be in the 
superconducting phase or the anti-ferromagnetic 
phase.  The residual symmetry is 

!ϕ

!φ ≡ (ϕ1, ϕ2)

!n ≡ (ϕ1, ϕ2, ϕ3)

LSO(5)(!ϕ) =
1

2
!̇ϕ · !̇ϕ − λ(!ϕ · !ϕ − a2)2

SO(5)

Ldoping(g, !ϕ) = −g(!φ · !φ − !n · !n)

SO(3) × SO(2)



For positive coupling the system is anti-
ferromagnetic, for negative it is superconducting.

For the critical theory
which has 4 spontaneously broken directions and hence 
4 Goldstone bosons.  

With the doping, for the superconductivity, 3 of 
these generators are explicitly broken, leaving one 
Goldstone boson and three pseudo-Goldstone bosons.

For the anti-ferromagnet, two generators are 
spontaneously broken and give rise to Goldstone bosons 
while two are explicitly broken giving two pseudo-
Goldstone modes.

These modes have nothing to do with the Josephson 
effect.

SO(5) → SO(4)



For a junction we couple two such systems together, 
with the simplest interaction that preserves only the 
diagonal                    symmetry.  We take

We are interested in finding new forms of Josephson 
effects, hence we are not interested to describe 
tunneling within the superconducting subsystem or 
even the anti-ferromagnetic subsystem but between the 
two systems.  Hence we replace each order parameter 
with its amplitude:

The reduced effective Lagrangian is then given by:

SO(3) × SO(2)

LJosephson = LSO(5)(!ϕ1)+Ldoping(g1, !ϕ1)+LSO(5)(!ϕ2)+Ldoping(g2, !ϕ2)+K!ϕ1·!ϕ2

|!φ1| = φ1 |!φ2| = φ2 |!n2| = n2|!n1| = n1

LJosephson, reduced =
1

2
(φ̇1

2
+ ṅ1

2) − λ(φ1
2 + n2

1 − a2)2 +
1

2
(φ̇2

2
+ ṅ2

2) − λ(φ2
2 + n2

2 − a2)2

− g1(φ
2
1 − n2

1) + g2(φ
2
2 − n2

2)

+ K(φ1φ2 + n1n2)



The equations for the minimum are:

This system of equations, although quite non-
linear can be exactly and analytically solved.  
However we are always interested in small 
coupling we will freely use perturbation theory.  
These equations are equivalently written as:

with

(4λ(φ1
2 + n2

1 − a2) + 2g1)φ1 − Kφ2 = 0

(4λ(φ2
2 + n2

2 − a2) − 2g2)φ2 − Kφ1 = 0

(4λ(φ1
2 + n2

1 − a2) − 2g1)n1 − Kn2 = 0

(4λ(φ2
2 + n2

2 − a2) + 2g2)n2 − Kn1 = 0

(

A + 2g1 −K
−K B − 2g2

) (

φ1

φ2

)

= 0

(

A − 2g1 −K
−K B + 2g2

) (

n1

n2

)

= 0

A = 4λ(φ1
2 + n2

1 − a2) B = 4λ(φ2
2 + n2

2 − a2)



(A + 2g1)(B − 2g2) − K2 = 0

(A − 2g1)(B + 2g2) − K2 = 0 (1)

For there to be a non-trivial solution, the 
determinant must vanish for each pair

With solution:

This solution is independent of           especially 
in the limit that it is infinite, which decouples 
the radial modes.  Then the solution is:

(

A
B

)

= ±
√

4 + (K2/g1g2)

(

g1

g2

)

λ

φ1 =
K

A + 2g1

φ2

n1 =
K

A − 2g1

n2



A = 4λ

(

(

K
A+2g1

φ2

)2

+
(

K
A−2g1

n2

)2

− a2

)

=
√

4 + (K2/g1g2)g1

B = 4λ(φ2
2 + n2

2 − a2) =
√

4 + (K2/g1g2)g2

With     and     determined by self consistency:

This system is  linear in          and         which is 
easily solved and gives (perturbative):

φ2 n2

n
2

2φ2

2

φ1 =
K

A + 2g1

√

a2K2g1

8Ag2
2

(

(
K

A − 2g1

)2 − 1

)

n1 =
K

A − 2g1

√

a2K2g1

8Ag2
2

(

1 − (
K

A + 2g1

)2
)

φ2 =

√

a2K2g1

8Ag2
2

(

(
K

A − 2g1

)2 − 1

)

n2 =

√

a2K2g1

8Ag2
2

(

1 − (
K

A + 2g1

)2
)

.



It is easy to see that the minimum is largely in 
the anti-ferromagnetic direction for one side 
and largely superconducting for the other 
side.  However the coupling does add a little 
mixture to the minima.

This will allow for a weak regular Josephson 
effect between the two sides if we allow for a 
direction in the superconducting order 
parameter.  

We are interested in tunneling between the 
superconductor and the anti-ferromagnet.  
This requires calculating the frequency 
spectrum for small oscillations.



V ′′
=









A + 2g1 + 8λφ2
1 8λφ1n1 −K 0

8λφ1n1 A − 2g1 + 8λn2
1 0 −K

−K 0 B − 2g2 + 8λφ2
2 8λφ2n2

0 −K 8λφ2n2 B + 2g2 + 8λn2
2









The matrix of second derivatives evaluated at the 
minimum is:

This can be exactly diagonalized, but that is not 
very illuminating.  A better approach is 
perturbation.  There are two very heavy modes and 
two light modes.  If the coupling and symmetry 
breaking is zero, the light modes are massless and 
degenerate.  We can find the light frequencies in 
degenerate perturbation theory.

V
′′

= V
′′

0 + V
′′

1



with:

Degenerate perturbation theory requires 
diagonalizing the perturbing matrix in the 
subspace of the degenerate modes.

V ′′

0 =









8λφ2
1 8λφ1n1 0 0

8λφ1n1 8λn2
1 0 0

0 8λφ2
2 8λφ2n2

0 8λφ2n2 8λn2
2









V ′′

1 =









A + 2g1 0 −K 0

0 A − 2g1 0 −K
−K 0 B − 2g2 0

0 −K 0 B + 2g2









v1 = (1/a)









n1

−φ1

0
0









v2 = (1/a)









0
0
n2

−φ2











V ′′

∆ =

(

vT
1 V ′′

1 v1 vT
1 V ′′

1 v2

vT
2 V ′′

1 v1 vT
2 V ′′

1 v2

)

= (1/a2)

(

n2
1(A + 2g1) + φ2

1(A − 2g1) −K(n1n2 + φ1φ2)
−K(n1n2 + φ1φ2) n2

2(B − 2g2) + φ2
2(B + 2g2)

)

This gives the 2 by 2 matrix:

The eigenfrequencies are:

It would be nice if this current were be observed.

ω2
= α ±

√

β2 + γ2

α = (1/2a2)
(

n2

1(A + 2g1) + φ2

1(A − 2g1) + n2

2(B − 2g2) + φ2

2(B + 2g2)
)

β = (1/2a2)
(

n2

1(A + 2g1) + φ2

1(A − 2g1) − n2

2(B − 2g2) − φ2

2(B + 2g2)
)

γ = −(1/2a2)K(n1n2 + φ1φ2)



The Josephson Sandwich

Consider the situation in the picture:

superconductor superconductoranti-ferromagnet

current

V = λ(|"φ1|
2 − a2)2 + λ(|"φ2|

2 − a2)2+ λ(|"φ3|
2 − a2)2

−g1(ϕ
2

1 + ψ2

1 − η2

1) + g2(ϕ
2

2 + ψ2

2 − η2

2)

−g1(ϕ
2

3 + ψ2

3 − η2

3) − K$φ2 · ($φ1 + $φ3)

and the potential

with: !φi = (ϕi, ψi, ηi)







Aξ −K 0

−K Bξ −K
0 −K Aξ









ξ1

ξ2

ξ3



 = 0,

ξ = ϕ ξ = η

Aϕ = α − 2g1

Bϕ = β + 2g2

Aη = α + 2g1

Bη = β − 2g2

α = 4λ(|#φ1|
2 − a2) β = 4λ(|#φ2|

2 − a2)

We get the system:

Where:

and



The systems are exactly solvable, however a perturbative
approach is sufficient.

The determinant of each system must vanish yielding:
Aϕ(AϕBϕ − 2K

2) = 0

Aη(AηBη − 2K
2) = 0

α =

√

2g1

g2

(K2 + 2g1g2), β = (g2/g1)α

With solution:



This can be used, in conjunction with the definitions of α and β to find the values
of |#φ1|2 and |#φ3|2 in terms of the coupling constants. We use the diagonal SO(3)
symmetry to rotate the solution into the direction with ψi = 0 without loss of
generality. Then the spectrum of oscillations are governed by the matrix of
second derivatives of the potential evaluated at the position of the minimum.
This is a 9 × 9 matrix which we will only treat perturbatively in K, g1 and g2.
The order zero matrix is block diagonal with three, 3 × 3 blocks, of the form

8λ





ϕ2
i

0 ϕiηi

0 0 0

ϕiηi 0 η2
i





Which gives three heavy modes and 6 light modes.  The 
normalized light modes are given as:





0

1

0



 ⊗ n̂i,





ηi/
√

ϕ2
i

+ η2
i

0

−ϕi/
√

ϕ2
i

+ η2
i



 ⊗ n̂i



The 6x6 matrix of the degenerate subspace separates into 
two 3x3 blocks which are identical in form to the 3x3 
matrix that appeared before.  The eigenvectors and 
eigenvalues are:

v1,1 =





1

0

−1



 , v1,2 =





Aϕ

−2K
Aϕ



 , v1,3 =





K
Aϕ

K





Aϕ, Aϕ + Bϕ, 0

v2,1 =





1

0

−1



 , v2,2 =





α

−2K ′

α



 , v2,3 =





K ′

α

K ′





α, (α ±
√

(α − β)2 + 8(K ′)2)/2



The “Josephson effect” corresponds to the mode           ,  
corresponds to charge exchange with the intermediate anti-
ferromagnet and the end superconductors, while           
corresponds to the true Goldstone mode which gives rise to 
the Meissner effect and mass for the photon.

v1,1 v1,2

v1,3

The other triplet of modes do not correspond to charge 
exchange but rather to fluctuations of the length of the 
superconducting and the anti-ferromagnetic order 
parameters.



Conclusions
We have formulated the Josephson effect in the 
language of effective Lagrangians allowing for a 
generalization to non-abelian symmetries and the 
corresponding non-abelian Josephson effect.   

We find that the Josephson effect corresponds to the 
excitations of pseudo-Goldstone bosons.    
We considered a sandwich of three regions with an 
underlying, approximate              symmetry, that is 
explicitly broken to            .   The unbroken               is 
gauged and superconducting in the end regions.    

We find that the intermediate region mediates the 
exchange of charge between the two end regions, giving 
rise to a “Josephson effect”.  

SO(3)
SO(2) SO(2)



Our formalism could be applied to physical situations 
involving the spontaneous breaking of non-abelian gauged 
symmetries if an interface arises.     

One promising area where this could occur is in the high 
density phases of QCD which are expected to occur in 
contiguous regions of neutron stars.   

Other examples of situations which may provide a venue 
for our formalism include two-band superconductors, d-
wave high T_c superconductors,  p-wave heavy-fermion 
superconductors, the A phase of liquid Helium-3, and 
nonlinear optics, where complicated order parameters often 
occur.  


