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◮ Inflation provides a mechanism by which widely
separated directions in the sky could have been
in causal contact in the early history of the

universe.

◮ It predicts flat universe and perturbations that

are adiabatic and gaussian with a nearly scale
invariant power spectrum.



Plan of Talk

◮ Background dynamics of single scalar field inflation.

◮ Perturbations generated during inflation

◮ Nature of the perturbations
◮ Their time evolution
◮ Statistical properties

◮ Anisotropies in Cosmic Microwave Background Radiation



Dynamical evolution of the universe

Dynamical description of the universe is based on :

◮ General theory of relativity: Einstein equation.

Gµν = 8πG Tµν

◮ The cosmological principle: space is homogeneous and
isotropic. This reduces the number of dynamical metric
variables to just one: the scale factor a(t).

Assuming that the energy density that fills the universe behaves
like a perfect fluid, Tµν has two dynamical components :
T00 = ρ and Tii = p.
Thus we have three dynamical variables: a(t), ρ and p.



Dynamical evolution of the universe

The equations that govern the evolution of a, ρ, p are:

◮ Acceleration equation (Raichaudhary equation):

ä

a
= −1

6
(ρ+ 3p)

◮ The fluid continuity equation:

ρ̇+ 3H(ρ + p) = 0

where H ≡ ȧ/a.

◮ Equation of state :

ω =
p

ρ

The above equations can be used to get the Friedmann Equation:

H2 =
ρ

3



What is the expansion history of the universe ?

a(t) = ??

Equivalent to asking, what is the kind of stress energy tensor that
filled/fills the universe.



Expansion history of the universe
◮ Supernovae observations tell us the universe is undergoing

accelerated expansion today.

a(t) ∝ tn, n > 1.

◮ Formation of the structures we see today requires a period
when energy density was dominated by matter.

a(t) ∝ t2/3.

◮ We know that

ργ ∝ 1

a4
, ρm ∝ 1

a3

This implies that if we go sufficiently back in time, ργ must
have been the dominant component.

a(t) ∝ t1/2.



Expansion history of the universe . . . contd

◮ The CMB is very isotropic and homogeneous, with tiny
fluctuations imposed on them, on scales which could not have
been causally connected at any past epoch if the universe was
matter or radiation dominated.

◮ If there was
ä > 0

prior to radiation domination, then all the observable universe
today could have expanded from one causally connected
region at the beginning of inflation.



Horizons and length scale

Let us define the following:

◮ Efolding : N ≡
∫

Hdt

◮ Particle horizon : dp = a(t)
∫ t

ti

dt
a

◮ Hubble horizon : H−1

During matter or radiation dominated epoch, dp and H−1 grow
roughly similarly.
During inflation, dp grows exponentially, whereas, H−1 is almost
constant. This allows causally connected patches to grow much
larger than Hubble radius.
Once inflation stops, different scales reenter the Hubble radius at
different times.



How much inflation?
• Roughly, the amount of inflation should be such that the size pf
the observable universe today was inside the Hubble radius at the
beginning of inflation.

◮ At any two times t1 and t2, such that t2 < t1, the
corresponding length scales are related as

λ2 =
a(t2)

a(t1)
λ1

◮ Let us denote

λ0 ≡ H−1
0 Hubble radius today

λi ≡ the scale corresponding to λ0 at beginning of inflation

H−1
i ≡ Hubble radius at beginning of inflation

ti , te ≡ beginning and end of inflation

◮

a(te) = eNa(ti).



How much inflation?

◮ Hubble radius today and the scale from which it grew are
related as

λ0 =
a(t0)

a(te)
a(ti ) λi

◮ We demand that
λi < H−1

i

◮ Using T (t) ∝ 1/a(t),

⇒ eN ≥ T0

H0

(

Hi

Tte

)

Put in T0 = 2.725K , H0 = 73 km/s/Mpc and we get

N ≥ 70 + ln

(

Hi

Tte

)



Realization of Inflation : concrete model

Consider single scalar field inflation coupled minimally to gravity:

L =

∫

d4x
√−gR +

∫

d4x
√−g (∂µφ∂

µφ− V (φ))

From gravity part we get the equations:

ä

a
= −1

6
(ρ+ 3p)

H2 =
ρ

3

From φ part we get equation of motion:

φ̈+ 3Hφ̇+ V,φ = 0

Energy and momentum density ,

ρ = φ̇2 + V , p = φ̇2 − V



Inflation ⇒ ä > 0 ⇒ ρ+ 3p < 0
which is satisfied if

V >> φ̇2

◮ Slow roll parameters:

ǫi+1 ≡ ǫ̇i
Hǫi

, ǫ0 = H

ǫ1 ≡ − Ḣ

H2
= 3

φ̇2/2

φ̇2/2 + V

ǫ2 ≡ − ǫ̇1
Hǫ1

= −3
φ̈

3Hφ̇

ǫ3 ≡ − ǫ̇2
Hǫ2

= 3(ǫ1 + ǫ2) − ǫ22 −
V ,φφ

H2

These parameters quantify the degree of slow roll, depending on
the shape of the potential. The background field is said to be
slow-rolling if ǫ1 ≪ 1, |ǫ2| ≪ 1, . . . .



Inflation implies spatial flatness

Define

◮ critical density:
ρc(t) = 3H2

◮ Density parameter:

Ω(t) =
ρ(t)

ρc(t)

Experimentally, Ω0 ≡ Ω(t0) =
∑

i Ωi is inferred to be very close
to one.

◮ To see how inflation drives Ω0 towards one, rewrite the
Friedmann equation including the spatial curvature term as:

Ω − 1 =
k

a2H2



Inflation implies spatial flatness
◮ If the universe was always matter or radiation dominated in its

past, then we get

k

a2H2
∝ growing function of time

⇒ if Ω0 is so close to one today, it must be have been
extraordinarily close to one in the past.

◮ If there was a period of ä > 0, then during that period

k

a2H2
∝ decreasing function of time

So even if Ω(t) started out with a value far from one, inflation
would drive it very quickly towards one. If this period was
long enough, the subsequent radiation and matter domination
epochs will not make it significantly different from one.

Thus, inflation implies
Ω0 ≃ 1



Inflationary attractor

◮ Inflation can be predictive only if the field evolution at late
time is independent of the initial conditions, φi and φ̇i . In
other words, it must exhibit attractor behaviour.

◮ This means that in the phase space (φ, φ̇), there must exist an
attractor solution or trajectory, to which all solutions approach
quickly. This attractor solution must contain an inflationary
patch.

◮ The slow-roll solution generically gives a good approximation
of the attractor trajectory.



Which is ‘THE model’ of inflation?

◮ What fundamental theory does φ belong to?

◮ Extension of the Standard Model?
◮ Low energy effective theory from some string theory

compactification ?

◮ Alternative to inflation?



Inflaton perturbations and
their nature



Nature of inflaton perturbations

δφ⇐⇒ δgµν

Generic inflaton perturbation will be such that

δTii ≡ δp =
∂p

∂ρ
δρ+ δpNA

= c2
A δρ+ δpNA

= adiabatic + nonadiabatic components



Perturbations induced by the inflaton

δφ(~x , t) = φ0(t) + δφ(~x , t)

◮ Metric fluctuations : perturb around the FRW (background)
metric upto first order.

gµν ≃ g (0)
µν (t) + δgµν(~x , t),

δgµν(~x , t) ≪ g (0)
µν (t)

◮ There are three types of perturbations depending on how they
transform under local rotation of the spatial coordinates on
hypersurfaces of constant time.

1. Scalar perturbations
2. Vector perturbations
3. Tensor perturbations



Counting the independent degrees of freedom

◮ The full perturbed metric:

gµν = a2

(

−1 − 2A ∂iB + Si

∂iB + Si (1 − 2ψ)δij + DijE − (∂iFj + ∂jFj) + hij

)

where,

Dij = ∂i∂j −
1

3
δij∇2

◮ Four possible coordinate transformations eliminate 4 degrees
of freedom. The remaining six include scalars, vectors and
tensors.



Counting. . . contd

◮ At linear order, the three kinds of perturbations decouple. So
they can be studied separately.

◮ Of the four gauge conditions possible, two will apply to
scalars:
gauge invariance under coordinate reparametrizations of time
and space

t → t + t̃

x i → x i + ǫi , ǫi = ∂i ǫ

These remove two of the scalars.



Counting. . . contd

◮ The remaining two gauge invariances under space
transformations

x i → x i + ǫi , ∂i ǫ
i = 0

will act on the vector modes and remove two degrees of
freedom.

◮ Thus, in the coupled system of inflaton perturbation and
scalar metric perturbations, there are three independent
variables - two metric scalar perturbations and one scalar field
perturbation. The perturbed Klein Gordon equation and the
perturbed Einstein equations will completely specify the
dynamics of this coupled system.

◮ It turns out that, to linear order in perturbations, the Einstein
equation give constraints which remove one more metric
scalar variable.

From here on we will focus attention on the scalar variables only.



Perturbed Einstein equation
Einstein equation:

Gµν = 8πGTµν

Gµν = Rµν − 1

2
gµνR

.
Perturbed Einstein equation

δGµν = 8πGδTµν

δGµν = δRµν − 1

2
δgµνR − 1

2
gµνδR

Since
δR = δgµαRαµ + gµαδRαµ

we need to only compute δRµν :

δRµν = ∂αδΓ
α
µν−∂µδΓ

α
να+δΓα

σαΓσ
µν +Γα

µνδΓ
α
µν−δΓα

σνΓσ
µα−Γα

σνδΓ
σ
µα



Perturbed Einstein equation

Components of δGµν :

δG00 = 2
a′

a
∂i∂

iB − 6
a′

a
ψ′ +

1

2
∂k∂

iDkiE

δG0i = −2
a′′

a
∂iB +

(

a′

a

)2

∂iB + 2∂iψ
′ +

1

2
∂kDkiE

′ + 2
a′

a
∂iA

δGij = δij

[

2
a′

a
A′ + 4

a′

a
ψ′4

a′′

a
A − 2

(

a′

a

)2

A + 4
a′′

a
ψ − 2

(

a′

a

)2

ψ

2ψ′′ − ∂k∂
kψ + 2

a′

a
∂i∂

iB + ∂i∂
iB ′ + ∂i∂

iA +
1

2
∂k∂

mDk
mE

]

∂i∂jB
′ + ∂i∂jψ − ∂i∂jA +

a′

a
DijE

′ − 2
a′′

a
DijE +

(

a′

a

)2

DijE

+
1

2
DijE +

1

2
∂k∂iD

k
j E +

1

2
∂k∂iDjkE − 1

2
∂k∂kDijE − 2

a′

a
B



Perturbed Energy momentum tensor

Unperturbed Tµν :

Tµν = ∂µφ∂νφ− gµν

(

1

2
gαβ∂αφ∂βφ− V (φ)

)

Perturbed Tµν :

δTµν = ∂µδφ∂νφ+ ∂µφ∂νδφ− δgµν

(

1

2
gαβ∂αφ∂βφ− V (φ)

)

gµν

(

1

2
δgαβ∂αφ∂βφ+ gαβ∂αδφ∂βφ− V ,φ δφ

)



Perturbed Energy momentum tensor

Components of δTµν :

δT00 = δφ′ φ′ + 2a2A V + a2V ,φ δφ

δT0i = ∂iδφφ
′ +

1

2
∂iBφ

′2 − a2∂iBV

δTij = δij
(

δφ′ φ′ − Aφ′2 − a2V ,φ δφ− ψφ′2 + 2a2ψV
)

1

2
DijEφ

′2 − a2DijEV



Perturbed Klein-Gordon equation

δφ′′ + 2
a′

a
δφ′ − ∂i∂

iδφ− A′φ′ − 3ψ′φ′ − ∂i∂
iBφ′

= δφ
∂2V

δφ2
a2 − 2A

∂B

∂φ
(1)



Gauge transformations
Let

δx0 = ξ0(xµ)

δx i = ∂iβ(xµ) + v i(xµ) : ∂iv
i = 0.

◮ Transformation properties of the four metric perturbation
scalars:

Ã = A − ξ0
′ − a′

a
ξ0

B̃ = B + ξ0 + β′

ψ̃ = ψ − 1

3
∇2β +

a′

a
ξ0

Ẽ = E + 2β (2)

◮ The inflaton perturbation transforms as

δ̃φ = δφ − φ′ξ0 (3)



Gauge invariant quantities

Which dynamical variable best carries the physical information ?

◮ Gauge invariant Bardeen potentials:

Φ = −A +
1

a

[

a

(

−B +
E ′

2

)]′

Ψ = −ψ − 1

6
∇2E +

a′

a

(

B − E ′

2

)

◮ Gauge invariant inflaton perturbation

δφ(GI ) = −δφ− φ′
(

−B +
E ′

2

)

(4)

◮ Gauge invariant energy-density perturbation

δρ(GI ) = −δρ− ρ′
(

−B +
E ′

2

)

(5)



Gauge invariant perturbed Einstein equation

◮ By defining gauge invariant components of δGµν and δTµν we
can write Einstein equation in a gauge invariant way.

δG
(GI )
00 = δG00 + (δG00)

′

(

E ′

2
− B

)

δG
(GI )
0i = δG0i + (δG0i )

′

(

E ′

2
− B

)

δG
(GI )
ij = δGij + (δGij )

′

(

E ′

2
− B

)

δT
(GI )
00 = δT00 + (δT00)

′

(

E ′

2
− B

)

δT
(GI )
0i = δT0i + (δT0i )

′

(

E ′

2
− B

)

δT
(GI )
ij = δTij + (δTij )

′

(

E ′

2
− B

)



Gauge invariant perturbed Einstein equation

◮ We can write the Einstein’s equations in terms of the Bardeen
potentials, Φ and Ψ.

◮ For i 6= j we get
Φ = Ψ

◮ We finally get the following equation for Φ:

Φ′′ + 2

(

H− φ′′

φ

)

Φ′ −∇2Φ + 2

(

2H′ + Hφ′′

φ′

)

Φ = 0



Mukhanov-Sasaki variable

◮ Define the Mukhanov-Sasaki variable u as:

u ≡ a δφ(GI ) + z Φ

where

z ≡ a

H

√
ρ+ p = a

φ̇

H

u is gauge invariant by consruction.

◮ The equation of motion for u then becomes

u′′ −∇2u − z ′′

z
u = 0.

For the sake of completeness, once u is calculated, we can
calculate Φ via the equations:

∇2Φ =
H
2a2

(zu′ − z ′u)



Comoving curvature perturbation

◮ Define the comoving curvature perturbation as:

R ≡ −H

φ′
δφ(GI ) − Φ = −u

z

◮ Equation of motion of R:

R′′ −∇2R + 2
z ′

z
R′ = 0

◮ R is gauge invariant by construction.

Physical meaning of R: On comoving hypersurfaces where δφ = 0,
R = ψ and so it gives the intrinsic spatial curvature via the
Poisson equation:

R (3) =
4

a2
∇2ψ



Intrinsic Entropy perturbation
Gordon, Wands, Bassett and Maartens (2000)

If the pressure does not change adiabatically, then it will not only
be a function of ρ.

◮ Let
p ≡ p(ρ,S)

Then

δp = c2
A δρ+

ṗ

H
S

◮ Equivalent to defining

S ≡ H

(

δρ

ρ̇
− δp

ṗ

)

◮ It is gauge invariant by definition.

S can be shown to be

S =
2V ,φ

3φ̇(3Hφ̇ + 2V ,φ )

[

φ̇
(

˙δφ − φ̇Φ
)

− φ̈δφ
]



Second order action in Mukhanov-Sasaki variable and

quantization
To quadratic order in the perturbations, the inflaton action can be
written in terms of the Mukhanov-Sasaki variable as:

S =

∫

dηd3x
1

2

(

u′2 − c2
s u ∇2u +

z ′′

z
u

)

where c2
s = 1.

◮ It is equivalent to a free scalar field with time dependent
mass, given by z ′′/z , in Minkowski space.

◮ The vacuum is chosen to be the Bunch Davies vacuum, in the
limit aH/k → 0

uk −→ 1√
2k

e−ikη (6)

◮ The quantum operator u(~x , η) can be expressed as:

u(~x , η) =

∫

d3k

(2π)3/2

(

uk ake
i~k.~x + u∗

k(η) a
†
ke−i~k.~x

)



Solution for u, R and S under
slow roll on super-Hubble

scales



Solutions for perturbations
To solve the classical equations of motion for u,R,S we consider
the equations for the Fourier modes

◮ Equation of motion for Fourier modes of u:

u′′
k +

(

k2 − z ′′

z

)

uk = 0.

◮ Equation of motion of Fourier modes of R:

R′′
k + 2

z ′

z
R′

k + k2 Rk = 0

It is useful to have the expressions for z ′′/z and z ′/z expressed in
terms of slow roll parameters:

z ′′

z
= 2a2H2 (1 + ǫ1 −

3

2
ǫ2 − 2ǫ1ǫ2 +

1

2
ǫ21 +

1

2
ǫ3)

z ′

z
= aH (1 + ǫ1 − ǫ2)



Solutions for perturbations

W will need solutions in the following two limits:

◮ Sub-Hubble scales:
k

aH
≫ 1

◮ Super-Hubble scales:
k

aH
≪ 1

Using the expression for z ′′/z in slow roll parameters, the equation
for uk becomes:

u′′
k+a2H2

(

k2

a2H2
− 2(1 + ǫ1 −

3

2
ǫ2 − 2ǫ1ǫ2 +

1

2
ǫ21 +

1

2
ǫ3)

)

uk = 0.



Solutions for perturbations

First, let us see that Rk is approximately zero on super-Hubbles
scales if the backgound evolution is slow-roll.
In the two scale limits uK equation becomes :

◮ On sub-Hubble scales

u′′
k + k2uk ≃ 0

◮ On super-Hubble scales

u′′
k − z ′′

z
uk ≃ 0

◮ On super-Hubble scales we have: u ∝ z.

◮ This implies:
Ṙ ≃ 0



Solutions for perturbations

1. Growing mode:
R1(η) ≃ const

2. Decaying mode: can be obtained from R1 by using the
Wronskian

R2(η) ∝ R1(η)

∫ η

η∗

dη′

z2(η′) R2
1(η

′)

R can then be written as:

Rk(η) = c1R1(η) + c2R2(η)

Under slow roll, R2(η) ≪ R2(ηk) for η ≫ ηk . and so

Rk ≃ R1



Solutions for perturbations

◮ Relation between Curvature and Intrinsic Entropy perturbation

Using the expression for S, the equation for Rk can be rewritten as

R′
k

aH
=

3

2

3 − 2ǫ2
3 − ǫ2

S

S ′
k

aH
=

(

3(ǫ1ǫ2 − ǫ3)

(3 − 2ǫ2)(3 − ǫ2)
− 3 − ǫ1 + 2ǫ2

)

S

− 2

3

(3 − ǫ2)

(3 − 2ǫ2)

k2

a2H2
R

Assuming ǫ1 ≪ 1 and V ,φφ ≪ H2,

S ′
k

aH
=

(

2ǫ2 − 3 +
3ǫ2

2ǫ2 − 3

)

S



Solutions for perturbations

◮ Intrinsic Entropy perturbations behave as

S ∝ e−2N

◮ which also implies
Ṙ → 0

when the mode goes out of the horizon.



Solutions for perturbations
To Solve the uk equation :
First we need to know how a behaves as a function of conformal
time η. FRom

η =

∫

dt

a

we get
For nearly de-Sitter expansion, a(η) goes as

a(η) ≃ − 1

Hη
+ O(slow roll parameters)

Therefore,
k

aH
≪ 1 ⇒ −kη ≪ 1

and similarly for the other limit. Then we can write

z ′′

z
≃ 1

η2
(2 + O(slow roll parameters)



Solutions for perturbations

Rewrite the uk equation as:

u′′
k +

(

k2 − 1

η2

(

ν2 − 1

4

))

uk = 0

where

ν =
3

2
+ O(slow roll parameters)

For ν real, as it is here, the general solution of this equation is:

uk(η) =
√−η

(

c1(k) H(1)
ν (−kη) + c2(k) H(2)

ν (−kη)
)

where H
(1)
ν (−kη) and H

(2)
ν (−kη) are Hankel functions of the first

and second kind. The coeeficents c1(k) and c2(k) are independent
of time.



Solutions for perturbations
◮ In the limit −kη ≫ 1, we have:

H(1)
ν (−kη) ≃

√

2

−k η π
e i(−kη−π

2
ν−π

4 )

H(2)
ν (−kη) ≃

√

2

−k η π
e−i(−kη−π

2
ν−π

4 )

◮ Next we demand that in the limit k/aH ≫ 1 or −kη ≫ 1 we
get plane wave solution:

uk → 1√
2k

e−ikη

◮ This implies that we must have:

c2(k) = 0

c1(k) =

√
π

2
e i(ν+ 1

2
)π

2

Since c1 actually depends on time through the slow roll
parameters in ν, this solution is valied under the



Solutions for perturbations

Thus the solution for uk becomes:

uk =

√
π

2
e i(ν+ 1

2
)π

2
√−η H(1)

ν (−kη)

In the limit k/aH ≪ 1 or −kη ≪ 1, H
(−1)
ν behaves as

H(−1)
ν ≃

√

2

π
e−

iπ
2 2ν− 3

2
Γ(ν)

Γ(3/2)

1

(−kη)ν

we get

uk ≃ e i(ν− 1
2
)π

2 2ν− 3
2

Γ(ν)

Γ(3/2)

1√
2k

(−kη)
1
2
−ν

=

[

2ν− 3
2

Γ(ν)

Γ(3/2)

]

1√
2k

(

k

aH

)
1
2
−ν



Solutions for perturbations

We can now obtain Rk as:

|Rk | =
∣

∣

∣

uk

z

∣

∣

∣
≃

[

2ν− 3
2

Γ(ν)

Γ(3/2)

]

H2

φ̇

1

aH
√

2k

(

k

aH

)−1+(ns−1)/2

=

[

2ν− 3
2

Γ(ν)

Γ(3/2)

]

H2

φ̇

1√
2k3

(

k

aH

)(ns−1)/2

where
ns = 1 − 2ǫ1 − ǫ2



Statistical properties



Two-point correlation function: power spectrum

◮ For a generic operator, A, the power spectrum P(k) is defined
from the two-point function as:

〈0|A∗
~k1

A~k2
|0〉 ≡ δ(~k1 − ~k2)

2π2

k3
P(k)

where P(k) is the power spectrum.

◮ The scalar power spectrum for R is :

PR(k) =
k3

2π2
|Rk|2

where Rk here is the solution of the classical equation of
motion.



Power spectrum of R

◮ The expression for PR is :

PR ≃ 1

4π

[

2ν− 3
2

Γ(ν)

Γ(3/2)

]2
H4

φ̇2

(

k

aH

)ns−1

Hence the power spectrum can be written as

PR(k) = A

(

k

k0

)ns−1

where k0 = pivot scale, A = amplitude, and ns is the spectral
index:

ns =
d lnPR

d ln k/k0



Power spectrum of R

◮ Thus, PR(k) is featureless and completely specified by two
numbers, A and ns .

◮ The scale dependence (dependence on k) is very weak, since
under slow roll ns is close to one.



Deviations from slow roll

• When slow roll is violated, Rk can have significant evolution on
super-Hubble scales.
• The evolution/change can be quantified using long wavelength
approximation.



Approximate formula for the change of Rk

Leach, Sasaki, Wands and Malik (2001), Jain, PC, Sriramkumar (2007)

◮ The long wavelength approximation assumes a perturbative
expansion for the growing mode R1 in powers of the
wavevector k:

R1(η) =

∞
∑

n=0

R1(n)(η)k
2n.

such that R1(0) is the asymptotic constant solution in the
limit k → 0.



Approximate formula for the change of Rk

◮ Let η∗ = end of inflation
ηk = soon after Hubble exit.

◮ Let RK at these two times be related as:

Rk(η∗) = αkRk(ηk).

◮ Then to order k2, αk is given by:

αk = 1 + Dk(ηk) − Fk(ηk)

with

Dk(η) ≃ Hk

η∗
∫

η

dη1
z2(ηk)

z2(η1)

and

Fk(η) ≃ k2

η∗
∫

η

dη1

z2(η1)

η1
∫

ηk

dη2

[

c2
S
(η2) z2(η2)

]

Hk = conformal Hubble parameter at ηk .



Entropy perturbations as source for Rk

Leach and Liddle (2001), Jain, PC, Sriramkumar (2007)

During fast roll, ǫ2 is larger than one and so

S ∝ ecN , c > 1

• This growth sources Rk and makes it evolve. The effect is
localized to those modes that exit Hubble horizon around the
period of slow roll violation. The longer a mode k has been outside
the horizon, the lesser is the effect.
• The detailed effects are model dependent.



Non-gaussianity
Seery and Lidsey (2005)

Consider a general action of the form

S =

∫

d4x
√−g

(

M2
P

2
R + P(X ,T )

)

where X = −gµν∂µT∂νT .

Ẋ (P ,X +2XP ,XX ) + 2
√

3 (2XP ,X −P)1/2
XP ,X

= X 1/2 (P ,T −2XP ,XT ) ,

and a constraint equation, which is the Friedmann equation,

H2 =
1

3
(2XP ,X −P) .

The sound speed in T is given by

c2
s =

P ,X
P ,X +2XP ,XX

.



Define the slow roll parameters

ǫ = − Ḣ

H2
=

XPX

H2
= − Ṫ

H2

∂H

∂T
− Ẋ

H2

∂H

∂X
= ǫT + ǫX .

η =
ǫ̇

ǫH
.

It is also useful to define the parameters u and s as

u = 1 − 1

c2
s

= −2XPXX

PX

,

s =
1

H

ċs

cs
.



Three-point function of Curvature perturbation

Starting with the above general action, follow the steps below:

1. Expand the action order by order in the curvature
perturbation R.

S = S0 + S1 + S2 + S3 + . . .

2. The zeroth order terms, S0, will give the background
evolution.

3. First order terms are zero, S1.

4. The second order action, S2, describes a free field.

5. Determine the terms in the third order action S3. It can be
written as an expansion in the slow roll parameters -
ǫ1, ǫ2, εX , u and cs .



Three-point function of Curvature perturbation

〈R(~k1)R(~k2)R(~k3)〉 = (2π)3δ
(

(~k1 + ~k2 + ~k3

) H4

24ǫ21

1

Πi
k3
i A

where

A =
4

K
(u + ǫ1)

∑

i>j

k2
i k2

j − 4

K 3

(

u +
ǫ1
εX

s

3

)

k2
1k2

2k2
3

− 2u

K 2

∑

i 6=j

k2
i k3

j +
1

2
(ǫ2 − u − ǫ1)

∑

i

k3
i +

ǫ1
2

∑

i 6=j

kik
2
j

where K = k1 + k2 + k3.



Non-gaussianity parameter : fNL

Let

fNL = −5

6

A
∑

i k
3
i

For the case k1 = k2 = k3, the expression for fNL is given by

fNL ≃ −0.28 u + 0.02
ǫ1
εX

s − 1.53 ǫ1 − 0.42 ǫ2.

For canonical scalar field inflation, cs = 1, u = 0 and s = 0.
Therefore,

fNL ≃ −1.53 ǫ1 − 0.42 ǫ2

and so
fNL ≪ 1

.



Summary of lectures 1 and 2

Studied inflation and properties of perturbations arising from a
single scalar field minimally coupled to gravity. We obtained the
following general predictions:

◮ Ω0 = 0.

◮ Inflaton perturbations are adiabatic and ‘conserved’ on
super-Hubble scales if the field dynamics is slow roll always.

◮ The power spectrum of the quantized perturbations is
’featureless’ and nearly scale invariant. It is specified by two
numbers: the amplitude A and the spectral index ns .

◮ Perturbations behave as free fields to linear order and hence
are gaussian. The non-gaussianity predicted is small.

◮ If slow roll is violated for some time during inflation, features
arise in the power spectrum. These features are associated
with relatively large non-gaussianity, at the scales associated
with the features.



Classification of inflation models

Based on number of fields driving inflation:

1. single field inflation

2. multi-field inflation

Based on initial field value:

1. Large field inflation

2. Small field inflation

Based on the type of scalar field:

1. Canonical scalar field inflation

2. Dirac Born Infeld field inflation

2.1 Tachyonic inflation: L = −V (T )
√

1 + ∂µ∂µT

2.2 ‘DBI’ inflation:
L = −f (T )

√

1 + f −1(T )∂µ∂µT + f (T ) − V (T )

Hybrid inflation, curvaton scenario, . . .



Some issues not mentioned

◮ Reheating

◮ Does reheating details affect super-Hubbles perturbations?

◮ Trans-Planckian effects

◮ Quantum to classical transition

◮ All quantum field theoretic calculations are at tree level. Loop
corrections are expected to be small.



Counting. . . contd

◮ Helmholtz’ theorem: any three vector ui can always be
written as sum of a curl free part and a divergence free part:

ui = ∂iv + v i with ∇̇v = 0 (7)

The divergence free condition implies the vector actually has
two independent degrees of freedom.

◮ A general traceless tensor Πij can be decomposed as

Πij = ΠS
ij + ΠV

ij + ΠT
ij

ΠS
ij =

(

−kikj

k2
− 1

3
δij

)

Π

ΠV
ij = − i

2k
(kiΠj + kjΠi ) , with kiΠi = 0,

kiΠ
T
ij = 0. (8)

So, the number of independent tensor degrees of freedom are
two.

◮ Thus we are left with two independent scalar degrees of
freedom.



Gauge transformations
How do the perturbed parts of various quantities transform under a
general coordinate transformation?
Let Q(xµ) be some generic quantity which may be a scalar, vector
or tensor, which is perturbed as

Q(xµ) = Q0(t) + δQ(x) (9)

Under the change of coordinates:

xµ′

= xµ + δxµ (10)

Let

δx0 = ξ0(xµ)

δx i = δβ(xµ) + v i(xµ) : ∂iv
i = 0.

δQ transforms as

δQ ′(xµ′

) = δQ + LδξQ0 (11)


