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Discrete flavor symmetries

Recently, a lot of models with a flavor symmetry based on
a finite group have been proposed ( Ss, A4, DN, QN -+ ),
because it is possible....

- to reduce the number of free
parameters in the Yukawa sector. j:

- to realize hierarchical structure
of fermion masses. =zl

- to realize bi-maximal structure 10t
of MNS matrix. 10°
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Motivation

4 )
There are too many models!

Most of the models are meaningless because a flavor
symmetry is only one ( if there exist it ). y

\_

But we have no criterion to distinguish them.

-+

I thought it is important to consider a new criterion.

E> Anomalies of discrete symmmetries.

That is, I want to consider a thing such as gauge anomalies.
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Motivation

To this end, there are two problems.

1, How do I define anomalies
for discrete symmetries?

2, Why are discrete anomalies forbidden?

[ would like to talk about these topics in this presentation.



Fujikawa's method ... rrooom)

Let us consider a continuous chiral rotation, ¥ — ew‘(“’chw ,
in Euclidean space-time.
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Hence the current does not conserve at the quantum level.



Discrete anomalies

I want to consider the same calculation for discrete ones.
Let us consider a discrete chiral rotation, ¥ — €% | in
Euclidean space-time. For instance « = (27/N)q .

Z:/ DyDy DA, exp{/d4x L(1), A) }

L =L

DYDY — J 1DyYDy
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J = {det/d4x oh (z) [e"7°] gom(x)}
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In this case, we can not use an infinitesimal transformation
because o is a discrete parameter.



Discrete anomalies 7.
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Anomalies of non-abelian discrete symmetries

Let us consider non-abelian discrete flavor transformations.

wL,a — UaﬁwL,ﬁ = (eiX)Oé,BwLnB
Vr,a = Vap¥rs = (€7 )ap¥r,p
These are unitary transformations (UUT = VVT =1),

det(U) = det(e**) = e : 2
. . n,¢ X —=
det(V) = det(e’¥) = e’ N

Let us calculate the Jacobian for these transformations.
_ 1 vpo
J 1 — eXpP { 3;771‘2 /d4x Tr [6’“ P F/,LI/(L)FPO'(L)]}
X eXp {—3& /d4a: Tr [GMVPO-FIU,I/(R)FpO'(R)]}

Here, n and § correspond to the abelian parts of U/ and V .

( a, B : generations )

Therefore, we only have to take

into account its abelian parts.




Stringy originated discrete symmetries

We want to consider the situation that discrete flavor
anomalies are forbidden. > But there is no reason....

We assumed that discrete flavor symmetries originate from
string theory.

C> * In fact, we can derive non-abelian discrete flavor symmetries
from heterotic orbifold models. [ T-Kobayashi, et al. NPB768(2007) |

- Such discrete symmetries reflect geometrical symmetries
of internal space.

- The geometrical operations are embedded into the gauge group.
- There might be some relation between discrete anomalies
and that of anomalous U(1) gauge symmetries.

We expected that we might get some constraint for discrete

anomalies from anomaly freedom of anomalous U(1) if there
exist such a relation.
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.Kobayashi, et al.
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Divide a 1-dimensional space by a 1-dimensional lattice.

- . -q #- - .
a b
? S! torus
identify a with b a ; b

Identify the points which are related by a reflection.

S'/Z, orbifold
______ IZQ Hﬂj> ® Py

S~ d

The points of both ends are invariant : .
. fixed point
under 7, - twist.

There are brane matter fields living on these fixed points.
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Let us consider two states as multiplet.

S e ) (B2)

Then, allowed n-point couplings must be invariant under

- rotational part ( twist ) i=1~n

(\x’i>)_}(—1 0 )(|xz>)__1(|a:7’>)
ly* > 0 -1 y* > Yyt > )

- translational part ( lattice )

|t > IR 1 0 |t > _ . |t >
Yt > 0 -1 yi> ) Pyt > )

- permutation between two fixed points

|x7f> . 0 1 |x7“> _ . \x7’>
Yt > 1 0 > ) Tyt > )

these transformations.
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n-point couplings must be invariant under the combinations of
such transformations, too.
The product of such generators lead to the eight elements

:|:1, :|:0'1, :|:i0'2, :|:O'3 .

- =

D4 symmetry

That is, n-point couplings must be invariant under D, symmetry,
and the multiplets are doublets of D, .



Building blocks

The symmetries of 6-dimensional orbifolds can be obtained by

combining symmetries of the following blocks.

| T.Kobayashi, et al. NPBT768(2007) |

orbifold Havor symmetry twisted sector string tundamental states
T F Dy = 8 i (Fg X £a) untwisted sector 1
A-twisted sector 2
[2f%a | (Dgx D) &z = (S2 x S3) & E untwisted sector 1
#-twisted sector 4
2 [Zq untwisted sector 1
A(54) = 53 x (£3 x £3) #-twisted sector 3
#*-twisted sector 3
r= untwisted sector 1
(D x £4) /29 #-twisted sector 2
#2-twisted sector 14, +1p, +1p, + 14,
[*/Zg trivial
I/ Zg untwisted sector 1
A-twisted sector 2
(Dy x Zg)[Za #2_twisted sector 14, +1p, +1p, + 14,
#P-twisted sector 2
f-twisted sector | 4 x (1a, + 1, + 1, + 14,)
ref trivial
r*/Z, untwisted sector 1
S; x (Z5)8 #*-twisted sector 7
g7 —*_twisted sector T

Table 2: Non-Abelian discrete Havor symmetries of the building blocks.




Zs-1I orbifold models

Let us calculate anomalies of discrete flavor symmetries in heterotic
orbifold models. We mainly focus on the Zz; — IT orbifold models.
(Note that, we also considered different orbifold models, so that

our results are more generally valid.)

We pay attention to only abelian (transrational) parts of non-

abelian discrete flavor symmetries ( D, x Z,,s ).
In the Z; — I1 orbifold, there are three translational symmetries.

[ Zéflcwor > Z;flcwor > nglavor}

We define anomaly coefficients as

AZflavor Zq(f)g r(f)

r(f)



Zs-1I orbifold models

- KRZ model | Kobayashi, Raby, Zhang, N PB704(2005) |

G=SU4)®SU((2), ®SU2)r ® SO(10) @ SU(2)

(s #io “} #ia

SU(4) |0 mod1 |0 mod]l 11 mod 1
SU(2), |0 mod 1|0 mod1 11 mod 1

SU2)g |0 mod 1 |0 mod 1 11 mod 1

SO(10) {0 mod 2 | 0 mod 2 —i mod 2

SU(2) |0 mod1 |0 mod]1 11 mod 1

Table 3: Summary of #,, anomalies in the KRZ model.

Z3 is anomalous. But it can be canceled by the GS mechanism.

% Anomaly free




Discrete version of the GS mechanism

Consider a discrete transformation. (a _ %ﬂ)

O — e IV D =
® : chiral supermultiplet Anomaly = —?:.AG [(XWG(G) Wa (G)]F

We can cancel this anomaly by the gauge kinetic term,

kG [SW(G)W,(G)]r — [s = s+¢&a] C el

ka

ka|SW*(G)Wo(G)]F + 1t AglaW*(G)W,(G)|F

if we correspondingly shift the dilaton supermultiplet.

( Note that the Kahler potential is invariant. )
For instance, the anomaly cancellation conditions for the SM
gauge groups are given by

A3 A A Ac
ks ke k127

( It is difficult to build realistic models with higher levels in string theory. )




Z:-II orbifold models

- BHLR model | Buchmuller, Hamaguchi, Lebedev, Ratz, NPB785(2006) ]

g

G =SU3)®SU2) @ SU(4) @ SU(2)

G P 74 Za

SU(3) |0 mod 1|0 mod 1 =’; mod 1
SU(2) |0 mod 1|0 mod 1 :; mod 1
SU(4) |0 mod 1|0 mod 1 :’; mod 1
SU(2) |0 mod 1|0 mod 1 :; mod 1

Table 6: Summary of #,, anomalies in the BHLR model.

Z3 is anomalous. But it can be canceled by the GS mechanism.

~ Anomaly free




Empirical relations

By conducting many calculations for various models, we can
obtain the following empirical relations.

4 " ngnom 1 N\
avor — 11O ].
zitever _q—@ 9
nanOm
AZfla'vor_G_G — 33 mOd ].
\___~ J
Here, n5"°""and n3"°"are the orbifold parameters and we found

these parameters are related to anomalous U(1) . (" v . shifs

anom __ 1.anom anom anom W : wilson lines
u() — k Vi "2 W2 T "3 W3 A : lattice vector

[Anticipation )

- There might be some relation between discrete flavor
anomalies and U(1) gauge anomalies.

- Anomaly freedom might be guaranteed by GS mechanism

\_ of anomalous U(1). )




D; flavor symmetry

D4 has eight elements which can be written as products of the
two generators g and h .

Gp, = {e, 9, h, gh,hg, ghg, hgh, ghgh}.

g corresponds to translatiomal part (z'“"°", z,/'*>").
h corresponds to parmutational part ( non-abelian part ).

- If this D, flavor symmetry originate from heterotic
orbifold compactifications,
- If the empirical relations really exist,

—_—_ =

Anomalies corresponding to g are forbidden!!

( Anomalies corresponding to h are future work. )



